Araştırma Makalesi
BibTex RIS Kaynak Göster

Roughness Coefficient of a Highly Calcinated Penstock

Yıl 2019, Cilt: 30 Sayı: 4, 9309 - 9325, 01.07.2019
https://doi.org/10.18400/tekderg.447265

Öz



When highly
calcinated water is transferred through the penstock of a hydropower plant it
leaves a residue on the pipe surface. Accumulated residue over time causes a
change in the roughness of the pipe surface thus friction losses in the
system.  The effect is a change in head
and discharge relation for the turbines. A multimethodology is proposed for
determining the apparent surface roughness value (ε) by means of friction factor
f and measuring arithmetic mean deviation of the roughness profile (Ra), root
mean square roughness (Rq) and peak and valley roughness (Rz).  It is found that a surface roughness value
(ε) of 0.3mm can be used for calcinated surfaces which is much higher than
steel surfaces but smaller than concrete.




Kaynakça

  • Kumar, R., Singal, S.K., Penstock material selection in small hydropower plants using MADM methods, Renewable and Sustainable Energy Reviews, 52(C), 240-255, 2015.
  • Munson, B. R., Young, D. F., & Okiishi, T. H.. Fundamentals of fluid mechanics. Hoboken, NJ: J. Wiley & Sons., 2006
  • Gilley, J. E., Kottwitz, E. R., Wieman, G. A., Roughness Coefficients for Selected Residue Materials, J. Irrig. Drain. Eng.,117, 503–514., 1991
  • Weisbach, J., Lehrbuch der Ingenieur- und Maschinen-Mechanik, Vol. 1.Theoretische Mechanik, Vieweg und Sohn, Braunschweig., 1845.
  • Darcy, H. Recherches expérimentales relatives au mouvement de l'eau dans les tuyaux, Mallet-Bachelier, Paris. 268 pages and atlas, 1857
  • Colebrook, C. F. and White, C. M., Experiments with fluid- friction in roughened pipes., Proc. Royal Soc. London, 161, 367-381, 1937.
  • Moody, L. F., Friction factors for pipe flow. Trans. ASME, 66,671-678, 1944.
  • Swamee, P. K., and Jain, A. K., Explicit equations for pipe-flow problems., J. Hydraulics Division, ASCE, 102(5), 657-664, 1976.
  • Drtina P and Sallaberger M, Hydraulic turbines—basic principles and state-of-the-art computational fluid dynamics applications, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 213(1), 85 – 102, 1999
  • Celebioglu K, Altintas B, Aradag S, Tascioglu Y, Numerical research of cavitation on Francis turbine runners, International Journal of Hydrogen Energy 42(28), 17771-17781, 2017
  • Ayancik F, Acar E, Celebioglu K, Aradag S, Simulation-based design and optimization of Francis turbine runners by using multiple types of metamodels, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231 (8), 1427-1444, 2017
  • Ayli E, Celebioglu K, Aradag S, Computational Fluid dynamics based hill chart construction and similarity study of prototype and model francis turbines for experimental tests 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Costa de Sol, 2016
  • Celebioglu K, Aradag S, Ayli E, Altintas B, Rehabilitation of Francis Turbines of Power Plants with Computational Methods, Hittite Journal of Science & Engineering 5 (1), 37-48, 2018
  • Kavurmaci B, Celebioglu K, Aradag S, Tascioglu Y, Model Testing of Francis-Type Hydraulic Turbines, Measurement and Control 50 (3), 70-73, 2017
  • TUBİTAK MAM Enerji Enstitüsü, “MİLHES Türbin Verim Ölçüm Raporu”, MLS.İP11.D.80.3009.V30, Elektrik Üretim Anonim Şirketi (EÜAŞ), 2018.
  • Hoffs, A., Drost, U., and Boics, A., “Heat Transfer Measurements on a Turbine Airfoil at Various Reynolds Numbers and Turbulence Intensities Including Effects of Surface Roughness,” International Gas Turbine and Aeroengine Congress & Exhibition, ASME Paper No. 96-GT-169, 1996.
  • Guo, S. M., Jones, T. V., Lock, G. D., and Dancer, S. N., Computational Prediction of Heat Transfer to Gas Turbine Nozzle Guide Vanes With Roughened Surfaces, Journal of Turbomachinery,120, 343-350, 1998
  • Speidel, L., Determination of the Necessary Surface Quality and possible Losses due to Roughness in Steam Turbines, Elektrizitatswirtschaft, 1(21), 799-804,1962
  • Forster, V.T., Performance Loss of Modern Steam Turbine Plant due to Surface Roughness, Proc. Instrn. Mech Engrs, 181(1), 391-405. 1967
  • Koch, C. C., Smith, L. H. Jr., Loss Sources and Magnitudes in Axial-Flow Compressors, Journal of Engineering for Power, 98(3), 411-424, 1976
  • Bammert, K., and Sandstede, H., Influences of Manufacturing Tolerances and Surface Roughness of Blades on the Performance of Turbines, Journal of Engineering Power,98(1), 29-36, 1976
  • Schäffler, A., Experimental and Analytical Investigation of the Effects of Reynolds Number and Blade Surface Roughness on Multistage Axial Flow Compressors, Journal of Engineering for Power, 102, 5-13,1980
  • Simon, H., Bülskämper, A., On the Evaluation of Reynolds Number and Relative Surface Roughness Effects on Centrifugal Compressor Performance Based on Systematic Experimental Investigations, Journal of Engineering for Gas Turbines and Power, 106, 489-501, 1984
  • Barlow, D.N. and Kim, Y.W., Effect of Surface Roughness on Local Heat Transfer and Film Cooling Effectiveness, ASME International Gas Turbine Exposition, Houston, Texas, ASME paper #95-GT-14. 1995
  • Bogard, D.G., Schmidt, D.L., and Tabbita, M., Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer, Journal of Turbomachinery,120(2), 337-342, 1998
  • Boyle, R. J., Spuckler, C. M., Lucci, B. L., and Camperchioli, W. P., Infrared Low-Temperature Turbine Vane Rough Surface Heat Transfer Measurements, Journal of Turbomachinery, 123, 168-177, 2001
  • Boyle, R. J., and Senyitko, R. G., Measurements and Predictions of Surface Roughness Effects on Turbine Vane Aerodynamics, Proceedings of ASME TURBO EXPO 2003, GT2003-38580, 2003.
  • Bunker, R. S., The Effects of Thermal Barrier Coating Roughness Magnitude on Heat Transfer With and Without Flowpath Surface Steps, Proceedings of IMECE 2003 ASME International Mechanical Engineering Congress & Exposition, IMECE2003-41073, 2003.
  • Shabbir, A., Turner, M. G., A Wall Function for Calculating the Skin Friction with Surface Roughness, Proceedings of ASME Turbo Expo 2004, GT2004-53908, 2004.
  • Zhang, Q., and Ligrani, P. M., Aerodynamic Losses of a Cambered Turbine Vane: Influences of Surface Roughness and Freestream Turbulence Intensity, Journal of Turbomachinery, 128, 536-546, 2006
  • Hummel, F., Lotzerich, M., Cardamone, P., Fottner, L., Surface Roughness Effects on Turbine Blade Aerodynamics, Proceedings of ASME Turbo Expo 2004 Power for Land, Sea, and Air, GT2004-53314, 2004

Roughness Coefficient of a Highly Calcinated Penstock

Yıl 2019, Cilt: 30 Sayı: 4, 9309 - 9325, 01.07.2019
https://doi.org/10.18400/tekderg.447265

Öz

When highly calcinated water is transferred through the penstock of a hydropower plant it leaves a residue on the pipe surface. Accumulated residue over time causes a change in the roughness of the pipe surface thus friction losses in the system.  The effect is a change in head and discharge relation for the turbines. A multimethodology is proposed for determining the apparent surface roughness value (ε) by means of friction factor f and measuring arithmetic mean deviation of the roughness profile (Ra), root mean square roughness (Rq) and peak and valley roughness (Rz).  It is found that a surface roughness value (ε) of 0.3mm can be used for calcinated surfaces which is much higher than steel surfaces but smaller than concrete.


Kaynakça

  • Kumar, R., Singal, S.K., Penstock material selection in small hydropower plants using MADM methods, Renewable and Sustainable Energy Reviews, 52(C), 240-255, 2015.
  • Munson, B. R., Young, D. F., & Okiishi, T. H.. Fundamentals of fluid mechanics. Hoboken, NJ: J. Wiley & Sons., 2006
  • Gilley, J. E., Kottwitz, E. R., Wieman, G. A., Roughness Coefficients for Selected Residue Materials, J. Irrig. Drain. Eng.,117, 503–514., 1991
  • Weisbach, J., Lehrbuch der Ingenieur- und Maschinen-Mechanik, Vol. 1.Theoretische Mechanik, Vieweg und Sohn, Braunschweig., 1845.
  • Darcy, H. Recherches expérimentales relatives au mouvement de l'eau dans les tuyaux, Mallet-Bachelier, Paris. 268 pages and atlas, 1857
  • Colebrook, C. F. and White, C. M., Experiments with fluid- friction in roughened pipes., Proc. Royal Soc. London, 161, 367-381, 1937.
  • Moody, L. F., Friction factors for pipe flow. Trans. ASME, 66,671-678, 1944.
  • Swamee, P. K., and Jain, A. K., Explicit equations for pipe-flow problems., J. Hydraulics Division, ASCE, 102(5), 657-664, 1976.
  • Drtina P and Sallaberger M, Hydraulic turbines—basic principles and state-of-the-art computational fluid dynamics applications, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 213(1), 85 – 102, 1999
  • Celebioglu K, Altintas B, Aradag S, Tascioglu Y, Numerical research of cavitation on Francis turbine runners, International Journal of Hydrogen Energy 42(28), 17771-17781, 2017
  • Ayancik F, Acar E, Celebioglu K, Aradag S, Simulation-based design and optimization of Francis turbine runners by using multiple types of metamodels, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231 (8), 1427-1444, 2017
  • Ayli E, Celebioglu K, Aradag S, Computational Fluid dynamics based hill chart construction and similarity study of prototype and model francis turbines for experimental tests 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Costa de Sol, 2016
  • Celebioglu K, Aradag S, Ayli E, Altintas B, Rehabilitation of Francis Turbines of Power Plants with Computational Methods, Hittite Journal of Science & Engineering 5 (1), 37-48, 2018
  • Kavurmaci B, Celebioglu K, Aradag S, Tascioglu Y, Model Testing of Francis-Type Hydraulic Turbines, Measurement and Control 50 (3), 70-73, 2017
  • TUBİTAK MAM Enerji Enstitüsü, “MİLHES Türbin Verim Ölçüm Raporu”, MLS.İP11.D.80.3009.V30, Elektrik Üretim Anonim Şirketi (EÜAŞ), 2018.
  • Hoffs, A., Drost, U., and Boics, A., “Heat Transfer Measurements on a Turbine Airfoil at Various Reynolds Numbers and Turbulence Intensities Including Effects of Surface Roughness,” International Gas Turbine and Aeroengine Congress & Exhibition, ASME Paper No. 96-GT-169, 1996.
  • Guo, S. M., Jones, T. V., Lock, G. D., and Dancer, S. N., Computational Prediction of Heat Transfer to Gas Turbine Nozzle Guide Vanes With Roughened Surfaces, Journal of Turbomachinery,120, 343-350, 1998
  • Speidel, L., Determination of the Necessary Surface Quality and possible Losses due to Roughness in Steam Turbines, Elektrizitatswirtschaft, 1(21), 799-804,1962
  • Forster, V.T., Performance Loss of Modern Steam Turbine Plant due to Surface Roughness, Proc. Instrn. Mech Engrs, 181(1), 391-405. 1967
  • Koch, C. C., Smith, L. H. Jr., Loss Sources and Magnitudes in Axial-Flow Compressors, Journal of Engineering for Power, 98(3), 411-424, 1976
  • Bammert, K., and Sandstede, H., Influences of Manufacturing Tolerances and Surface Roughness of Blades on the Performance of Turbines, Journal of Engineering Power,98(1), 29-36, 1976
  • Schäffler, A., Experimental and Analytical Investigation of the Effects of Reynolds Number and Blade Surface Roughness on Multistage Axial Flow Compressors, Journal of Engineering for Power, 102, 5-13,1980
  • Simon, H., Bülskämper, A., On the Evaluation of Reynolds Number and Relative Surface Roughness Effects on Centrifugal Compressor Performance Based on Systematic Experimental Investigations, Journal of Engineering for Gas Turbines and Power, 106, 489-501, 1984
  • Barlow, D.N. and Kim, Y.W., Effect of Surface Roughness on Local Heat Transfer and Film Cooling Effectiveness, ASME International Gas Turbine Exposition, Houston, Texas, ASME paper #95-GT-14. 1995
  • Bogard, D.G., Schmidt, D.L., and Tabbita, M., Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer, Journal of Turbomachinery,120(2), 337-342, 1998
  • Boyle, R. J., Spuckler, C. M., Lucci, B. L., and Camperchioli, W. P., Infrared Low-Temperature Turbine Vane Rough Surface Heat Transfer Measurements, Journal of Turbomachinery, 123, 168-177, 2001
  • Boyle, R. J., and Senyitko, R. G., Measurements and Predictions of Surface Roughness Effects on Turbine Vane Aerodynamics, Proceedings of ASME TURBO EXPO 2003, GT2003-38580, 2003.
  • Bunker, R. S., The Effects of Thermal Barrier Coating Roughness Magnitude on Heat Transfer With and Without Flowpath Surface Steps, Proceedings of IMECE 2003 ASME International Mechanical Engineering Congress & Exposition, IMECE2003-41073, 2003.
  • Shabbir, A., Turner, M. G., A Wall Function for Calculating the Skin Friction with Surface Roughness, Proceedings of ASME Turbo Expo 2004, GT2004-53908, 2004.
  • Zhang, Q., and Ligrani, P. M., Aerodynamic Losses of a Cambered Turbine Vane: Influences of Surface Roughness and Freestream Turbulence Intensity, Journal of Turbomachinery, 128, 536-546, 2006
  • Hummel, F., Lotzerich, M., Cardamone, P., Fottner, L., Surface Roughness Effects on Turbine Blade Aerodynamics, Proceedings of ASME Turbo Expo 2004 Power for Land, Sea, and Air, GT2004-53314, 2004
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makale
Yazarlar

Kutay Çelebioğlu 0000-0001-8845-4928

Yayımlanma Tarihi 1 Temmuz 2019
Gönderilme Tarihi 24 Temmuz 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 30 Sayı: 4

Kaynak Göster

APA Çelebioğlu, K. (2019). Roughness Coefficient of a Highly Calcinated Penstock. Teknik Dergi, 30(4), 9309-9325. https://doi.org/10.18400/tekderg.447265
AMA Çelebioğlu K. Roughness Coefficient of a Highly Calcinated Penstock. Teknik Dergi. Temmuz 2019;30(4):9309-9325. doi:10.18400/tekderg.447265
Chicago Çelebioğlu, Kutay. “Roughness Coefficient of a Highly Calcinated Penstock”. Teknik Dergi 30, sy. 4 (Temmuz 2019): 9309-25. https://doi.org/10.18400/tekderg.447265.
EndNote Çelebioğlu K (01 Temmuz 2019) Roughness Coefficient of a Highly Calcinated Penstock. Teknik Dergi 30 4 9309–9325.
IEEE K. Çelebioğlu, “Roughness Coefficient of a Highly Calcinated Penstock”, Teknik Dergi, c. 30, sy. 4, ss. 9309–9325, 2019, doi: 10.18400/tekderg.447265.
ISNAD Çelebioğlu, Kutay. “Roughness Coefficient of a Highly Calcinated Penstock”. Teknik Dergi 30/4 (Temmuz 2019), 9309-9325. https://doi.org/10.18400/tekderg.447265.
JAMA Çelebioğlu K. Roughness Coefficient of a Highly Calcinated Penstock. Teknik Dergi. 2019;30:9309–9325.
MLA Çelebioğlu, Kutay. “Roughness Coefficient of a Highly Calcinated Penstock”. Teknik Dergi, c. 30, sy. 4, 2019, ss. 9309-25, doi:10.18400/tekderg.447265.
Vancouver Çelebioğlu K. Roughness Coefficient of a Highly Calcinated Penstock. Teknik Dergi. 2019;30(4):9309-25.