Araştırma Makalesi
BibTex RIS Kaynak Göster

HEMP FIBER REINFORCED SUSTAINABLE “GREEN” COMPOSITE PRODUCTION WITH EPOXIDIZED SOYBEAN OIL

Yıl 2024, Cilt: 31 Sayı: 134, 78 - 87, 30.06.2024
https://doi.org/10.7216/teksmuh.1340701

Öz

Due to the rising environmental concerns, industry branches are pushed to research and invest sustainable materials and technologies. In this context, this study aimed to combine a sustainable fiber and matrix material to produce green composite. For this purpose, epoxidized soybean oil and hemp fiber were utilized for composite production. Sebacic acid and maleic anhydride were used as hardeners. Histidine and glycerol were applied as accelerator and starter, respectively. Mechanical performance of the composites was evaluated by tensile and impact tests. Hemp fiber reinforcement resulted in improvement on tensile properties, up to 2.6 MPa tensile strength and 11.7 kJ/m2 impact strength. Thermal properties were determined by TGA and DSC analyses. The changes in molecular level after curing was traced with FTIR measurements and surface morphology was monitored with SEM imaging.

Destekleyen Kurum

PAÜBAP

Proje Numarası

2020BSP006

Kaynakça

  • 1. Mustapha, R., Rahmat, A. R., Abdul Majid, R. and Mustapha, S. N. H., (2019), Vegetable oil-based epoxy resins and their composites with bio-based hardener: a short review, Polymer-Plastics Technology and Materials, 58(12), 1311-1326.
  • 2. Saithai, P., Lecomte, J., Dubreucq, E. and Tanrattanakul, V., (2013), Effects of different epoxidation methods of soybean oil on the characteristics of acrylated epoxidized soybean oil-co-poly(methyl methacrylate) copolymer, Express Polymer Letters, 7(11), 910-924.
  • 3. Takahashi, T., Hirayama, K., Teramoto, N. and Shibata, M., (2008), Biocomposites composed of epoxidized soybean oil cured with terpene-based acid anhydride and cellulose fibers, Journal of Applied Polymer Science, 108(3), 1596-1602.
  • 4. Albuquerque, A. K. C., Almeida D.E.O., Barreto J. V. M., Silva, I. D. S., Jaques, N.G., Nepomuceno, N. C., Medeiros, E. S. and Wellen, R. M. R., (2023), Effect of hardener and catalyst contents on curing and degradation of epoxidized soybean oil, Journal of Applied Polymer Science, 140(3).
  • 5. Ozeren Ozgul, E. and Ozkul, M. H., (2018), Effects of epoxy, hardener, and diluent types on the hardened state properties of epoxy mortars, Construction and Building Materials, 187, 360-370.
  • 6. Zhu, J., Chandrashekhara, K., Flanigan, V. and Kapila, S., (2004), Manufacturing and mechanical properties of soy-based composites using pultrusion, Composites Part A: Applied Science and Manufacturing, 35(1), 95-101.
  • 7. Zhu, J., Chandrashekhara, K., Flanigan, V. and Kapila, S., (2004), Curing and mechanical characterization of a soy-based epoxy resin system, Journal of Applied Polymer Science, 91(6), 3513-3518.
  • 8. Tang, Q., Chen, Y., Gao, H, et al., (2019) Bio-Based Epoxy Resin from Epoxidized Soybean Oil. In, Kasai, M. (Ed.) Soybean - Biomass, Yield and Productivity IntechOpen.
  • 9. España, J. M., Sánchez-Nacher, L., Boronat, T., Fombuena, V. and Balart, R., (2012), Properties of Biobased Epoxy Resins from Epoxidized Soybean Oil (ESBO) Cured with Maleic Anhydride (MA), Journal of the American Oil Chemists' Society, 89(11), 2067-2075.
  • 10. Zeng, R. T., Wu, Y., Li, Y. D., Wang, M. and Zeng J. B., (2017), Curing behavior of epoxidized soybean oil with biobased dicarboxylic acids, Polymer Testing, 57, 281-287.
  • 11. Espinoza-Perez, J. D., Nerenz, B. A., Haagenson, D. M., Chen, Z., Ulven, C. A. and Wiesenborn, D. P., (2011), Comparison of curing agents for epoxidized vegetable oils applied to composites, Polymer Composites, 32(11), 1806-1816.
  • 12. Samper, M. D., Fombuena, V., Boronat, T., García‐Sanoguera, D. and Balart, R., (2012), Thermal and Mechanical Characterization of Epoxy Resins (ELO and ESO) Cured with Anhydrides, Journal of the American Oil Chemists' Society, 89(8), 1521-1528.
  • 13. Ding, X-M., Chen, L., Guo, D-M., Liu, B-W., Luo, X., Lei, Y-F., Zhong, H-Y. and Wang, Y-Z., (2021), Controlling Cross-Linking Networks with Different Imidazole Accelerators toward High-Performance Epoxidized Soybean Oil-Based Thermosets, ACS Sustainable Chemistry & Engineering, 9(8), 3267-3277.
  • 14. Panaitescu, D. M., Vuluga, Z., Sanporean, C. G., Nicolae, C. A., Gabor, A. R. and Trusca, R., (2019), High flow polypropylene/SEBS composites reinforced with differently treated hemp fibers for injection molded parts, Composites Part B: Engineering, 174, 107062.
  • 15. Manaia, J. P., Manaia, A. T. and Rodriges, L., (2019) Industrial Hemp Fibers: An Overview, Fibers, 7(12), 106.
  • 16. Gedik, G., Aydın Kızılkaya, Y. M. and Uyak, V., Koluman, A., (2023), Simultaneous Eco-friendly Bleaching and Retting Wastewater Treatment of Hemp Fiber with Ozone Application, Fibers and Polymers, 24(1), 57-72.
  • 17. Vázquez-Núñez, E., Avecilla-Ramírez, A. M., Vergara-Porras, B. and López-Cuellar, M del R., (2021), Green composites and their contribution toward sustainability: A review, Polymers and Polymer Composites, 29(9_suppl), 1588-1608.
  • 18. Gedik, G., Avinç, O. (2020). Hemp Fiber as a Sustainable Raw Material Source for Textile Industry: Can We Use Its Potential for More Eco-Friendly Production? In, Muthu, S.S., & Gardetti, M.A. (Eds.), Sustainability in the textile and apparel industries (pp. 87-109), Switzerland: Springer Nature.
  • 19. Boquillon, N., (2006), Use of an epoxidized oil-based resin as matrix in vegetable fibers-reinforced composites, Journal of Applied Polymer Science, 101(6), 4037-4043.
  • 20. Manthey, N. W., Cardona, F., Francucci, G. and Aravinthan T., (2013), Thermo-mechanical properties of epoxidized hemp oil-based bioresins and biocomposites, Journal of Reinforced Plastics and Composites, 32(19), 1444-1456.
  • 21. Niedermann, P., Szebényi, G. and Toldy, A., (2017), Effect of epoxidized soybean oil on mechanical properties of woven jute fabric reinforced aromatic and aliphatic epoxy resin composites, Polymer Composites, 38(5), 884-892.
  • 22. Sahoo, S. K., Mohanty, S. and Nayak, S. K., (2017), Mechanical, thermal, and interfacial characterization of randomly oriented short sisal fibers reinforced epoxy composite modified with epoxidized soybean oil, Journal of Natural Fibers, 14(3), 357-367.
  • 23. Sahoo, S. K., Mohanty, S. and Nayak, S. K., (2018), Mechanical, dynamic mechanical, and interfacial properties of sisal fiber-reinforced composite with epoxidized soybean oil-based epoxy matrix, Polymer Composites, 39(6), 2065-2072.
  • 24. Fei, M., Liu, T., Fu, T., Zhang, J., Wu, Y., Qiu, R. and Liu, W., (2019), Styrene-Free Soybean Oil Thermoset Composites Reinforced by Hybrid Fibers from Recycled and Natural Resources, ACS Sustainable Chemistry & Engineering, 7(21), 17808-17816.
  • 25. Kumar, S., Samal, S. K., Mohanty, S. and Nayak, S. K., (2017), Epoxidized Soybean Oil-Based Epoxy Blend Cured with Anhydride-Based Cross-Linker: Thermal and Mechanical Characterization, Industrial & Engineering Chemistry Research, 56(3), 687-698.
  • 26. O’Donnell, A., Dweib, M. A. and Wool, R. P., (2004) Natural fiber composites with plant oil-based resin, Composites science and technology, 64(9), 1135–1145.
  • 27. Lei, B., Liang, Y., Feng, Y., He., H. and Yang, Z. (2018), Preparation and Characteristics of Biocomposites Based on Steam Exploded Sisal Fiber Modified with Amphipathic Epoxidized Soybean Oil Resin, Materials (Basel), 11(9), 1731-1743.
  • 28. Öztemur, J., Sezgin, H. and Enis, İ.Y., (2021), Design of an Impact Absorbing Composite Panel from Denim Wastes and Acrylated Epoxidized Soybean Oil based Epoxy Resins, Textile and Apparel, 31(3), 229-234.
  • 29. Liu, Z., Erhan, S.Z., Akin, D.E. and Barton, F.E., (2006), “Green” Composites from Renewable Resources:  Preparation of Epoxidized Soybean Oil and Flax Fiber Composites, J. Agric. Food Chem. 54, 2134-2137.
  • 30. Nepomuceno, N.C., Fook, M.V.L., Ries, A., Mija, A and Wellen, R.M.R. (2023), Bio‑Based Epoxy Resins of Epoxidized Soybean oil Cured with Salicylic acid Loaded with Chitosan: Evaluation of Physical–Chemical Properties. Journal of Polymers and the Environment, 31, 2566-2575.
  • 31. Park, W.H., Lee, J.K. and Kwon, K.J., (1996), Cure Behavior of an Epoxy-Anhydride-Imidazole System, Polymer Journal, 28(5), 407—411.
  • 32. Ribeiro, M.P, Neuba, L., Silveria, P.H.P.M. and Luz, F., (2021), Mechanical, Thermal and Ballistic Performance of Epoxy Composites Reinforced with Cannabis sativa Hemp Fabric, Journal of Materials Research and Technology, 12, 221-233.
  • 33. Miao, S., Liu, K., Wang, P., Su, Z. and Zhang, S. (2015) Preparation and Characterization of Epoxidized Soybean Oil-Based Paper Composite as Potential Water-Resistant Materials, Journal of Applied Polymer Science, 132, 41575- 41581
  • 34. Mustata, F., Tudorachi, N. and Rosu, D., (2011), Curing and thermal behavior of resin matrix for composites based on epoxidized soybean oil/diglycidyl ether of bisphenol A. Composites Part B: Engineering, 42(7), 1803-1812.
  • 35. Liu, W., Xie, T. and Qiu, R., (2016), Improvement of properties for biobased composites from modified soybean oil and hemp fibers: Dual role of diisocyanate, Composites Part A: Applied Science and Manufacturing, 90, 278-285.
  • 36. Tang, J., Zhang, J., Lu, J., Huang, J., Zhang, F., Hu, Y., Liu, C., An, R., Miao, H., Chen, Y., Huang, T. and Zhou, Y., (2020), Preparation and Properties of Plant-Oil-Based Epoxy Acrylate-Like Resins for UV-Curable Coatings, Polymers, 12, 2165-2180.

EPOKSİ SOYA YAĞIYLA KENEVİR LİFİ İLE GÜÇLENDİRİLMİŞ SÜRDÜRÜLEBİLİR “YEŞİL” KOMPOZİT ÜRETİMİ

Yıl 2024, Cilt: 31 Sayı: 134, 78 - 87, 30.06.2024
https://doi.org/10.7216/teksmuh.1340701

Öz

Artan çevresel endişeler nedeniyle, endüstri dalları sürdürülebilir malzeme ve teknolojiler araştırmaya ve yatırım yapmaya itilmektedir. Bu bağlamda, bu çalışma, yeşil kompozit üretmek için sürdürülebilir bir lif ve matris malzemesini birleştirmeyi amaçlamıştır. Bu hedef doğrultusunda, epoksitlenmiş soya yağı ve kenevir lifi, kompozit üretiminde kullanılmıştır. Sertleştirici olarak sebasik asit ve maleik anhidrit kullanılmıştır. Hızlandırıcı ve başlatıcı olarak sırasıyla histidin ve gliserol uygulanmıştır. Kompozitlerin mekanik performansı çekme ve darbe testleri ile değerlendirilmiştir. Kenevir lifi takviyesi ile mekanik özelliklerde iyileşme sağlanmış, kenevir lifi takviyeli kompozitlerle 2,6 MPa'ya kadar çekme dayanımı ve 11,7 kJ/m2’ye çıkan darbe dayanımı elde edilmiştir. Termal özellikler TGA ve DSC analizleri ile belirlenmiştir. Kürlenme sonrası moleküler seviyedeki değişimler FTIR ölçümleri ile izlenmiş, yüzey morfolojisi SEM yardımıyla görüntülenmiştir.

Proje Numarası

2020BSP006

Kaynakça

  • 1. Mustapha, R., Rahmat, A. R., Abdul Majid, R. and Mustapha, S. N. H., (2019), Vegetable oil-based epoxy resins and their composites with bio-based hardener: a short review, Polymer-Plastics Technology and Materials, 58(12), 1311-1326.
  • 2. Saithai, P., Lecomte, J., Dubreucq, E. and Tanrattanakul, V., (2013), Effects of different epoxidation methods of soybean oil on the characteristics of acrylated epoxidized soybean oil-co-poly(methyl methacrylate) copolymer, Express Polymer Letters, 7(11), 910-924.
  • 3. Takahashi, T., Hirayama, K., Teramoto, N. and Shibata, M., (2008), Biocomposites composed of epoxidized soybean oil cured with terpene-based acid anhydride and cellulose fibers, Journal of Applied Polymer Science, 108(3), 1596-1602.
  • 4. Albuquerque, A. K. C., Almeida D.E.O., Barreto J. V. M., Silva, I. D. S., Jaques, N.G., Nepomuceno, N. C., Medeiros, E. S. and Wellen, R. M. R., (2023), Effect of hardener and catalyst contents on curing and degradation of epoxidized soybean oil, Journal of Applied Polymer Science, 140(3).
  • 5. Ozeren Ozgul, E. and Ozkul, M. H., (2018), Effects of epoxy, hardener, and diluent types on the hardened state properties of epoxy mortars, Construction and Building Materials, 187, 360-370.
  • 6. Zhu, J., Chandrashekhara, K., Flanigan, V. and Kapila, S., (2004), Manufacturing and mechanical properties of soy-based composites using pultrusion, Composites Part A: Applied Science and Manufacturing, 35(1), 95-101.
  • 7. Zhu, J., Chandrashekhara, K., Flanigan, V. and Kapila, S., (2004), Curing and mechanical characterization of a soy-based epoxy resin system, Journal of Applied Polymer Science, 91(6), 3513-3518.
  • 8. Tang, Q., Chen, Y., Gao, H, et al., (2019) Bio-Based Epoxy Resin from Epoxidized Soybean Oil. In, Kasai, M. (Ed.) Soybean - Biomass, Yield and Productivity IntechOpen.
  • 9. España, J. M., Sánchez-Nacher, L., Boronat, T., Fombuena, V. and Balart, R., (2012), Properties of Biobased Epoxy Resins from Epoxidized Soybean Oil (ESBO) Cured with Maleic Anhydride (MA), Journal of the American Oil Chemists' Society, 89(11), 2067-2075.
  • 10. Zeng, R. T., Wu, Y., Li, Y. D., Wang, M. and Zeng J. B., (2017), Curing behavior of epoxidized soybean oil with biobased dicarboxylic acids, Polymer Testing, 57, 281-287.
  • 11. Espinoza-Perez, J. D., Nerenz, B. A., Haagenson, D. M., Chen, Z., Ulven, C. A. and Wiesenborn, D. P., (2011), Comparison of curing agents for epoxidized vegetable oils applied to composites, Polymer Composites, 32(11), 1806-1816.
  • 12. Samper, M. D., Fombuena, V., Boronat, T., García‐Sanoguera, D. and Balart, R., (2012), Thermal and Mechanical Characterization of Epoxy Resins (ELO and ESO) Cured with Anhydrides, Journal of the American Oil Chemists' Society, 89(8), 1521-1528.
  • 13. Ding, X-M., Chen, L., Guo, D-M., Liu, B-W., Luo, X., Lei, Y-F., Zhong, H-Y. and Wang, Y-Z., (2021), Controlling Cross-Linking Networks with Different Imidazole Accelerators toward High-Performance Epoxidized Soybean Oil-Based Thermosets, ACS Sustainable Chemistry & Engineering, 9(8), 3267-3277.
  • 14. Panaitescu, D. M., Vuluga, Z., Sanporean, C. G., Nicolae, C. A., Gabor, A. R. and Trusca, R., (2019), High flow polypropylene/SEBS composites reinforced with differently treated hemp fibers for injection molded parts, Composites Part B: Engineering, 174, 107062.
  • 15. Manaia, J. P., Manaia, A. T. and Rodriges, L., (2019) Industrial Hemp Fibers: An Overview, Fibers, 7(12), 106.
  • 16. Gedik, G., Aydın Kızılkaya, Y. M. and Uyak, V., Koluman, A., (2023), Simultaneous Eco-friendly Bleaching and Retting Wastewater Treatment of Hemp Fiber with Ozone Application, Fibers and Polymers, 24(1), 57-72.
  • 17. Vázquez-Núñez, E., Avecilla-Ramírez, A. M., Vergara-Porras, B. and López-Cuellar, M del R., (2021), Green composites and their contribution toward sustainability: A review, Polymers and Polymer Composites, 29(9_suppl), 1588-1608.
  • 18. Gedik, G., Avinç, O. (2020). Hemp Fiber as a Sustainable Raw Material Source for Textile Industry: Can We Use Its Potential for More Eco-Friendly Production? In, Muthu, S.S., & Gardetti, M.A. (Eds.), Sustainability in the textile and apparel industries (pp. 87-109), Switzerland: Springer Nature.
  • 19. Boquillon, N., (2006), Use of an epoxidized oil-based resin as matrix in vegetable fibers-reinforced composites, Journal of Applied Polymer Science, 101(6), 4037-4043.
  • 20. Manthey, N. W., Cardona, F., Francucci, G. and Aravinthan T., (2013), Thermo-mechanical properties of epoxidized hemp oil-based bioresins and biocomposites, Journal of Reinforced Plastics and Composites, 32(19), 1444-1456.
  • 21. Niedermann, P., Szebényi, G. and Toldy, A., (2017), Effect of epoxidized soybean oil on mechanical properties of woven jute fabric reinforced aromatic and aliphatic epoxy resin composites, Polymer Composites, 38(5), 884-892.
  • 22. Sahoo, S. K., Mohanty, S. and Nayak, S. K., (2017), Mechanical, thermal, and interfacial characterization of randomly oriented short sisal fibers reinforced epoxy composite modified with epoxidized soybean oil, Journal of Natural Fibers, 14(3), 357-367.
  • 23. Sahoo, S. K., Mohanty, S. and Nayak, S. K., (2018), Mechanical, dynamic mechanical, and interfacial properties of sisal fiber-reinforced composite with epoxidized soybean oil-based epoxy matrix, Polymer Composites, 39(6), 2065-2072.
  • 24. Fei, M., Liu, T., Fu, T., Zhang, J., Wu, Y., Qiu, R. and Liu, W., (2019), Styrene-Free Soybean Oil Thermoset Composites Reinforced by Hybrid Fibers from Recycled and Natural Resources, ACS Sustainable Chemistry & Engineering, 7(21), 17808-17816.
  • 25. Kumar, S., Samal, S. K., Mohanty, S. and Nayak, S. K., (2017), Epoxidized Soybean Oil-Based Epoxy Blend Cured with Anhydride-Based Cross-Linker: Thermal and Mechanical Characterization, Industrial & Engineering Chemistry Research, 56(3), 687-698.
  • 26. O’Donnell, A., Dweib, M. A. and Wool, R. P., (2004) Natural fiber composites with plant oil-based resin, Composites science and technology, 64(9), 1135–1145.
  • 27. Lei, B., Liang, Y., Feng, Y., He., H. and Yang, Z. (2018), Preparation and Characteristics of Biocomposites Based on Steam Exploded Sisal Fiber Modified with Amphipathic Epoxidized Soybean Oil Resin, Materials (Basel), 11(9), 1731-1743.
  • 28. Öztemur, J., Sezgin, H. and Enis, İ.Y., (2021), Design of an Impact Absorbing Composite Panel from Denim Wastes and Acrylated Epoxidized Soybean Oil based Epoxy Resins, Textile and Apparel, 31(3), 229-234.
  • 29. Liu, Z., Erhan, S.Z., Akin, D.E. and Barton, F.E., (2006), “Green” Composites from Renewable Resources:  Preparation of Epoxidized Soybean Oil and Flax Fiber Composites, J. Agric. Food Chem. 54, 2134-2137.
  • 30. Nepomuceno, N.C., Fook, M.V.L., Ries, A., Mija, A and Wellen, R.M.R. (2023), Bio‑Based Epoxy Resins of Epoxidized Soybean oil Cured with Salicylic acid Loaded with Chitosan: Evaluation of Physical–Chemical Properties. Journal of Polymers and the Environment, 31, 2566-2575.
  • 31. Park, W.H., Lee, J.K. and Kwon, K.J., (1996), Cure Behavior of an Epoxy-Anhydride-Imidazole System, Polymer Journal, 28(5), 407—411.
  • 32. Ribeiro, M.P, Neuba, L., Silveria, P.H.P.M. and Luz, F., (2021), Mechanical, Thermal and Ballistic Performance of Epoxy Composites Reinforced with Cannabis sativa Hemp Fabric, Journal of Materials Research and Technology, 12, 221-233.
  • 33. Miao, S., Liu, K., Wang, P., Su, Z. and Zhang, S. (2015) Preparation and Characterization of Epoxidized Soybean Oil-Based Paper Composite as Potential Water-Resistant Materials, Journal of Applied Polymer Science, 132, 41575- 41581
  • 34. Mustata, F., Tudorachi, N. and Rosu, D., (2011), Curing and thermal behavior of resin matrix for composites based on epoxidized soybean oil/diglycidyl ether of bisphenol A. Composites Part B: Engineering, 42(7), 1803-1812.
  • 35. Liu, W., Xie, T. and Qiu, R., (2016), Improvement of properties for biobased composites from modified soybean oil and hemp fibers: Dual role of diisocyanate, Composites Part A: Applied Science and Manufacturing, 90, 278-285.
  • 36. Tang, J., Zhang, J., Lu, J., Huang, J., Zhang, F., Hu, Y., Liu, C., An, R., Miao, H., Chen, Y., Huang, T. and Zhou, Y., (2020), Preparation and Properties of Plant-Oil-Based Epoxy Acrylate-Like Resins for UV-Curable Coatings, Polymers, 12, 2165-2180.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kompozit ve Hibrit Malzemeler, Lif Teknolojisi, Tekstil Kimyası
Bölüm Makaleler
Yazarlar

Görkem Gedik

İnan Ağır 0000-0001-8845-1452

Cansu Var 0000-0003-4760-1068

Osman Avinç 0000-0001-8653-5257

Proje Numarası 2020BSP006
Yayımlanma Tarihi 30 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 31 Sayı: 134

Kaynak Göster

APA Gedik, G., Ağır, İ., Var, C., Avinç, O. (2024). HEMP FIBER REINFORCED SUSTAINABLE “GREEN” COMPOSITE PRODUCTION WITH EPOXIDIZED SOYBEAN OIL. Tekstil Ve Mühendis, 31(134), 78-87. https://doi.org/10.7216/teksmuh.1340701
AMA Gedik G, Ağır İ, Var C, Avinç O. HEMP FIBER REINFORCED SUSTAINABLE “GREEN” COMPOSITE PRODUCTION WITH EPOXIDIZED SOYBEAN OIL. Tekstil ve Mühendis. Haziran 2024;31(134):78-87. doi:10.7216/teksmuh.1340701
Chicago Gedik, Görkem, İnan Ağır, Cansu Var, ve Osman Avinç. “HEMP FIBER REINFORCED SUSTAINABLE ‘GREEN’ COMPOSITE PRODUCTION WITH EPOXIDIZED SOYBEAN OIL”. Tekstil Ve Mühendis 31, sy. 134 (Haziran 2024): 78-87. https://doi.org/10.7216/teksmuh.1340701.
EndNote Gedik G, Ağır İ, Var C, Avinç O (01 Haziran 2024) HEMP FIBER REINFORCED SUSTAINABLE “GREEN” COMPOSITE PRODUCTION WITH EPOXIDIZED SOYBEAN OIL. Tekstil ve Mühendis 31 134 78–87.
IEEE G. Gedik, İ. Ağır, C. Var, ve O. Avinç, “HEMP FIBER REINFORCED SUSTAINABLE ‘GREEN’ COMPOSITE PRODUCTION WITH EPOXIDIZED SOYBEAN OIL”, Tekstil ve Mühendis, c. 31, sy. 134, ss. 78–87, 2024, doi: 10.7216/teksmuh.1340701.
ISNAD Gedik, Görkem vd. “HEMP FIBER REINFORCED SUSTAINABLE ‘GREEN’ COMPOSITE PRODUCTION WITH EPOXIDIZED SOYBEAN OIL”. Tekstil ve Mühendis 31/134 (Haziran 2024), 78-87. https://doi.org/10.7216/teksmuh.1340701.
JAMA Gedik G, Ağır İ, Var C, Avinç O. HEMP FIBER REINFORCED SUSTAINABLE “GREEN” COMPOSITE PRODUCTION WITH EPOXIDIZED SOYBEAN OIL. Tekstil ve Mühendis. 2024;31:78–87.
MLA Gedik, Görkem vd. “HEMP FIBER REINFORCED SUSTAINABLE ‘GREEN’ COMPOSITE PRODUCTION WITH EPOXIDIZED SOYBEAN OIL”. Tekstil Ve Mühendis, c. 31, sy. 134, 2024, ss. 78-87, doi:10.7216/teksmuh.1340701.
Vancouver Gedik G, Ağır İ, Var C, Avinç O. HEMP FIBER REINFORCED SUSTAINABLE “GREEN” COMPOSITE PRODUCTION WITH EPOXIDIZED SOYBEAN OIL. Tekstil ve Mühendis. 2024;31(134):78-87.