Araştırma Makalesi
BibTex RIS Kaynak Göster

ELEKTROMANYETİK KİRLİLİK ORTAMINDA KAOLİNİT/PVA KOMPOZİTLERİN ELEKTROMANYETİK KALKANLAMA ÖZELLİKLERİ

Yıl 2023, , 194 - 204, 29.06.2023
https://doi.org/10.55071/ticaretfbd.1252709

Öz

Bu çalışmada, kaolinit-PVA kompozitlerini oluşturmak için geleneksel oksitlerin karışımı yöntemi kullanılmıştır. Al2Si2O5(OH)4 kimyasal denklemine sahip tek fazlı kaolinit bileşiği, 1150°C'de 4 saat sinterlendikten sonra elde edildi. Yapısal araştırma için çeşitli miktarlarda kaolinit-PVA üretildi. Yapısal analiz için X-ışını kırınımı (XRD) yapıldı, bu da Al2Si2O5(OH)4'te ikincil fazın oluşmadığını gösterdi. Ayrıca çeşitli oranlarda Al2Si2O5(OH)4-PVA bileşimleri ve epoksi tozu kullanılarak mikrodalga kalkanlama etkili kompozitler sıcak presleme yöntemiyle üretilmiştir. Bir ağ analizör cihazı kullanılarak, Al2Si2O5(OH)4/PVA kompozitlerinin mikrodalga ekranlama etkisi 6-18 GHz aralığında incelenmiştir. 1.4 mm kalınlıkta 6.92 GHz'de minimum -47.02 dB ekranlama etkisi değeri elde edilmiştir. Al2Si2O5(OH)4/PVA bileşikleri kompozit malzeme olarak üretilmiş ve kalkanlama etkisi için özellikleri karakterize edilmiştir. Daha yüksek ve gerekli frekans bantlarında çalışmak için, kompozitlerdeki bileşenlerin miktarı ayarlanarak, mikrodalga kalkanlama etkisi performansı değiştirilebilir.

Teşekkür

Bu çalışma yardımları asla unutulmayacak Salim Şahin ve Emsal Şahin, Prof. Dr. Ayhan Mergen anısına ithafendir.

Kaynakça

  • Anderson, R. L., Ratcliffe, I., Greenwell, H. C., Williams, P. A., Cliffe, S., Coveney, P. V. (2010). Clay swelling -A challenge in the oilfield. Earth-Science Reviews, 98(3-4), 201–216.
  • Avloni, J., Ouyang, M., Florio, L., Henn, A. R., Sparavigna, A. (2007). Shielding effectiveness evaluation of metallized and polypyrrole-coated fabrics. Journal of Thermoplastic Composite Materials, 20(3), 241-254.
  • Castell, P., Cano, M., Maser, W. K., Benito, A. M. (2013). Combination of two dispersants as a valuable strategy to prepare improved poly(vinyl alcohol)/carbon nanotube composites. Composites Science and Technology, 80, 101-107.
  • Chen, J., Min, F. F., Liu, L. Y., Liu, C. F. (2019). Mechanism research on surface hydration of kaolinite, insights from DFT and MD simulations. Applied Surface Science, 476, 6–15.
  • Chung, D. D. L. (2000). Materials for electromagnetic interference shielding. Journal of Materials Engineering and Performance, 9, 34-354.
  • Ding, M., Su, H., Yang, K., Li, Y., Li, F., Xue, B. (2021). Preparation and characterization of an aluminosilicate material with layer expansion structure. Applied Clay Science, 211, 106179.
  • Golezani J. J., Kartal, M., Döken, B., Paker, S. (2022). Trible-Band frequency selective surface design effective over oblique incidence angles for GSM system. IETE Journal of Research, 68(2), 1406-1410.
  • Hamouni, M., Heddar, S., Ansri, A., et al. (2014). A comparative study of electromagnetic shielding efficiency of composites conducting polymers in near and far-fields. Journal of Materials and Environmental Science, 5(3), 945-950.
  • He, G., Wang, C., Gao, J., Fan, L., Zhao, S., Chai, Y. (2019). Carboxymethyl chitosankaolinite composite hydrogel for efficient copper ions trapping. Journal of Environmental Chemical Engineering, 7(2), 102953.
  • İkiz, Y. (2009). Elektro çekim yöntemi işlem parametrelerinin PVA nanolif morfolojisine etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 15(3), 363-369.
  • Kang, X., Xia, Z., Chen, R., Liu, P., Yang, W. (2019). Effects of inorganic cations and organic polymers on the physicochemical properties and microfabrics of kaolinite suspensions. Applied Clay Science, 176, 38–48.
  • Lalan, V., Ganesanpotti, S. (2020). Broadband electromagnetic response and enhanced microwave absorption in carbon black and magnetic Fe3O4 nanoparticles reinforced polyvinylidenfluoride composites. Journal of Electronic Materials, 49(3) ,1666-1676.
  • Liu, L., Bian, X. -M., Hou, Z. -L., Wang, C. -Y., Li, Z. S., Hu, H. D. et al. (2016). Electromagnetic response of magnetic graphene hybrid fillers and their evolutionary behaviors. Journal of Material Science: Materials in Electronics, 27, 2760-2772.
  • Meisak, D., Plyushch, A., Macutkevič, J., Grigalaitis, R., Sokal, A., Lapko, K. N., Selskis, A., Kuzhir, P., Banys, J. (2023). Effect of temperature on shielding efficiency of phosphate-bonded CoFe2O4 – xBaTiO3 multiferroic composite ceramics in microwaves. Journal of Materials Research and Technology, 24, 1939-1948.
  • Mallapragada, S. K., Peppas, N. (1996). Dissolution Mechanism of Semicrystalline Poly (vinyl alcohol) in Water. Journal of Polymer Science Part B, 34, 1339–1346.
  • Orhan, E., Seven, E. (edt.) (2022). Teoriden Uygulamaya Fizik ve Matematik Alanında Akademik Çalışmalar. İksad Publishing House, Ankara.
  • Panagopoulos, D. J., Margaritis, L. H. (2010). The effect of exposure duration on the biological activity of mobile telephony radiation. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 699(1-2), 17-22.
  • Pivovar, B. S., Wang, Y., Cussler, E. L. (1999). Pervaporation membranaes in direct methanol fuel Cells. Journal of Membrane Science, 154(2), 155-162.
  • Qasrawi, A. F., Hamersheh, A. A. (2022). Structural, optical and electrical properties of band-aligned CdBr2/Au/Ga2S3 interfaces and their application as band filters suitable for 5G technologies. Journal of Electronic Materials, 51, 3693-3704.
  • Santhosi, B. V. S. R. N., Ramji, K., Rao, N. B. R. M. (2020). Design and development of polymeric nanocomposite reinforced with grapheme for effective EMI shielding in X-band. Phsica B:Condensed Matter, 586, 1-9.
  • Shaikh, S. M. R., Nasser, M. S., Hussein, I., Benamor, A., Onaizi, S. A., Qiblawey, H. (2017). Influence of polyelectrolytes and other polymer complexes on the flocculation and rheological behaviors of clay minerals: a comprehensive review. Separation and Purification Technology, 187, 137–161.
  • Shakeel, A., Kirichek, A., Chassagne, C. (2021). Rheology and yielding transitions in mixed kaolinite/bentonite suspensions. Applied Clay Science, 211, 106206.
  • Shukla, V. (2020). Role of spin disorder in magnetic and EMI shielding properties of Fe3O4/C/PPy core/shell composites. Journal of Material Science, 55, 2826-2835.
  • Şahin, E. İ, Emek, M., Ertug, B., Kartal, M. (2020). Electromagnetic shielding effectiveness of Colemanite/PANI/SiO2 composites radar and wider frequency ranges. Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 13(1), 34-42.
  • Şahin, E. İ. (2023). Electromagnetic shielding effectiveness of Ba(Zn1/3Nb2/3)O3:Chopped strands composites for wide frequency applications. Journal of Ceramic Processing Research, 24(1), 190-196.
  • Şahin, E. İ., Emek, M., Ibrahim, Jamal Eldin F. M., Yumuşak, G., Kartal, M. (2023). Shielding effectiveness performance of polyaniline-NiFe2O4:Cu composites for sub-8 GHz applications. Optical and Quantum Electronics, 55, 500.
  • Şahin, E. İ. (2019). Katkılı NiFe2O4 Polimer Tabanlı Mikrodalga Yutucuların Frekans Seçici Malzeme Tasarımı [Doktora Tezi]. İstanbul Teknik Üniversitesi Bilişim Enstitüsü, İstanbul.
  • Şahin, E.İ. (2022). Microwave electromagnetic shielding effectiveness of ZnNb2O6-Chopped strands composites for radar and wideband (6.5-18 GHz) applications. Lithuanian Journal of Physics, 62(3), 161–170.
  • Tariq, F., Shifa, M., Hasan, S. K., and Baloch, R. A. (2015). Hybrid nanocomposite material for EMI shielding in spacecrafts. Advanced Materials Research, 1101, 46-50.
  • Ting, T. H., Yu, R. P., Jau, Y. N. (2011). Synthesis and microwave absorption characteristics of polyaniline/NiZn ferrite composites in 2–40 GHz. Materials Chemistry and Physics, 126, 364-368.
  • Topcu, İ. (2020). Investigation of wear behavior of particle reinforced AL/B4C composites under different sintering conditions. Tehnicki Glasnik, 14(1), 7-14.
  • Topcu, İ. (2022). Sol-Jel yöntemi ile üretilen silica tabanlı hidrofobik aerojellerin karakterizasyon özelliklerinin incelenmesi. Avrupa Bilim ve Teknoloji Dergisi, 45, 1-7.
  • Topcu, İ., Ceylan, M., Yılmaz, E. B. (2020). Experimental investigation on mechanical properties of multi wall carbon nanotubes (MWCNT) reinforced aluminium metal matrix composites. Journal of Ceramic Process Research, 21(5), 596-601.
  • Wang, X. C, Liu, Z. (2012). A new computation of shielding effectiveness of electromagnetic radiation shielding fabric. Progress in Electromagnetics Research Letters, 33, 177-186.
  • Wang, L., Long, F., Chen, Y., Xiong, H., Rehman, S. U., Chang, J., Zhong, Z. (2022). Optimization of the microwave absorption properties of FeSiCr@Fe2O3 core-shell nanoparticles by controlling the thickness and crystallinity of Fe2O3 shell. Journal of the American Ceramic Society, 105, 4171-4179.
  • Xing, Y. W., Xu, X. H., Gui, X. H., Cao, Y. J., Xu, M. D. (2017). Effect of kaolinite and montmorillonite on fine coal flotation. Fuel, 195, 284–289.
  • Xu, Y., Liang, X., Xu, Y., Qin, X., Huang, Q., Wang, L., Sun, Y. (2017). Remediation of heavy metal-polluted agricultural soils using clay minerals: A review. Pedosphere, 27, 193–204.
  • Zhang, W., Zhang, Z., Wang, X. (2009). Investigation on surface molecular conformations and pervaporation performance of the poly(vinyl alcohol) (PVA) membrane. Journal of Colloid and Interface Science, 333(1), 346–353.
  • Zaroushani, V., Khavanin, A., Mortazavi, S., Jnonidi, A., Moieni, M., Javadzadeh, M. (2015). The role of a new electromagnetic shielding in reducing the microwave radiation for the x-band frequencies, Iran Occupational Health, 12(5), 83-99.

ELECTROMAGNETIC SHIELDING EFFECT PROPERTIES OF KAOLINITE/PVA COMPOSITE IN ELECTROMAGNETIC POLLUTION ENVIRONMENT

Yıl 2023, , 194 - 204, 29.06.2023
https://doi.org/10.55071/ticaretfbd.1252709

Öz

In this study, the traditional mixed oxides method was used to create kaolinite-PVA composites. The single phase kaolinite compound with the chemical equation Al2Si2O5(OH)4 was generated after sintering at 1150°C for 4 h. For the structural investigation, various quantities of kaolinite–PVA were generated. X-ray diffraction (XRD) was carried out for the structural analysis, which indicated that second phase did not form in Al2Si2O5(OH)4. In addition, by using Al2Si2O5(OH)4/PVA compositions and epoxy powder in various proportions, microwave shielding effectiveness composites were manufactured by hot pressing method. Utilizing a network analyser device, the microwave shielding effect of Al2Si2O5(OH)4/PVA composites were investigated in the range of 6-18 GHz. A minimum shielding effect value of -47.02 dB was obtained at 6.92 GHz at 1.4 mm thickness. The Al2Si2O5(OH)4-PVA compounds were produced as composite material and their properties were characterized for shielding effect. To work in higher and required frequency bands, by adjusting the amount of components in the composites, the performance of the microwave shielding effect can be changed.

Kaynakça

  • Anderson, R. L., Ratcliffe, I., Greenwell, H. C., Williams, P. A., Cliffe, S., Coveney, P. V. (2010). Clay swelling -A challenge in the oilfield. Earth-Science Reviews, 98(3-4), 201–216.
  • Avloni, J., Ouyang, M., Florio, L., Henn, A. R., Sparavigna, A. (2007). Shielding effectiveness evaluation of metallized and polypyrrole-coated fabrics. Journal of Thermoplastic Composite Materials, 20(3), 241-254.
  • Castell, P., Cano, M., Maser, W. K., Benito, A. M. (2013). Combination of two dispersants as a valuable strategy to prepare improved poly(vinyl alcohol)/carbon nanotube composites. Composites Science and Technology, 80, 101-107.
  • Chen, J., Min, F. F., Liu, L. Y., Liu, C. F. (2019). Mechanism research on surface hydration of kaolinite, insights from DFT and MD simulations. Applied Surface Science, 476, 6–15.
  • Chung, D. D. L. (2000). Materials for electromagnetic interference shielding. Journal of Materials Engineering and Performance, 9, 34-354.
  • Ding, M., Su, H., Yang, K., Li, Y., Li, F., Xue, B. (2021). Preparation and characterization of an aluminosilicate material with layer expansion structure. Applied Clay Science, 211, 106179.
  • Golezani J. J., Kartal, M., Döken, B., Paker, S. (2022). Trible-Band frequency selective surface design effective over oblique incidence angles for GSM system. IETE Journal of Research, 68(2), 1406-1410.
  • Hamouni, M., Heddar, S., Ansri, A., et al. (2014). A comparative study of electromagnetic shielding efficiency of composites conducting polymers in near and far-fields. Journal of Materials and Environmental Science, 5(3), 945-950.
  • He, G., Wang, C., Gao, J., Fan, L., Zhao, S., Chai, Y. (2019). Carboxymethyl chitosankaolinite composite hydrogel for efficient copper ions trapping. Journal of Environmental Chemical Engineering, 7(2), 102953.
  • İkiz, Y. (2009). Elektro çekim yöntemi işlem parametrelerinin PVA nanolif morfolojisine etkileri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 15(3), 363-369.
  • Kang, X., Xia, Z., Chen, R., Liu, P., Yang, W. (2019). Effects of inorganic cations and organic polymers on the physicochemical properties and microfabrics of kaolinite suspensions. Applied Clay Science, 176, 38–48.
  • Lalan, V., Ganesanpotti, S. (2020). Broadband electromagnetic response and enhanced microwave absorption in carbon black and magnetic Fe3O4 nanoparticles reinforced polyvinylidenfluoride composites. Journal of Electronic Materials, 49(3) ,1666-1676.
  • Liu, L., Bian, X. -M., Hou, Z. -L., Wang, C. -Y., Li, Z. S., Hu, H. D. et al. (2016). Electromagnetic response of magnetic graphene hybrid fillers and their evolutionary behaviors. Journal of Material Science: Materials in Electronics, 27, 2760-2772.
  • Meisak, D., Plyushch, A., Macutkevič, J., Grigalaitis, R., Sokal, A., Lapko, K. N., Selskis, A., Kuzhir, P., Banys, J. (2023). Effect of temperature on shielding efficiency of phosphate-bonded CoFe2O4 – xBaTiO3 multiferroic composite ceramics in microwaves. Journal of Materials Research and Technology, 24, 1939-1948.
  • Mallapragada, S. K., Peppas, N. (1996). Dissolution Mechanism of Semicrystalline Poly (vinyl alcohol) in Water. Journal of Polymer Science Part B, 34, 1339–1346.
  • Orhan, E., Seven, E. (edt.) (2022). Teoriden Uygulamaya Fizik ve Matematik Alanında Akademik Çalışmalar. İksad Publishing House, Ankara.
  • Panagopoulos, D. J., Margaritis, L. H. (2010). The effect of exposure duration on the biological activity of mobile telephony radiation. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 699(1-2), 17-22.
  • Pivovar, B. S., Wang, Y., Cussler, E. L. (1999). Pervaporation membranaes in direct methanol fuel Cells. Journal of Membrane Science, 154(2), 155-162.
  • Qasrawi, A. F., Hamersheh, A. A. (2022). Structural, optical and electrical properties of band-aligned CdBr2/Au/Ga2S3 interfaces and their application as band filters suitable for 5G technologies. Journal of Electronic Materials, 51, 3693-3704.
  • Santhosi, B. V. S. R. N., Ramji, K., Rao, N. B. R. M. (2020). Design and development of polymeric nanocomposite reinforced with grapheme for effective EMI shielding in X-band. Phsica B:Condensed Matter, 586, 1-9.
  • Shaikh, S. M. R., Nasser, M. S., Hussein, I., Benamor, A., Onaizi, S. A., Qiblawey, H. (2017). Influence of polyelectrolytes and other polymer complexes on the flocculation and rheological behaviors of clay minerals: a comprehensive review. Separation and Purification Technology, 187, 137–161.
  • Shakeel, A., Kirichek, A., Chassagne, C. (2021). Rheology and yielding transitions in mixed kaolinite/bentonite suspensions. Applied Clay Science, 211, 106206.
  • Shukla, V. (2020). Role of spin disorder in magnetic and EMI shielding properties of Fe3O4/C/PPy core/shell composites. Journal of Material Science, 55, 2826-2835.
  • Şahin, E. İ, Emek, M., Ertug, B., Kartal, M. (2020). Electromagnetic shielding effectiveness of Colemanite/PANI/SiO2 composites radar and wider frequency ranges. Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 13(1), 34-42.
  • Şahin, E. İ. (2023). Electromagnetic shielding effectiveness of Ba(Zn1/3Nb2/3)O3:Chopped strands composites for wide frequency applications. Journal of Ceramic Processing Research, 24(1), 190-196.
  • Şahin, E. İ., Emek, M., Ibrahim, Jamal Eldin F. M., Yumuşak, G., Kartal, M. (2023). Shielding effectiveness performance of polyaniline-NiFe2O4:Cu composites for sub-8 GHz applications. Optical and Quantum Electronics, 55, 500.
  • Şahin, E. İ. (2019). Katkılı NiFe2O4 Polimer Tabanlı Mikrodalga Yutucuların Frekans Seçici Malzeme Tasarımı [Doktora Tezi]. İstanbul Teknik Üniversitesi Bilişim Enstitüsü, İstanbul.
  • Şahin, E.İ. (2022). Microwave electromagnetic shielding effectiveness of ZnNb2O6-Chopped strands composites for radar and wideband (6.5-18 GHz) applications. Lithuanian Journal of Physics, 62(3), 161–170.
  • Tariq, F., Shifa, M., Hasan, S. K., and Baloch, R. A. (2015). Hybrid nanocomposite material for EMI shielding in spacecrafts. Advanced Materials Research, 1101, 46-50.
  • Ting, T. H., Yu, R. P., Jau, Y. N. (2011). Synthesis and microwave absorption characteristics of polyaniline/NiZn ferrite composites in 2–40 GHz. Materials Chemistry and Physics, 126, 364-368.
  • Topcu, İ. (2020). Investigation of wear behavior of particle reinforced AL/B4C composites under different sintering conditions. Tehnicki Glasnik, 14(1), 7-14.
  • Topcu, İ. (2022). Sol-Jel yöntemi ile üretilen silica tabanlı hidrofobik aerojellerin karakterizasyon özelliklerinin incelenmesi. Avrupa Bilim ve Teknoloji Dergisi, 45, 1-7.
  • Topcu, İ., Ceylan, M., Yılmaz, E. B. (2020). Experimental investigation on mechanical properties of multi wall carbon nanotubes (MWCNT) reinforced aluminium metal matrix composites. Journal of Ceramic Process Research, 21(5), 596-601.
  • Wang, X. C, Liu, Z. (2012). A new computation of shielding effectiveness of electromagnetic radiation shielding fabric. Progress in Electromagnetics Research Letters, 33, 177-186.
  • Wang, L., Long, F., Chen, Y., Xiong, H., Rehman, S. U., Chang, J., Zhong, Z. (2022). Optimization of the microwave absorption properties of FeSiCr@Fe2O3 core-shell nanoparticles by controlling the thickness and crystallinity of Fe2O3 shell. Journal of the American Ceramic Society, 105, 4171-4179.
  • Xing, Y. W., Xu, X. H., Gui, X. H., Cao, Y. J., Xu, M. D. (2017). Effect of kaolinite and montmorillonite on fine coal flotation. Fuel, 195, 284–289.
  • Xu, Y., Liang, X., Xu, Y., Qin, X., Huang, Q., Wang, L., Sun, Y. (2017). Remediation of heavy metal-polluted agricultural soils using clay minerals: A review. Pedosphere, 27, 193–204.
  • Zhang, W., Zhang, Z., Wang, X. (2009). Investigation on surface molecular conformations and pervaporation performance of the poly(vinyl alcohol) (PVA) membrane. Journal of Colloid and Interface Science, 333(1), 346–353.
  • Zaroushani, V., Khavanin, A., Mortazavi, S., Jnonidi, A., Moieni, M., Javadzadeh, M. (2015). The role of a new electromagnetic shielding in reducing the microwave radiation for the x-band frequencies, Iran Occupational Health, 12(5), 83-99.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kompozit ve Hibrit Malzemeler
Bölüm Araştırma Makaleleri
Yazarlar

Ethem İlhan Şahin 0000-0001-7859-9066

Mehriban Emek 0000-0001-7322-9808

Erken Görünüm Tarihi 12 Haziran 2023
Yayımlanma Tarihi 29 Haziran 2023
Gönderilme Tarihi 18 Şubat 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Şahin, E. İ., & Emek, M. (2023). ELEKTROMANYETİK KİRLİLİK ORTAMINDA KAOLİNİT/PVA KOMPOZİTLERİN ELEKTROMANYETİK KALKANLAMA ÖZELLİKLERİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 22(43), 194-204. https://doi.org/10.55071/ticaretfbd.1252709
AMA Şahin Eİ, Emek M. ELEKTROMANYETİK KİRLİLİK ORTAMINDA KAOLİNİT/PVA KOMPOZİTLERİN ELEKTROMANYETİK KALKANLAMA ÖZELLİKLERİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. Haziran 2023;22(43):194-204. doi:10.55071/ticaretfbd.1252709
Chicago Şahin, Ethem İlhan, ve Mehriban Emek. “ELEKTROMANYETİK KİRLİLİK ORTAMINDA KAOLİNİT/PVA KOMPOZİTLERİN ELEKTROMANYETİK KALKANLAMA ÖZELLİKLERİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 22, sy. 43 (Haziran 2023): 194-204. https://doi.org/10.55071/ticaretfbd.1252709.
EndNote Şahin Eİ, Emek M (01 Haziran 2023) ELEKTROMANYETİK KİRLİLİK ORTAMINDA KAOLİNİT/PVA KOMPOZİTLERİN ELEKTROMANYETİK KALKANLAMA ÖZELLİKLERİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 22 43 194–204.
IEEE E. İ. Şahin ve M. Emek, “ELEKTROMANYETİK KİRLİLİK ORTAMINDA KAOLİNİT/PVA KOMPOZİTLERİN ELEKTROMANYETİK KALKANLAMA ÖZELLİKLERİ”, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 22, sy. 43, ss. 194–204, 2023, doi: 10.55071/ticaretfbd.1252709.
ISNAD Şahin, Ethem İlhan - Emek, Mehriban. “ELEKTROMANYETİK KİRLİLİK ORTAMINDA KAOLİNİT/PVA KOMPOZİTLERİN ELEKTROMANYETİK KALKANLAMA ÖZELLİKLERİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 22/43 (Haziran 2023), 194-204. https://doi.org/10.55071/ticaretfbd.1252709.
JAMA Şahin Eİ, Emek M. ELEKTROMANYETİK KİRLİLİK ORTAMINDA KAOLİNİT/PVA KOMPOZİTLERİN ELEKTROMANYETİK KALKANLAMA ÖZELLİKLERİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2023;22:194–204.
MLA Şahin, Ethem İlhan ve Mehriban Emek. “ELEKTROMANYETİK KİRLİLİK ORTAMINDA KAOLİNİT/PVA KOMPOZİTLERİN ELEKTROMANYETİK KALKANLAMA ÖZELLİKLERİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 22, sy. 43, 2023, ss. 194-0, doi:10.55071/ticaretfbd.1252709.
Vancouver Şahin Eİ, Emek M. ELEKTROMANYETİK KİRLİLİK ORTAMINDA KAOLİNİT/PVA KOMPOZİTLERİN ELEKTROMANYETİK KALKANLAMA ÖZELLİKLERİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2023;22(43):194-20.