Araştırma Makalesi
BibTex RIS Kaynak Göster

GREINER OPERATÖRÜYLE İLİŞKİLENDİRİLMİŞ HIZLI DİFÜZYON DENKLEMİ VE BAZI İNTEGRAL EŞİTSİZLİKLERİ

Yıl 2024, , 14 - 26, 26.06.2024
https://doi.org/10.55071/ticaretfbd.1391212

Öz

Bu makalenin öncelikli amacı, Greiner vektör alanlarıyla ilişkilendirilmiş Carnot-Carathéodory uzayındaki düzgün sınırlara sahip sınırlı bir Ω bölgesinde,
Abstract
𝜕𝑢
!𝜕𝑡 =∇! ∙(𝐴(𝜔)∇!𝑢 )+𝑉(𝜔)𝑢 ,
𝑢(𝜔, 𝑡) = 0,
𝑢(𝜔,0) = 𝑢$(𝜔) ≥ 0,
𝜕𝑢 " " 𝜕𝑡 =∇! ∙(𝐴(𝜔)∇!𝑢 )+𝑉(𝜔)𝑢
!𝑢(𝜔,𝑡)=0
𝑢(𝜔,0) = 𝑢$(𝜔) ≥ 0
in 𝛺×(0,𝑇),
on 𝜕𝛺×(0,𝑇), in 𝛺.
""
𝛺×(0,𝑇),
𝜕𝛺 × (0, 𝑇), 𝛺
doğrusal olmayan parabolik probleminin pozitif çözümünün
( yokluğunun araştırılmasıdır. Burada, 0 < 𝑚 < 1, 𝑉 ∈ 𝐿%&'(𝛺) ve
(
0 < 𝐴(𝜔) ∈ 𝐿%&'(𝛺)’dır.
Bu makalenin diğer bir amacı ise Greiner operatörü ile ilişkilendirilmiş radyal olmayan ağırlıklı bazı Hardy tipi eşitsizlikler elde etmektir.

Kaynakça

  • Ahmetolan, S. & Kombe, I. (2016). Hardy and Rellich type inequalities with two weight functions. Mathematical Inequalities & Applications, 19(3), 937-948.
  • Baras, P. & Goldstein, J. A. (1984). The heat equation with a singular potential. Transactions of the American Mathematical Society, 284(1), 121–139.
  • Beals, R. & Greiner, P. C. (1988). Calculus on Heisenberg Manifolds. Annals Mathematics Studies, 119, Princeton University Press.
  • Cabré, X. & Martel, Y. (1999). Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier. Comptes Rendus de l’Académié des Sciences-Series I-Mathematics, 329(11), 973–978.
  • Crespo, J. A. & Alonso, I. P. (2000). Global behavior of the Cauchy problem for some critical nonlinear parabolic equations. SIAM Journal on Mathematical Analysis, 31(6), 1270–1294.
  • D’Ambrosio, L. (2005). Hardy-type inequalities related to degenerate elliptic differential operators. Annali della Scuola Normale Superiore di Pisa, 4, 451–586.
  • Folland, G. B. (1973). A fundamental solution for a subelliptic operator. Bulletin of the American Mathematical Society, 79, 373–376.
  • Garcia A. J. & Peral A. I. (1998). Hardy inequalities and some critical elliptic and parabolic problems. Journal of Differential Equations, 144, 441–476.
  • Goldstein J. A. & Kömbe I. (2003). Nonlinear parabolic differential equations with singular lower order term. Advances in Differential Equations, 10, 1153-1192.
  • Goldstein, G. R., Goldstein, J. A. & Kombe, I. (2005). Nonlinear parabolic equations with singular coefficient and critical exponent. Applicable Analysis, 84(6), 571–583.
  • Greiner, P. C. (1979). A fundamental solution for non-elliptic partial differential operator. Canadian Journal of Mathematics, 31, 1107–1120.
  • Hörmander, L. (1967). Hypoelliptic second order differential equations. Acta Mathematica, 119, 147–171.
  • Kombe, I., (2006). On the nonexistence of positive solutions to nonlinear degenerate parabolic equations with singular coefficients. Applicable Analysis, 85(5), 467-478.
  • Lian, B. (2013). Some sharp Rellich type inequalities on nilpotent groups and application. Acta Mathematica Sinica, English Series, 33, 59–74.
  • Nagel, S., Stein, E. M. & Wainger, S. (1985). Balls and metrics defined by vector fields I: Basic properties. Acta Mathematica, 155, 103–147.
  • Niu, P., Ou, Y. & Han, J. (2010), Several Hardy-type inequalities with weights related to generalized Greiner operator. Canadian Mathematical Bulletin, 53, 153–162.
  • Shen, Y. T. (1980). On the Dirichlet problem for quasilinear elliptic equation with strongly singular coefficients. Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, Science Press, Beijing, 1407-1417.
  • Utku A. (2022). Greiner operatörü ile ilişkilendirilmiş hızlı difüzyon denklemi ve bazı integral eşitsizlikleri [Yüksek Lisans Tezi]. İstanbul Ticaret Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Yener, A. (2018). General weighted Hardy-type inequalities related to Greiner operators. Rocky Mountain Journal of Mathematics, 48(7), 2405-2430.
  • Zhang, H. & Niu, P. (2003). Hardy-type inequalities and Pohozaev-type identities for a class of p-degenerate subelliptic operators and applications. Nonlinear Analysis, 54, 165–186.

FAST DIFFUSION EQUATIONS AND SOME INTEGRAL INEQUALITIES RELATED TO GREINER OPERATOR

Yıl 2024, , 14 - 26, 26.06.2024
https://doi.org/10.55071/ticaretfbd.1391212

Öz

The primary goal of this article is to investigate nonexistence of positive solutions to the following nonlinear parabolic problem:𝜕𝑢 " " 𝜕𝑡 =∇! ∙(𝐴(𝜔)∇!𝑢 )+𝑉(𝜔)𝑢
!𝑢(𝜔,𝑡)=0
𝑢(𝜔,0) = 𝑢$(𝜔) ≥ 0
in 𝛺×(0,𝑇),
on 𝜕𝛺×(0,𝑇), in 𝛺.
Here, 0<𝑚<1, 𝑉∈𝐿%&'(𝛺), 0<𝐴(𝜔)∈ 𝐿%&'(𝛺)andΩ is a
bounded domain with smooth boundary in Carnot-Carathéodory space related with the Greiner vector fields.
Another aim of this article is to obtain some Hardy type inequalities with non-radial weights related to Greiner operator.

Kaynakça

  • Ahmetolan, S. & Kombe, I. (2016). Hardy and Rellich type inequalities with two weight functions. Mathematical Inequalities & Applications, 19(3), 937-948.
  • Baras, P. & Goldstein, J. A. (1984). The heat equation with a singular potential. Transactions of the American Mathematical Society, 284(1), 121–139.
  • Beals, R. & Greiner, P. C. (1988). Calculus on Heisenberg Manifolds. Annals Mathematics Studies, 119, Princeton University Press.
  • Cabré, X. & Martel, Y. (1999). Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier. Comptes Rendus de l’Académié des Sciences-Series I-Mathematics, 329(11), 973–978.
  • Crespo, J. A. & Alonso, I. P. (2000). Global behavior of the Cauchy problem for some critical nonlinear parabolic equations. SIAM Journal on Mathematical Analysis, 31(6), 1270–1294.
  • D’Ambrosio, L. (2005). Hardy-type inequalities related to degenerate elliptic differential operators. Annali della Scuola Normale Superiore di Pisa, 4, 451–586.
  • Folland, G. B. (1973). A fundamental solution for a subelliptic operator. Bulletin of the American Mathematical Society, 79, 373–376.
  • Garcia A. J. & Peral A. I. (1998). Hardy inequalities and some critical elliptic and parabolic problems. Journal of Differential Equations, 144, 441–476.
  • Goldstein J. A. & Kömbe I. (2003). Nonlinear parabolic differential equations with singular lower order term. Advances in Differential Equations, 10, 1153-1192.
  • Goldstein, G. R., Goldstein, J. A. & Kombe, I. (2005). Nonlinear parabolic equations with singular coefficient and critical exponent. Applicable Analysis, 84(6), 571–583.
  • Greiner, P. C. (1979). A fundamental solution for non-elliptic partial differential operator. Canadian Journal of Mathematics, 31, 1107–1120.
  • Hörmander, L. (1967). Hypoelliptic second order differential equations. Acta Mathematica, 119, 147–171.
  • Kombe, I., (2006). On the nonexistence of positive solutions to nonlinear degenerate parabolic equations with singular coefficients. Applicable Analysis, 85(5), 467-478.
  • Lian, B. (2013). Some sharp Rellich type inequalities on nilpotent groups and application. Acta Mathematica Sinica, English Series, 33, 59–74.
  • Nagel, S., Stein, E. M. & Wainger, S. (1985). Balls and metrics defined by vector fields I: Basic properties. Acta Mathematica, 155, 103–147.
  • Niu, P., Ou, Y. & Han, J. (2010), Several Hardy-type inequalities with weights related to generalized Greiner operator. Canadian Mathematical Bulletin, 53, 153–162.
  • Shen, Y. T. (1980). On the Dirichlet problem for quasilinear elliptic equation with strongly singular coefficients. Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, Science Press, Beijing, 1407-1417.
  • Utku A. (2022). Greiner operatörü ile ilişkilendirilmiş hızlı difüzyon denklemi ve bazı integral eşitsizlikleri [Yüksek Lisans Tezi]. İstanbul Ticaret Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Yener, A. (2018). General weighted Hardy-type inequalities related to Greiner operators. Rocky Mountain Journal of Mathematics, 48(7), 2405-2430.
  • Zhang, H. & Niu, P. (2003). Hardy-type inequalities and Pohozaev-type identities for a class of p-degenerate subelliptic operators and applications. Nonlinear Analysis, 54, 165–186.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kısmi Diferansiyel Denklemler
Bölüm Araştırma Makalesi
Yazarlar

Ahmet Uğur Utku 0000-0002-5684-2309

Abdullah Yener 0000-0002-9349-5166

Erken Görünüm Tarihi 6 Haziran 2024
Yayımlanma Tarihi 26 Haziran 2024
Gönderilme Tarihi 15 Kasım 2023
Kabul Tarihi 3 Nisan 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Utku, A. U., & Yener, A. (2024). GREINER OPERATÖRÜYLE İLİŞKİLENDİRİLMİŞ HIZLI DİFÜZYON DENKLEMİ VE BAZI İNTEGRAL EŞİTSİZLİKLERİ. İstanbul Commerce University Journal of Science, 23(45), 14-26. https://doi.org/10.55071/ticaretfbd.1391212
AMA Utku AU, Yener A. GREINER OPERATÖRÜYLE İLİŞKİLENDİRİLMİŞ HIZLI DİFÜZYON DENKLEMİ VE BAZI İNTEGRAL EŞİTSİZLİKLERİ. İstanbul Commerce University Journal of Science. Haziran 2024;23(45):14-26. doi:10.55071/ticaretfbd.1391212
Chicago Utku, Ahmet Uğur, ve Abdullah Yener. “GREINER OPERATÖRÜYLE İLİŞKİLENDİRİLMİŞ HIZLI DİFÜZYON DENKLEMİ VE BAZI İNTEGRAL EŞİTSİZLİKLERİ”. İstanbul Commerce University Journal of Science 23, sy. 45 (Haziran 2024): 14-26. https://doi.org/10.55071/ticaretfbd.1391212.
EndNote Utku AU, Yener A (01 Haziran 2024) GREINER OPERATÖRÜYLE İLİŞKİLENDİRİLMİŞ HIZLI DİFÜZYON DENKLEMİ VE BAZI İNTEGRAL EŞİTSİZLİKLERİ. İstanbul Commerce University Journal of Science 23 45 14–26.
IEEE A. U. Utku ve A. Yener, “GREINER OPERATÖRÜYLE İLİŞKİLENDİRİLMİŞ HIZLI DİFÜZYON DENKLEMİ VE BAZI İNTEGRAL EŞİTSİZLİKLERİ”, İstanbul Commerce University Journal of Science, c. 23, sy. 45, ss. 14–26, 2024, doi: 10.55071/ticaretfbd.1391212.
ISNAD Utku, Ahmet Uğur - Yener, Abdullah. “GREINER OPERATÖRÜYLE İLİŞKİLENDİRİLMİŞ HIZLI DİFÜZYON DENKLEMİ VE BAZI İNTEGRAL EŞİTSİZLİKLERİ”. İstanbul Commerce University Journal of Science 23/45 (Haziran 2024), 14-26. https://doi.org/10.55071/ticaretfbd.1391212.
JAMA Utku AU, Yener A. GREINER OPERATÖRÜYLE İLİŞKİLENDİRİLMİŞ HIZLI DİFÜZYON DENKLEMİ VE BAZI İNTEGRAL EŞİTSİZLİKLERİ. İstanbul Commerce University Journal of Science. 2024;23:14–26.
MLA Utku, Ahmet Uğur ve Abdullah Yener. “GREINER OPERATÖRÜYLE İLİŞKİLENDİRİLMİŞ HIZLI DİFÜZYON DENKLEMİ VE BAZI İNTEGRAL EŞİTSİZLİKLERİ”. İstanbul Commerce University Journal of Science, c. 23, sy. 45, 2024, ss. 14-26, doi:10.55071/ticaretfbd.1391212.
Vancouver Utku AU, Yener A. GREINER OPERATÖRÜYLE İLİŞKİLENDİRİLMİŞ HIZLI DİFÜZYON DENKLEMİ VE BAZI İNTEGRAL EŞİTSİZLİKLERİ. İstanbul Commerce University Journal of Science. 2024;23(45):14-26.