Drag links are used in the automotive industry mostly, and during painting, their ends are protected against paint by two types of cap productions. While one is machined, the other is cold formed. In this study, a finite element simulation for the deformation process of a drag link’s cap made from St52 alloy is performed. For the plasticity model, Chaboche’s nonlinear kinematic hardening rule is used with the associated flow rule and Von Mises yield criterion. Chaboche’s parameters are determined by low cycle fatigue test by applying curve fitting methods to one hysteresis loop. Furthermore, the Chaboche model parameters are calibrated by the optimization process. The final diameters of the cap measurements are compared with those obtained from the optimized model. Therefore, a comprehensive methodology is presented for the determination and calibration of Chaboche kinematic hardening model parameters. Chaboches calibrated parameters are YS=370,73 MPa, C=3513,5 MPa, and =47,958 while their initial values are YS=360 MPa, C=3500 MPa, and =90.
Akkuş, Ö. & Demir, E. (2016). İki düzeyli olasılık modellerinde klasik meta sezgisel optimizasyon tekniklerinin performansı üzerine bir çalışma. Istanbul Commerce University Journal of Science, 15(30), 107-131.
Armstrong, P.J. & C.O. Frederick, (1966). A mathematical representation of the multiaxial Bauschinger effect. CEGB Report, RD/B/N731, Berkeley Nuclear Laboratories.
Chaboche, J.L., (1986). Time-independent constitutive theories for cyclic plasticity. International Journal of Plasticity, 2(2);149-188.
Chaboche, J.L., (1989). Constitutive-equations for cyclic plasticity and cyclic viscoplasticity. International Journal of Plasticity, 5(3): p. 247-302.
Cruise R.B. and Gardner L. (2008). Strength enhancements induced during cold forming of stainless steel sections. Journal of Constructional Steel Research, 64(11), 1310-1316.
Ditas Corp., (2019). Drag link, Retrieved January 07, 2019 from http://www.ditas.com.tr/drag-link
Kacar, İ. (2023). Scientific Principles of Mechanical Design and Analysis. Akademisyen Puplishing House, Ankara, First ed., 36-40.
Kuhn, H. A. Lee P.W. & Erturk T. (1973) A fracture criterion for cold forming. Journal of Engineering Materials and Technology, 95(4): 213-218.
Prager W., (1949). Recent developments in the mathematical theory of plasticity. Journal of Applied Physics, 20(3): 235-241.
Sevenler K., Raghupathi P.S., & Altan T., (1987). Forming-sequence design for multistage cold forging, Journal of Mechanical Working Technology, 14 (2), 121-135.
Ziegler, H., (1959). A modification of Prager's hardening rule. Quarterly of Applied Mathematics. 17(1): 55-66.
Rot kolu çoğunlukla otomotiv endüstrisinde kullanılmakta ve boyama sırasında uçları iki tip kapak üretim yöntemiyle boyaya karşı korunmaktadır. Bunlardan biri talaşlı imalat, diğeri ise soğuk şekillendirmedir. Bu çalışmada, St52 alaşımından yapılmış bir rot kolunun kapağının deformasyon işlemi için bir sonlu elemanlar simülasyonu gerçekleştirilmiştir. Plastisite modelini oluşturmak için Chaboche'nin doğrusal olmayan kinematik pekleşme kuralı, ilişkili akış kuralı ve Von Mises akma kriteri kullanılmıştır. Chaboche parametreleri, bir histerezis döngüsüne eğri uydurma yöntemleri uygulanarak düşük çevrimli yorulma testi ile belirlenmiştir. Ayrıca, Chaboche model parametreleri optimizasyon işlemi ile kalibre edilmiştir. Kapak ölçümlerinin nihai çapları, optimize edilmiş modelden elde edilenlerle karşılaştırılmıştır. Chaboche kinematik pekleşme modelinin parametrelerinin belirlenmesi ve kalibrasyonu için kapsamlı bir yöntem sunulmuştur. Kalibre edilen Chaboche parametreleri YS=370,73 MPa, C=3513,5 MPa ve =47,958 iken başlangıç değerleri YS=360 MPa, C=3500 MPa ve =90'dır.
This work was supported by Ditaş Doğan Yedek Parça Imalat ve Teknik A.Ş. We would like to thank them for their support. We would like to thank Dr. Mehmet Seyhan, Ka-radeniz Technical University for providing the opportunity to use Ansys® software for simulations for educational purpos-es. We are very grateful to the reviewers for their valuable comments, which have been utilized to improve the quality of the paper.
Kaynakça
Akkuş, Ö. & Demir, E. (2016). İki düzeyli olasılık modellerinde klasik meta sezgisel optimizasyon tekniklerinin performansı üzerine bir çalışma. Istanbul Commerce University Journal of Science, 15(30), 107-131.
Armstrong, P.J. & C.O. Frederick, (1966). A mathematical representation of the multiaxial Bauschinger effect. CEGB Report, RD/B/N731, Berkeley Nuclear Laboratories.
Chaboche, J.L., (1986). Time-independent constitutive theories for cyclic plasticity. International Journal of Plasticity, 2(2);149-188.
Chaboche, J.L., (1989). Constitutive-equations for cyclic plasticity and cyclic viscoplasticity. International Journal of Plasticity, 5(3): p. 247-302.
Cruise R.B. and Gardner L. (2008). Strength enhancements induced during cold forming of stainless steel sections. Journal of Constructional Steel Research, 64(11), 1310-1316.
Ditas Corp., (2019). Drag link, Retrieved January 07, 2019 from http://www.ditas.com.tr/drag-link
Kacar, İ. (2023). Scientific Principles of Mechanical Design and Analysis. Akademisyen Puplishing House, Ankara, First ed., 36-40.
Kuhn, H. A. Lee P.W. & Erturk T. (1973) A fracture criterion for cold forming. Journal of Engineering Materials and Technology, 95(4): 213-218.
Prager W., (1949). Recent developments in the mathematical theory of plasticity. Journal of Applied Physics, 20(3): 235-241.
Sevenler K., Raghupathi P.S., & Altan T., (1987). Forming-sequence design for multistage cold forging, Journal of Mechanical Working Technology, 14 (2), 121-135.
Ziegler, H., (1959). A modification of Prager's hardening rule. Quarterly of Applied Mathematics. 17(1): 55-66.
Toplam 11 adet kaynakça vardır.
Ayrıntılar
Birincil Dil
İngilizce
Konular
Makine Mühendisliğinde Optimizasyon Teknikleri, Malzeme Üretim Teknolojileri, Üretimde Optimizasyon
Araslı, A., & Kacar, İ. (2024). CALIBRATION OF CHABOCHE KINEMATIC HARDENING MODEL PARAMETERS BY OPTIMISATION. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 23(46), 354-372. https://doi.org/10.55071/ticaretfbd.1449025
AMA
Araslı A, Kacar İ. CALIBRATION OF CHABOCHE KINEMATIC HARDENING MODEL PARAMETERS BY OPTIMISATION. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. Aralık 2024;23(46):354-372. doi:10.55071/ticaretfbd.1449025
Chicago
Araslı, Alişan, ve İlyas Kacar. “CALIBRATION OF CHABOCHE KINEMATIC HARDENING MODEL PARAMETERS BY OPTIMISATION”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 23, sy. 46 (Aralık 2024): 354-72. https://doi.org/10.55071/ticaretfbd.1449025.
EndNote
Araslı A, Kacar İ (01 Aralık 2024) CALIBRATION OF CHABOCHE KINEMATIC HARDENING MODEL PARAMETERS BY OPTIMISATION. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 23 46 354–372.
IEEE
A. Araslı ve İ. Kacar, “CALIBRATION OF CHABOCHE KINEMATIC HARDENING MODEL PARAMETERS BY OPTIMISATION”, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 23, sy. 46, ss. 354–372, 2024, doi: 10.55071/ticaretfbd.1449025.
ISNAD
Araslı, Alişan - Kacar, İlyas. “CALIBRATION OF CHABOCHE KINEMATIC HARDENING MODEL PARAMETERS BY OPTIMISATION”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 23/46 (Aralık 2024), 354-372. https://doi.org/10.55071/ticaretfbd.1449025.
JAMA
Araslı A, Kacar İ. CALIBRATION OF CHABOCHE KINEMATIC HARDENING MODEL PARAMETERS BY OPTIMISATION. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2024;23:354–372.
MLA
Araslı, Alişan ve İlyas Kacar. “CALIBRATION OF CHABOCHE KINEMATIC HARDENING MODEL PARAMETERS BY OPTIMISATION”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 23, sy. 46, 2024, ss. 354-72, doi:10.55071/ticaretfbd.1449025.
Vancouver
Araslı A, Kacar İ. CALIBRATION OF CHABOCHE KINEMATIC HARDENING MODEL PARAMETERS BY OPTIMISATION. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2024;23(46):354-72.