Araştırma Makalesi
BibTex RIS Kaynak Göster

DETERMINATION OF ANTIOXIDANT, PHENOLIC AND FLAVONOID AMOUNTS IN THE WASTE PARTS OF CITRUS MAXIMA (SHADDOCK) FRUIT GROWN IN TÜRKİYE

Yıl 2022, Cilt: 21 Sayı: 42, 396 - 408, 30.12.2022
https://doi.org/10.55071/ticaretfbd.1087234

Öz

In this study, it was aimed to determine the amount of antioxidant, phenolic and flavonoid substances in waste parts of the Citrus maxima (Shaddock) fruit grown in Turkey. According to the results obtained from the peel extracts, the highest value was 59.64±1.95 mg/g Gallic Acid Equivalent for phenolic substance; 36.56±1.75 mg/g Quercetin Equivalent for the flavonoid substance, and 2.37±0.50 mmol/g Trolox Equivalent Antioxidant Capacity for the amount of antioxidant substance was obtained. According to the results obtained from the albedo (pith) extracts, 77.72±2.56 mg/g GAE was the highest value for the amount of phenolic substance, 52.91±2.99 mg/g QE was the highest value for the amount of flavonoid substance, and 1.19±0.11 mmol/g TEAC was the highest value for the amount of antioxidant substance. With these results, it has been revealed that shaddock peels contain phenolic and flavonoid substances and antioxidant activities. In terms of time and economic savings in studies, these results will lead to future studies.

Kaynakça

  • Abudayeh Z.H., Al Khalifa I.I., Mohammed S.M. & Ahmad AA. (2019) Phytochemical content and antioxidant activities of pomelo peel extract. Pharmacog Res., 11(3):244.
  • Abirami A, Nagarani G. & Siddhuraju P. (2014) In vitro antioxidant, anti-diabetic, cholinesterase and tyrosinase inhibitory potential of fresh juice from Citrus hystrix and C. maxima fruits. Food Sci Hum Well.;3(1):16–25.
  • Adom, K.K. & R.H. Lui. (2002). Antioxidant activity of grains. J. Agric. Food Chem., 50(21): 6182–6187. DOI: 10.1021/jf0205099
  • Ali, M. Y., Rumpa, N. N., Paul, S., Hossen, M. S., Tanvir, E. M., Hossan, T., Saha, M., Alam, N., Karim, N., Khalil, M. I., & Gan, S. H. (2019). Antioxidant Potential, Subacute Toxicity, and Beneficiary Effects of Methanolic Extract of Pomelo (Citrus grandis L. Osbeck) in Long Evan Rats. Journal of toxicology, 2019, 2529569. DOI:https://doi.org/10.1155/2019/2529569
  • Anderson D., Phillips B.J., Tian-Wei Y.U., Edwards A.J., Ayesh R. & Butterworth K.R. (2000). Effects of vitamin C supplementation in human volunteers with a range of cholesterol levels on biomarkers of oxygen radical-generated damage. Pure Appl. Chem. 72: 973-983.
  • Bors, W., Heller, W., Michel, C. & Saran, M. (1990). Flavonoids as antioxidants: Determination of radical-scavenging efficiencies. In: Methods in Enzymology.Lorsch J. (eds). Academic Press, USA, 343–355. DOI:10.1016/0076-6879(90)86128-i
  • Bursal, E. (2009). Determination of antioxidant and antiradical activities of kiwi fruit (Actinidia deliciosa), purification and characterization of carbonic anhydrase enzyme [Doktora Tezi], Atatürk Unv. Institute of Science, Erzurum. DOI: 10.7161/omuanajas.449602
  • Chandrasekara, A. & Shahidi, F. (2010). Inhibitory activities of soluble and bound millet seed phenolics on free radicals and reactive oxygen species. J. Agric. Food Chem., 59(1): 428–436. DOI:10.1021/jf103896z
  • Ding, X., Guo, L., Zhang, Y., Fan, S., Gu, M., Lu, Y., Jiang, D., Li, Y., Huang, C., & Zhou, Z. (2013). Extracts of pomelo peels prevent high-fat diet-induced metabolic disorders in c57bl/6 mice through activating the PPARα and GLUT4 pathway. PloS one, 8(10), e77915. https://doi.org/10.1371/journal.pone.0077915
  • Formica, J.V. & W. Regelson. (1995). Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol., 33(12):1061–1080. DOI: 10.1016/0278-6915(95)00077-1
  • He W., Li X., Peng Y., He X., & Pan S., (2019). Anti-oxidant and anti-melanogenic properties of essential oil from peel of pomelo cv. Guan Xi. Molecules. 24(2):242.
  • Kumar D., Ladaniya M.S. & Gurjar M. (2019) Underutilized Citrus sp. pomelo (Citrus grandis) and Kachai lemon (Citrus jambhiri) exhale in phytochemicals and antioxidant potential. J Food Sci Technol. 56(1):217–223.
  • Lamaison, J.L., A. Carnat & C. Petitjean-Freytet. (1990). Tannin content and inhibiting activity of elastase in Rosaceae. Ann. Pharm. Fr., 48(6):335–340.
  • Liyana-Pathirana, C., Dexter, J. & Shahidi F. (2006). Antioxidant properties of wheat as affected by pearling. J. Agric. Food Chem., 54(17):6177–6184. DOI:10.1021/jf060664d
  • Madhujith, T., & F. Shahidi. (2007). Antioxidative and antiproliferative properties of selected barley (Hordeum vulgarae L.) cultivars and their potential for inhibition of low-density lipoprotein (LDL) cholesterol oxidation. J. Agric. Food Chem., 55(13), 5018–5024. DOI:10.1021/jf070072a
  • Miller N.J., Diplock A.T., & Rice-Evans C.A. (1995) Journal of Agricultural and Food Chemistry 43 (7), 1794-1801. DOI: 10.1021/jf00055a009
  • Ontengco D.C., Dayap L.A. & Capal T.V. (1995). Screening for the antibacterial activity of essential oils from some Philippine plants. Acta Manilana. 43, 19–23.
  • Ptittin, E.A. (1987). Centaurea thracica (Janka) Hayek and Centaurea pichleri boiss. subsp. Pichleri flavonoids. PhD thesis, Anadolu University, Institute of Health Sciences, Eskişehir.
  • Rattan, S.I. (2006). "Theories of biological aging: genes, proteins, and free radicals". Free Radic. Res. 40 (12): 1230–8.
  • Rice-Evans C.A., N.J. Miller & G. Paganga. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acid. Free Radic. Biol. Med., 20,933–956. DOI:10.1016/0891-5849(95)02227-9
  • Rice-Evans C., N. Miller & G. Paganga. (1997). Antioxidant properties of phenolic compounds. Trends Plant Sci., 2(4):152–159. DOI: 10.1016/S1360-1385(97)01018-2
  • Scalbert, A. & G. Williamson. (2000). Dietary ıntake and bioavailability of polyphenols. J. Nutrition, 130(8):2073–2085. DOI: 10.1093/jn/130.8.2073S
  • Singleton, V.L. & J.A. Rossi. (1965). Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Viticul., 16(3):144–158.
  • Shahidi, F. & Y. Zhong. (2007). Measurement of antioxidant activity in food and biological systems. Antioxidant Measurement Appl., 956:36–66. DOI: 10.1021/bk-2007-0956.ch004
  • Shahidi, F. & Zhong, Y., (2011). Revisiting the polar paradox theory: a critical overview, Journal of Agricultural and Food Chemistry, 59(8), 3499-3504.
  • Tilburt J.C. & Kaptchuk T.J. (2008). Herbal medicine research and global health: an ethical analysis. Bull World Health Organ., 86(8):594–599.
  • Vijayalakshmi P. & Radha R. (2016) Pharmacognostical and phytochemical screening of the peels of Citrus maxima . Res J Pharmacog Phytochem.8(1):25–31.
  • Zhao, Y. L., Yang, X. W., Wu, B. F., Shang, J. H., Liu, Y. P., Zhi-Dai, & Luo, X. D. (2019). Anti-inflammatory Effect of Pomelo Peel and Its Bioactive Coumarins. Journal of agricultural and food chemistry, 67(32), 8810–8818. https://doi.org/10.1021/acs.jafc.9b02511
  • Zhong, Y. and Shahidi, F.,(2011). Antioxidant behavior in bulk oil: limitations of polar paradox theory, Journal of Agricultural and Food Chemistry, 60(1), 4-6.

TÜRKİYE'DE YETİŞTİRİLEN CITRUS MAXIMA (ŞADOK) MEYVESİNİN ATIK KISIMLARINDAKİ ANTİOKSİDAN, FENOLİK VE FLAVONOİD MADDE MİKTARLARININ BELİRLENMESİ

Yıl 2022, Cilt: 21 Sayı: 42, 396 - 408, 30.12.2022
https://doi.org/10.55071/ticaretfbd.1087234

Öz

Bu çalışmada Türkiye’de yetiştirilmiş Citrus maxima (Şadok) meyvesinin gıda tüketim atığı olarak nitelendirilebilecek dış kabuk ve albedo kısmının antioksidan, fenolik ve flavonoid madde miktarlarının belirlenmesi amaçlanmıştır. Meyve kısmından ayrılan atık parçalar kurutularak etanol, metanol ve saf su ile ekstrakte edilmiştir. Dış kabuk ekstrelerinden elde edilen sonuçlara göre fenolik madde için en yüksek değer 59.64±1.95 mg/g Gallik Asit Eşdeğeri, flavonoid madde miktarı için 36.56±1.75 mg/g Quercetin Eşdeğeri ve antioksidan madde miktarı için en yüksek değer 2.37±0.50 mmol/g Troloks Eşdeğeri Antioksidan Kapasite olarak elde edilmiştir. Albedo ekstrelerinden elde edilen sonuçlara göre fenolik madde miktarı için en yüksek değer 77.72±2.56 mg/g GAE, flavonoid madde miktarı için 52.91±2.99 mg/g QE ve antioksidan madde miktarı için en yüksek değer 1.19±0.11 mmol/g TEAC olarak elde edilmiştir. Çözücülerin kıyaslamaları grafik olarak verilmiştir. Bu sonuçlarla birlikte atık olarak değerlendirilebilecek şadok kabuklarının fenolik madde, flavonoid madde içerdiği ve antioksidan aktivite gösterdiği ortaya konmuştur. Bu sonuçlar zaman ve ekonomik tasarruf açısından ilerideki çalışmalara yol gösterebilecektir.

Kaynakça

  • Abudayeh Z.H., Al Khalifa I.I., Mohammed S.M. & Ahmad AA. (2019) Phytochemical content and antioxidant activities of pomelo peel extract. Pharmacog Res., 11(3):244.
  • Abirami A, Nagarani G. & Siddhuraju P. (2014) In vitro antioxidant, anti-diabetic, cholinesterase and tyrosinase inhibitory potential of fresh juice from Citrus hystrix and C. maxima fruits. Food Sci Hum Well.;3(1):16–25.
  • Adom, K.K. & R.H. Lui. (2002). Antioxidant activity of grains. J. Agric. Food Chem., 50(21): 6182–6187. DOI: 10.1021/jf0205099
  • Ali, M. Y., Rumpa, N. N., Paul, S., Hossen, M. S., Tanvir, E. M., Hossan, T., Saha, M., Alam, N., Karim, N., Khalil, M. I., & Gan, S. H. (2019). Antioxidant Potential, Subacute Toxicity, and Beneficiary Effects of Methanolic Extract of Pomelo (Citrus grandis L. Osbeck) in Long Evan Rats. Journal of toxicology, 2019, 2529569. DOI:https://doi.org/10.1155/2019/2529569
  • Anderson D., Phillips B.J., Tian-Wei Y.U., Edwards A.J., Ayesh R. & Butterworth K.R. (2000). Effects of vitamin C supplementation in human volunteers with a range of cholesterol levels on biomarkers of oxygen radical-generated damage. Pure Appl. Chem. 72: 973-983.
  • Bors, W., Heller, W., Michel, C. & Saran, M. (1990). Flavonoids as antioxidants: Determination of radical-scavenging efficiencies. In: Methods in Enzymology.Lorsch J. (eds). Academic Press, USA, 343–355. DOI:10.1016/0076-6879(90)86128-i
  • Bursal, E. (2009). Determination of antioxidant and antiradical activities of kiwi fruit (Actinidia deliciosa), purification and characterization of carbonic anhydrase enzyme [Doktora Tezi], Atatürk Unv. Institute of Science, Erzurum. DOI: 10.7161/omuanajas.449602
  • Chandrasekara, A. & Shahidi, F. (2010). Inhibitory activities of soluble and bound millet seed phenolics on free radicals and reactive oxygen species. J. Agric. Food Chem., 59(1): 428–436. DOI:10.1021/jf103896z
  • Ding, X., Guo, L., Zhang, Y., Fan, S., Gu, M., Lu, Y., Jiang, D., Li, Y., Huang, C., & Zhou, Z. (2013). Extracts of pomelo peels prevent high-fat diet-induced metabolic disorders in c57bl/6 mice through activating the PPARα and GLUT4 pathway. PloS one, 8(10), e77915. https://doi.org/10.1371/journal.pone.0077915
  • Formica, J.V. & W. Regelson. (1995). Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol., 33(12):1061–1080. DOI: 10.1016/0278-6915(95)00077-1
  • He W., Li X., Peng Y., He X., & Pan S., (2019). Anti-oxidant and anti-melanogenic properties of essential oil from peel of pomelo cv. Guan Xi. Molecules. 24(2):242.
  • Kumar D., Ladaniya M.S. & Gurjar M. (2019) Underutilized Citrus sp. pomelo (Citrus grandis) and Kachai lemon (Citrus jambhiri) exhale in phytochemicals and antioxidant potential. J Food Sci Technol. 56(1):217–223.
  • Lamaison, J.L., A. Carnat & C. Petitjean-Freytet. (1990). Tannin content and inhibiting activity of elastase in Rosaceae. Ann. Pharm. Fr., 48(6):335–340.
  • Liyana-Pathirana, C., Dexter, J. & Shahidi F. (2006). Antioxidant properties of wheat as affected by pearling. J. Agric. Food Chem., 54(17):6177–6184. DOI:10.1021/jf060664d
  • Madhujith, T., & F. Shahidi. (2007). Antioxidative and antiproliferative properties of selected barley (Hordeum vulgarae L.) cultivars and their potential for inhibition of low-density lipoprotein (LDL) cholesterol oxidation. J. Agric. Food Chem., 55(13), 5018–5024. DOI:10.1021/jf070072a
  • Miller N.J., Diplock A.T., & Rice-Evans C.A. (1995) Journal of Agricultural and Food Chemistry 43 (7), 1794-1801. DOI: 10.1021/jf00055a009
  • Ontengco D.C., Dayap L.A. & Capal T.V. (1995). Screening for the antibacterial activity of essential oils from some Philippine plants. Acta Manilana. 43, 19–23.
  • Ptittin, E.A. (1987). Centaurea thracica (Janka) Hayek and Centaurea pichleri boiss. subsp. Pichleri flavonoids. PhD thesis, Anadolu University, Institute of Health Sciences, Eskişehir.
  • Rattan, S.I. (2006). "Theories of biological aging: genes, proteins, and free radicals". Free Radic. Res. 40 (12): 1230–8.
  • Rice-Evans C.A., N.J. Miller & G. Paganga. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acid. Free Radic. Biol. Med., 20,933–956. DOI:10.1016/0891-5849(95)02227-9
  • Rice-Evans C., N. Miller & G. Paganga. (1997). Antioxidant properties of phenolic compounds. Trends Plant Sci., 2(4):152–159. DOI: 10.1016/S1360-1385(97)01018-2
  • Scalbert, A. & G. Williamson. (2000). Dietary ıntake and bioavailability of polyphenols. J. Nutrition, 130(8):2073–2085. DOI: 10.1093/jn/130.8.2073S
  • Singleton, V.L. & J.A. Rossi. (1965). Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Viticul., 16(3):144–158.
  • Shahidi, F. & Y. Zhong. (2007). Measurement of antioxidant activity in food and biological systems. Antioxidant Measurement Appl., 956:36–66. DOI: 10.1021/bk-2007-0956.ch004
  • Shahidi, F. & Zhong, Y., (2011). Revisiting the polar paradox theory: a critical overview, Journal of Agricultural and Food Chemistry, 59(8), 3499-3504.
  • Tilburt J.C. & Kaptchuk T.J. (2008). Herbal medicine research and global health: an ethical analysis. Bull World Health Organ., 86(8):594–599.
  • Vijayalakshmi P. & Radha R. (2016) Pharmacognostical and phytochemical screening of the peels of Citrus maxima . Res J Pharmacog Phytochem.8(1):25–31.
  • Zhao, Y. L., Yang, X. W., Wu, B. F., Shang, J. H., Liu, Y. P., Zhi-Dai, & Luo, X. D. (2019). Anti-inflammatory Effect of Pomelo Peel and Its Bioactive Coumarins. Journal of agricultural and food chemistry, 67(32), 8810–8818. https://doi.org/10.1021/acs.jafc.9b02511
  • Zhong, Y. and Shahidi, F.,(2011). Antioxidant behavior in bulk oil: limitations of polar paradox theory, Journal of Agricultural and Food Chemistry, 60(1), 4-6.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Abayhan Buran 0000-0003-4204-8638

Erken Görünüm Tarihi 10 Aralık 2022
Yayımlanma Tarihi 30 Aralık 2022
Gönderilme Tarihi 13 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 21 Sayı: 42

Kaynak Göster

APA Buran, A. (2022). TÜRKİYE’DE YETİŞTİRİLEN CITRUS MAXIMA (ŞADOK) MEYVESİNİN ATIK KISIMLARINDAKİ ANTİOKSİDAN, FENOLİK VE FLAVONOİD MADDE MİKTARLARININ BELİRLENMESİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 21(42), 396-408. https://doi.org/10.55071/ticaretfbd.1087234
AMA Buran A. TÜRKİYE’DE YETİŞTİRİLEN CITRUS MAXIMA (ŞADOK) MEYVESİNİN ATIK KISIMLARINDAKİ ANTİOKSİDAN, FENOLİK VE FLAVONOİD MADDE MİKTARLARININ BELİRLENMESİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. Aralık 2022;21(42):396-408. doi:10.55071/ticaretfbd.1087234
Chicago Buran, Abayhan. “TÜRKİYE’DE YETİŞTİRİLEN CITRUS MAXIMA (ŞADOK) MEYVESİNİN ATIK KISIMLARINDAKİ ANTİOKSİDAN, FENOLİK VE FLAVONOİD MADDE MİKTARLARININ BELİRLENMESİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 21, sy. 42 (Aralık 2022): 396-408. https://doi.org/10.55071/ticaretfbd.1087234.
EndNote Buran A (01 Aralık 2022) TÜRKİYE’DE YETİŞTİRİLEN CITRUS MAXIMA (ŞADOK) MEYVESİNİN ATIK KISIMLARINDAKİ ANTİOKSİDAN, FENOLİK VE FLAVONOİD MADDE MİKTARLARININ BELİRLENMESİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 21 42 396–408.
IEEE A. Buran, “TÜRKİYE’DE YETİŞTİRİLEN CITRUS MAXIMA (ŞADOK) MEYVESİNİN ATIK KISIMLARINDAKİ ANTİOKSİDAN, FENOLİK VE FLAVONOİD MADDE MİKTARLARININ BELİRLENMESİ”, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 21, sy. 42, ss. 396–408, 2022, doi: 10.55071/ticaretfbd.1087234.
ISNAD Buran, Abayhan. “TÜRKİYE’DE YETİŞTİRİLEN CITRUS MAXIMA (ŞADOK) MEYVESİNİN ATIK KISIMLARINDAKİ ANTİOKSİDAN, FENOLİK VE FLAVONOİD MADDE MİKTARLARININ BELİRLENMESİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 21/42 (Aralık 2022), 396-408. https://doi.org/10.55071/ticaretfbd.1087234.
JAMA Buran A. TÜRKİYE’DE YETİŞTİRİLEN CITRUS MAXIMA (ŞADOK) MEYVESİNİN ATIK KISIMLARINDAKİ ANTİOKSİDAN, FENOLİK VE FLAVONOİD MADDE MİKTARLARININ BELİRLENMESİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2022;21:396–408.
MLA Buran, Abayhan. “TÜRKİYE’DE YETİŞTİRİLEN CITRUS MAXIMA (ŞADOK) MEYVESİNİN ATIK KISIMLARINDAKİ ANTİOKSİDAN, FENOLİK VE FLAVONOİD MADDE MİKTARLARININ BELİRLENMESİ”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 21, sy. 42, 2022, ss. 396-08, doi:10.55071/ticaretfbd.1087234.
Vancouver Buran A. TÜRKİYE’DE YETİŞTİRİLEN CITRUS MAXIMA (ŞADOK) MEYVESİNİN ATIK KISIMLARINDAKİ ANTİOKSİDAN, FENOLİK VE FLAVONOİD MADDE MİKTARLARININ BELİRLENMESİ. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2022;21(42):396-408.