Araştırma Makalesi
BibTex RIS Kaynak Göster

JEOTERMAL ENERJİ KAYNAKLI HİDROJEN ENERJİ DEPOLAMA VE ŞARJ İSTASYONU SİSTEMİ

Yıl 2024, Cilt: 23 Sayı: 45, 156 - 168, 26.06.2024
https://doi.org/10.55071/ticaretfbd.1479631

Öz

21.yüzyılın başında itibaren enerji talebinin ve tüketiminin artışı ile bilim insanları, dünyamızın enerji kaynaklarının çok sınırlı olduğu ve enerji tüketiminin sınırlı kaynakları tükettiği ve dünyayı kirlettiği sorunuyla yüzleşmek zorunda kaldılar. Geleneksel enerji kaynakları fosil yakıtlara dayalı olup, hızlı çalışmaları yenilenememelerinin yanı sıra küresel ısınma, kirlilik ve yüksek maliyet gibi birçok etkiye sahiptir. Yenilenebilir enerji kaynakları (YEK) gelecek vaat eden alternatiflerdir. Ancak YEK ’in en büyük sınırlamalarından biri, sürekli olmayan enerji sağlamaları ve çoğuna her zaman ulaşılamamasıdır. Sürekli güç sağlamak için bu enerji kaynaklarının enerji depolama sistemleriyle entegre edilmesi gerekmektedir. Hidrojen enerjisi depolama sistemleri (HydESS) ve bunların YEK’ler ile şebekeye entegrasyonu, enerji üretimi ve depolaması için en büyük potansiyele sahiptir. Enerji sürdürülebilirliğini artırmak için şebeke talebini kontrol eder. Bu makale jeotermal enerji kaynağı olarak zengin bir il olan Kütahya’da yapılmış olup jeotermal ile hidrojen enerjisi üretimine ve depolanmasına odaklanmaktadır. Böylece sürdürülebilirlik ve temiz çevre için önemli bir alternatif gündeme alınmış olup enerji depolama sistemleri için faydalı ve verimli sonuçlara ulaşılmıştır.

Kaynakça

  • Acar, C., & Dincer, I. (2019). Review and evaluation of hydrogen production options for better environment. Journal of Cleaner Production, 218, 835–849. https://doi.org/10.1016/j.jclepro.2019.02.046
  • AlRafea, K., Fowler, M., Elkamel, A., & Hajimiragha, A. (2016). Integration of renewable energy sources into combined cycle power plants through electrolysis generated hydrogen in a new designed energy hub. International Journal of Hydrogen Energy, 41(38), 16718–16728. https://doi.org/10.1016/j.ijhydene.2016.06.256
  • Bailera, M., Kezibri, N., Romeo, L. M., Espatolero, S., Lisbona, P., & Bouallou, C. (2017). Future applications of hydrogen production and CO2 utilization for energy storage: Hybrid Power to Gas-Oxycombustion power plants. International Journal of Hydrogen Energy, 42(19), 13625–13632. https://doi.org/10.1016/j.ijhydene.2017.02.123
  • Brey, J. (2021). Use of hydrogen as a seasonal energy storage system to manage renewable power deployment in Spain by 2030. International Journal of Hydrogen Energy, 46(33), 17447–17457. https://doi.org/10.1016/j.ijhydene.2020.04.089
  • Demir, A. (2022). Hybrid, battery electric and fuel-cell vehicles trend and assessment of safety obligations. İstanbul Commerce University Journal of Science, 21(41), 136–155. https://doi:10.55071/ticaretfbd.1096211
  • Elistratov, V., & Denisov, R. (2023). Development of isolated energy systems based on renewable energy sources and hydrogen storage. International Journal of Hydrogen Energy, 48(70), 27059–27067. https://doi.org/10.1016/j.ijhydene.2023.03.122
  • Fuel cells: current technology challenges and future research needs. (2013). Choice Reviews Online, 51(03), 51–1512. https://doi.org/10.5860/choice.51-1512
  • Gao, D., Jiang, D., Liu, P., Li, Z., Hu, S., & Xu, H. (2014). An integrated energy storage system based on hydrogen storage: Process configuration and case studies with wind power. Energy, 66, 332–341. https://doi.org/10.1016/j.energy.2014.01.095
  • Ghazvini, M., Sadeghzadeh, M., Ahmadi, M. H., Moosavi, S., & Pourfayaz, F. (2019). Geothermal energy use in hydrogen production: A review. International Journal of Energy Research. https://doi.org/10.1002/er.4778
  • Gonzatti, F., & Farret, F. (2016). Mathematical and experimental basis to model energy storage systems composed of electrolyzer, metal hydrides and fuel cells. Energy Conversion and Management, 132, 241–250. https://doi.org/10.1016/j.enconman.2016.11.035
  • Gospodinova, D., Milanov, K., Minchev, M., & Dineff, P. (2019). Techno-economic feasibility analysis of nearly-zero hybrid energy system for the city of Sofia in Bulgaria. 2019 11th Electrical Engineering Faculty Conference (BulEF). https://doi.org/10.1109/bulef48056.2019.9030697
  • Güven, A. F., & Mete, M. K. (2021). Feasibility Study and Economic Analysis of On Grid Hybrid Energy System for Balikesir Province Erdek. Engineer and Machinery, 63(706), 138-158. https://doi.org/10.46399/muhendismakina.1085748
  • Jeon, H. S., & Min, B. K. (2012). Solar-hydrogen Production by a Monolithic Photovoltaic-electrolytic Cell. Journal of Electrochemical Science and Technology, 3(4), 149–153. https://doi.org/10.5229/jecst.2012.3.4.149
  • Kanoglu, M. (2016). Geothermal Energy Use In Hydrogen Production. Journal of Thermal Engineering, 2(2). https://doi.org/10.18186/jte.58324
  • Karakoulidis, K., Mavridis, K., Bandekas, D., Adoniadis, P., Potolias, C., & Vordos, N. (2011). Techno-economic analysis of a stand-alone hybrid photovoltaic-diesel–battery-fuel cell power system. Renewable Energy, 36(8), 2238–2244. https://doi.org/10.1016/j.renene.2010.12.003.
  • Kavadias, K., Apostolou, D., & Kaldellis, J. (2018). Modelling and optimization of a hydrogen-based energy storage system in an autonomous electrical network. Applied Energy, 227, 574–586. https://doi.org/10.1016/j.apenergy.2017.08.050
  • Kaya, F., & Akar, O. (2024). Short Circuit Effects on HV Feeders of Optimally Located Electric Vehicle Fast Charging Stations. IEEE Access, 12, 47842–47853. https://doi.org/10.1109/access.2024.3383433
  • Khadem, T., Billah, S. M. B., Barua, S., & Hossain, M. S. (2017). HOMER based hydrogen fuel cell system design for irrigation in Bangladesh. In 2017 4th International Conference on Advances in Electrical Engineering (ICAEE) (pp. 445-449). Dhaka, Bangladesh: IEEE. doi: 10.1109/ICAEE.2017.8255397
  • Lau, K., Yousof, M., Arshad, S., Anwari, M., & Yatim, A. (2010). Performance analysis of hybrid photovoltaic/diesel energy system under Malaysian conditions. Energy, 35(8), 3245–3255. https://doi.org/10.1016/j.energy.2010.04.008
  • Lee, D. H. (2012). Toward the clean production of hydrogen: Competition among renewable energy sources and nuclear power. International Journal of Hydrogen Energy, 37(20), 15726–15735. https://doi.org/10.1016/j.ijhydene.2012.04.124
  • Liu, R., & Solangi, Y. A. (2023). An Analysis of Renewable Energy Sources for Developing a Sustainable and Low-Carbon Hydrogen Economy in China. Processes, 11(4), 1225. https://doi.org/10.3390/pr11041225
  • Luo, X., Wang, J., Dooner, M., & Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137, 511–536. https://doi.org/10.1016/j.apenergy.2014.09.081
  • Mulla, R., & Dunnill, C. W. (2020). From Renewable Energy to Renewable Fuel: A Sustainable Hydrogen Production. Energy and Earth Science, 3(2), p49. https://doi.org/10.22158/ees.v3n2p49
  • Rahman, M. M., Ghazi, G. A., Al-Ammar, E. A., & Ko, W. (2021). Techno-economic analysis of hybrid PV/wind/fuel-cell system for EVCS. 2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). https://doi:10.1109/icecce52056.2021.9514084
  • Recalde Melo, D. F., & Chang-Chien, L. R. (2014). Synergistic Control Between Hydrogen Storage System and Offshore Wind Farm for Grid Operation. IEEE Transactions on Sustainable Energy, 5(1), 18–27. https://doi.org/10.1109/tste.2013.2272332
  • Salihoglu, N. K., Teksoy, A., & Altan, K. (2019). Determination of Biogas Production Potential from Cattle and Cattle Wastes: Example of Balikesir Province. Nigde Omer Halisdemir University Journal of Engineering Sciences, 8(1), 31-47.
  • Schmidt, O., Gambhir, A., Staffell, I., Hawkes, A., Nelson, J., & Few, S. (2017). Future cost and performance of water electrolysis: An expert elicitation study. International Journal of Hydrogen Energy, 42(52), 30470–30492. https://doi.org/10.1016/j.ijhydene.2017.10.045
  • Trifkovic, M., Sheikhzadeh, M., Nigim, K., & Daoutidis, P. (2014). Modeling and Control of a Renewable Hybrid Energy System With Hydrogen Storage. IEEE Transactions on Control Systems Technology, 22(1), 169–179. https://doi.org/10.1109/tcst.2013.2248156
  • Valverde-Isorna, L., Ali, D., Hogg, D., & Abdel-Wahab, M. (2016). Modelling the performance of wind–hydrogen energy systems: Case study the Hydrogen Office in Scotland/UK. Renewable and Sustainable Energy Reviews, 53, 1313–1332. https://doi.org/10.1016/j.rser.2015.08.044
  • Valverde, L., Pino, F., Guerra, J., & Rosa, F. (2016). Definition, analysis and experimental investigation of operation modes in hydrogen-renewable-based power plants incorporating hybrid energy storage. Energy Conversion and Management, 113, 290–311. https://doi.org/10.1016/j.enconman.2016.01.036
  • Valverde, L., Rosa, F., Bordons, C., & Guerra, J. (2016). Energy Management Strategies in hydrogen Smart-Grids: A laboratory experience. International Journal of Hydrogen Energy, 41(31), 13715–13725. https://doi.org/10.1016/j.ijhydene.2016.05.279
  • Yilmaz, C., Kanoglu, M., Bolatturk, A., & Gadalla, M. (2012). Economics of hydrogen production and liquefaction by geothermal energy. International Journal of Hydrogen Energy, 37(2), 2058–2069. https://doi.org/10.1016/j.ijhydene.2011.06.037
  • Yilmaz, M. S., Rida T, M., & Ozhan, D. (2023). Meeting the Charging Station Energy Needs Using Hybrid Energy Systems at Batman University West Raman Campus: Technical and Economic Analysis. Journal of Scientific Technology and Engineering Research. https://doi:10.53525/jster.1342770

GEOTHERMAL ENERGY BASED HYDROGEN ENERGY STORAGE AND CHARGING STATION SYSTEM

Yıl 2024, Cilt: 23 Sayı: 45, 156 - 168, 26.06.2024
https://doi.org/10.55071/ticaretfbd.1479631

Öz

Since the beginning of the 21st century, with the increase in energy demand, the governments of the countries have had to face the increase in the consumption of limited energy resources and environmental pollution. Conventional energy sources are dependent on fossil fuels, which are rapidly declining and have many impacts such as global warming, pollution and high costs. Renewable energy sources (RES) constitute an alternative to energy sources in the future. However, one of the most important disadvantages of RES is that energy is not available continuously and at all times. For the continuous transfer of energy, the sources must be used in conjunction with energy storage systems. Hydrogen energy storage systems (HESS) and their integration into the grid with RES have the greatest potential for energy generation and storage. It controls the grid demand to increase energy sustainability. This paper is based in Aydın, a province rich in geothermal energy resources and focuses on hydrogen energy production and storage with geothermal. Thus, an important alternative for sustainability and a clean environment has been put on the agenda and useful and efficient results have been achieved for energy storage systems.

Kaynakça

  • Acar, C., & Dincer, I. (2019). Review and evaluation of hydrogen production options for better environment. Journal of Cleaner Production, 218, 835–849. https://doi.org/10.1016/j.jclepro.2019.02.046
  • AlRafea, K., Fowler, M., Elkamel, A., & Hajimiragha, A. (2016). Integration of renewable energy sources into combined cycle power plants through electrolysis generated hydrogen in a new designed energy hub. International Journal of Hydrogen Energy, 41(38), 16718–16728. https://doi.org/10.1016/j.ijhydene.2016.06.256
  • Bailera, M., Kezibri, N., Romeo, L. M., Espatolero, S., Lisbona, P., & Bouallou, C. (2017). Future applications of hydrogen production and CO2 utilization for energy storage: Hybrid Power to Gas-Oxycombustion power plants. International Journal of Hydrogen Energy, 42(19), 13625–13632. https://doi.org/10.1016/j.ijhydene.2017.02.123
  • Brey, J. (2021). Use of hydrogen as a seasonal energy storage system to manage renewable power deployment in Spain by 2030. International Journal of Hydrogen Energy, 46(33), 17447–17457. https://doi.org/10.1016/j.ijhydene.2020.04.089
  • Demir, A. (2022). Hybrid, battery electric and fuel-cell vehicles trend and assessment of safety obligations. İstanbul Commerce University Journal of Science, 21(41), 136–155. https://doi:10.55071/ticaretfbd.1096211
  • Elistratov, V., & Denisov, R. (2023). Development of isolated energy systems based on renewable energy sources and hydrogen storage. International Journal of Hydrogen Energy, 48(70), 27059–27067. https://doi.org/10.1016/j.ijhydene.2023.03.122
  • Fuel cells: current technology challenges and future research needs. (2013). Choice Reviews Online, 51(03), 51–1512. https://doi.org/10.5860/choice.51-1512
  • Gao, D., Jiang, D., Liu, P., Li, Z., Hu, S., & Xu, H. (2014). An integrated energy storage system based on hydrogen storage: Process configuration and case studies with wind power. Energy, 66, 332–341. https://doi.org/10.1016/j.energy.2014.01.095
  • Ghazvini, M., Sadeghzadeh, M., Ahmadi, M. H., Moosavi, S., & Pourfayaz, F. (2019). Geothermal energy use in hydrogen production: A review. International Journal of Energy Research. https://doi.org/10.1002/er.4778
  • Gonzatti, F., & Farret, F. (2016). Mathematical and experimental basis to model energy storage systems composed of electrolyzer, metal hydrides and fuel cells. Energy Conversion and Management, 132, 241–250. https://doi.org/10.1016/j.enconman.2016.11.035
  • Gospodinova, D., Milanov, K., Minchev, M., & Dineff, P. (2019). Techno-economic feasibility analysis of nearly-zero hybrid energy system for the city of Sofia in Bulgaria. 2019 11th Electrical Engineering Faculty Conference (BulEF). https://doi.org/10.1109/bulef48056.2019.9030697
  • Güven, A. F., & Mete, M. K. (2021). Feasibility Study and Economic Analysis of On Grid Hybrid Energy System for Balikesir Province Erdek. Engineer and Machinery, 63(706), 138-158. https://doi.org/10.46399/muhendismakina.1085748
  • Jeon, H. S., & Min, B. K. (2012). Solar-hydrogen Production by a Monolithic Photovoltaic-electrolytic Cell. Journal of Electrochemical Science and Technology, 3(4), 149–153. https://doi.org/10.5229/jecst.2012.3.4.149
  • Kanoglu, M. (2016). Geothermal Energy Use In Hydrogen Production. Journal of Thermal Engineering, 2(2). https://doi.org/10.18186/jte.58324
  • Karakoulidis, K., Mavridis, K., Bandekas, D., Adoniadis, P., Potolias, C., & Vordos, N. (2011). Techno-economic analysis of a stand-alone hybrid photovoltaic-diesel–battery-fuel cell power system. Renewable Energy, 36(8), 2238–2244. https://doi.org/10.1016/j.renene.2010.12.003.
  • Kavadias, K., Apostolou, D., & Kaldellis, J. (2018). Modelling and optimization of a hydrogen-based energy storage system in an autonomous electrical network. Applied Energy, 227, 574–586. https://doi.org/10.1016/j.apenergy.2017.08.050
  • Kaya, F., & Akar, O. (2024). Short Circuit Effects on HV Feeders of Optimally Located Electric Vehicle Fast Charging Stations. IEEE Access, 12, 47842–47853. https://doi.org/10.1109/access.2024.3383433
  • Khadem, T., Billah, S. M. B., Barua, S., & Hossain, M. S. (2017). HOMER based hydrogen fuel cell system design for irrigation in Bangladesh. In 2017 4th International Conference on Advances in Electrical Engineering (ICAEE) (pp. 445-449). Dhaka, Bangladesh: IEEE. doi: 10.1109/ICAEE.2017.8255397
  • Lau, K., Yousof, M., Arshad, S., Anwari, M., & Yatim, A. (2010). Performance analysis of hybrid photovoltaic/diesel energy system under Malaysian conditions. Energy, 35(8), 3245–3255. https://doi.org/10.1016/j.energy.2010.04.008
  • Lee, D. H. (2012). Toward the clean production of hydrogen: Competition among renewable energy sources and nuclear power. International Journal of Hydrogen Energy, 37(20), 15726–15735. https://doi.org/10.1016/j.ijhydene.2012.04.124
  • Liu, R., & Solangi, Y. A. (2023). An Analysis of Renewable Energy Sources for Developing a Sustainable and Low-Carbon Hydrogen Economy in China. Processes, 11(4), 1225. https://doi.org/10.3390/pr11041225
  • Luo, X., Wang, J., Dooner, M., & Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137, 511–536. https://doi.org/10.1016/j.apenergy.2014.09.081
  • Mulla, R., & Dunnill, C. W. (2020). From Renewable Energy to Renewable Fuel: A Sustainable Hydrogen Production. Energy and Earth Science, 3(2), p49. https://doi.org/10.22158/ees.v3n2p49
  • Rahman, M. M., Ghazi, G. A., Al-Ammar, E. A., & Ko, W. (2021). Techno-economic analysis of hybrid PV/wind/fuel-cell system for EVCS. 2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE). https://doi:10.1109/icecce52056.2021.9514084
  • Recalde Melo, D. F., & Chang-Chien, L. R. (2014). Synergistic Control Between Hydrogen Storage System and Offshore Wind Farm for Grid Operation. IEEE Transactions on Sustainable Energy, 5(1), 18–27. https://doi.org/10.1109/tste.2013.2272332
  • Salihoglu, N. K., Teksoy, A., & Altan, K. (2019). Determination of Biogas Production Potential from Cattle and Cattle Wastes: Example of Balikesir Province. Nigde Omer Halisdemir University Journal of Engineering Sciences, 8(1), 31-47.
  • Schmidt, O., Gambhir, A., Staffell, I., Hawkes, A., Nelson, J., & Few, S. (2017). Future cost and performance of water electrolysis: An expert elicitation study. International Journal of Hydrogen Energy, 42(52), 30470–30492. https://doi.org/10.1016/j.ijhydene.2017.10.045
  • Trifkovic, M., Sheikhzadeh, M., Nigim, K., & Daoutidis, P. (2014). Modeling and Control of a Renewable Hybrid Energy System With Hydrogen Storage. IEEE Transactions on Control Systems Technology, 22(1), 169–179. https://doi.org/10.1109/tcst.2013.2248156
  • Valverde-Isorna, L., Ali, D., Hogg, D., & Abdel-Wahab, M. (2016). Modelling the performance of wind–hydrogen energy systems: Case study the Hydrogen Office in Scotland/UK. Renewable and Sustainable Energy Reviews, 53, 1313–1332. https://doi.org/10.1016/j.rser.2015.08.044
  • Valverde, L., Pino, F., Guerra, J., & Rosa, F. (2016). Definition, analysis and experimental investigation of operation modes in hydrogen-renewable-based power plants incorporating hybrid energy storage. Energy Conversion and Management, 113, 290–311. https://doi.org/10.1016/j.enconman.2016.01.036
  • Valverde, L., Rosa, F., Bordons, C., & Guerra, J. (2016). Energy Management Strategies in hydrogen Smart-Grids: A laboratory experience. International Journal of Hydrogen Energy, 41(31), 13715–13725. https://doi.org/10.1016/j.ijhydene.2016.05.279
  • Yilmaz, C., Kanoglu, M., Bolatturk, A., & Gadalla, M. (2012). Economics of hydrogen production and liquefaction by geothermal energy. International Journal of Hydrogen Energy, 37(2), 2058–2069. https://doi.org/10.1016/j.ijhydene.2011.06.037
  • Yilmaz, M. S., Rida T, M., & Ozhan, D. (2023). Meeting the Charging Station Energy Needs Using Hybrid Energy Systems at Batman University West Raman Campus: Technical and Economic Analysis. Journal of Scientific Technology and Engineering Research. https://doi:10.53525/jster.1342770
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Enerjisi Üretimi (Yenilenebilir Kaynaklar Dahil, Fotovoltaikler Hariç)
Bölüm Araştırma Makalesi
Yazarlar

Fikret Kaya 0009-0003-5832-2766

Onur Akar 0000-0001-9695-886X

Erken Görünüm Tarihi 6 Haziran 2024
Yayımlanma Tarihi 26 Haziran 2024
Gönderilme Tarihi 6 Mayıs 2024
Kabul Tarihi 20 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 23 Sayı: 45

Kaynak Göster

APA Kaya, F., & Akar, O. (2024). GEOTHERMAL ENERGY BASED HYDROGEN ENERGY STORAGE AND CHARGING STATION SYSTEM. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 23(45), 156-168. https://doi.org/10.55071/ticaretfbd.1479631
AMA Kaya F, Akar O. GEOTHERMAL ENERGY BASED HYDROGEN ENERGY STORAGE AND CHARGING STATION SYSTEM. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. Haziran 2024;23(45):156-168. doi:10.55071/ticaretfbd.1479631
Chicago Kaya, Fikret, ve Onur Akar. “GEOTHERMAL ENERGY BASED HYDROGEN ENERGY STORAGE AND CHARGING STATION SYSTEM”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 23, sy. 45 (Haziran 2024): 156-68. https://doi.org/10.55071/ticaretfbd.1479631.
EndNote Kaya F, Akar O (01 Haziran 2024) GEOTHERMAL ENERGY BASED HYDROGEN ENERGY STORAGE AND CHARGING STATION SYSTEM. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 23 45 156–168.
IEEE F. Kaya ve O. Akar, “GEOTHERMAL ENERGY BASED HYDROGEN ENERGY STORAGE AND CHARGING STATION SYSTEM”, İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 23, sy. 45, ss. 156–168, 2024, doi: 10.55071/ticaretfbd.1479631.
ISNAD Kaya, Fikret - Akar, Onur. “GEOTHERMAL ENERGY BASED HYDROGEN ENERGY STORAGE AND CHARGING STATION SYSTEM”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 23/45 (Haziran 2024), 156-168. https://doi.org/10.55071/ticaretfbd.1479631.
JAMA Kaya F, Akar O. GEOTHERMAL ENERGY BASED HYDROGEN ENERGY STORAGE AND CHARGING STATION SYSTEM. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2024;23:156–168.
MLA Kaya, Fikret ve Onur Akar. “GEOTHERMAL ENERGY BASED HYDROGEN ENERGY STORAGE AND CHARGING STATION SYSTEM”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, c. 23, sy. 45, 2024, ss. 156-68, doi:10.55071/ticaretfbd.1479631.
Vancouver Kaya F, Akar O. GEOTHERMAL ENERGY BASED HYDROGEN ENERGY STORAGE AND CHARGING STATION SYSTEM. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 2024;23(45):156-68.