Araştırma Makalesi
BibTex RIS Kaynak Göster

Total sirkülatuar arrest ile deneysel kardiyak hasar oluşturulan ratlarda Cynara scolymus L.'nin kardiyak fonksiyonlar üzerine etkisi

Yıl 2025, Cilt: 16 Sayı: 4, 491 - 496, 01.01.2026

Öz

Amaç: Bu çalışmada, Cynara scolymus L. (CSL) ekstraktının kardiyak doku üzerindeki potansiyel koruyucu etkileri ve bu etkiye aracılık eden altta yatan mekanizmalar sıçanlarda total dolaşım durması modeli kullanılarak değerlendirilmiştir.
Yöntem: Bu çalışmada toplam 24 yetişkin erkek Wistar Albino sıçan kullanıldı. Hayvanlar rastgele ve eşit olarak dört gruba ayrıldı (n=6): Grup I (Sham), Grup II (Total Circulatory Arrest - TSA), Grup III [Tedavi Grubu 1 (TSA + Cynara scolymus L. ekstresi)] ve Grup IV [Tedavi Grubu 2 (Cynara scolymus L. ekstresi)]. Deneysel protokolün tamamlanmasının ardından hayvanlardan kan ve kalp dokusu örnekleri toplanmıştır. Malondialdehit (MDA), toplam antioksidan durum (TAS), toplam oksidan durum (TOS), oksidatif stres indeksi (OSI), kreatin kinaz-MB (CK-MB), troponin I, tümör nekroz faktörü-alfa (TNF-α), hipoksi ile indüklenebilir faktör 1-alfa (HIF-1α) ve nükleer faktör eritroid 2 ile ilişkili faktör 2 (NRF2) seviyelerini ölçmek için biyokimyasal analizler yapıldı. Ayrıca, alınan kardiyak dokular yapısal değişiklikleri değerlendirmek için histopatolojik olarak incelenmiştir.
Bulgular: Bulgulara göre, gruplar arasında MDA (p=0.71), TOS (p=0.21) ve OSI (p=0.45) düzeyleri açısından istatistiksel olarak anlamlı bir fark yoktu. Ancak TAS, TNF-α, HIF-1α ve NRF2 düzeylerinde istatistiksel olarak anlamlı farklılıklar gözlendi (p<0.01). Kalbin histopatolojik incelemesi, tedavi gruplarının Grup II'ye kıyasla daha az fokal nekroz alanına sahip olduğunu ortaya koymuştur.
Sonuç: Bu çalışmanın bulguları, Cynara scolymus L. ekstraktının iskemi-reperfüzyon kaynaklı kalp hasarına karşı önemli anti-enflamatuar ve antioksidan koruyucu etkiler sergilediğini göstermektedir. Bu sonuçlar, CSL ekstraktının kardiyoprotektif bir ajan olarak potansiyelini desteklemektedir. Bununla birlikte, bu koruyucu etkilerin altında yatan moleküler mekanizmaların daha ayrıntılı olarak aydınlatılması için daha fazla çalışmaya ihtiyaç vardır.

Kaynakça

  • Zheng J. Chen P. Zhong J. Cheng Y. Chen H. He Y. HIF-1α in myocardial ischemia-reperfusion injury (Review). Mol Med Rep 2021; 23:352.
  • Rabinovich-Nikitin I. Kirshenbaum LA. Circadian regulated control of myocardial ischemia-reperfusion injury. Trends Cardiovasc Med 2024; 34: 1-7.
  • Buckley LF. Carbone S. Aldemerdash A. Fatani N. Fanikos J. Novel and emerging therapeutics for primary prevention of cardiovascular disease. Am. J Med 2019; 132: 16-24.
  • Feng X. Li Y. Wang Y. Li L. Little PJ. Xu SW. et al. Danhong injection in cardiovascular and cerebrovascular diseases: pharmacological actions. molecular mechanisms. and therapeutic potential. Pharmacol. Res 2019; 139: 62-75.
  • Dieterle T. Side effects and interactions of frequently used cardiovascular drugs. Ther Umsch 2015; 72: 701-10.
  • Witkowska A. Gryn-Rynko A. Syrkiewicz P. Kitala-Tańska K. Majewski MS. Characterizations of White Mulberry. Sea-Buckthorn. Garlic. Lily of the Valley. Motherwort. and Hawthorn as Potential Candidates for Managing Cardiovascular Disease-In Vitro and Ex Vivo Animal Studies. Nutrients 2024; 16: 1313.
  • Cavini S. Guzzetti L. Givoia F. Regonesi ME. Di Gennaro P. Magoni C. et al. Artichoke (Cynara cadrunculus var. scolymus L.) by-products as inulin source: How to exploit the agricultural supply chain by extracting a value-added compound. Nat. Prod. Res 2022; 36: 2140-4.
  • Salekzaman. S. Ebrahimi-Mameghani M. Rezazadeh K. The antioxidant activity of artichoke (Cynara scolymus): A systematic review and meta-analysis on animal studies. Phytoeuta. Res 2019; 33: 55–71.
  • Arnaboldi L. Corsini A. Bellosta S. Artichoke and bergamot extracts: A new opportunity for the management of dyslipidemia and related risk factors. Minerva Med 2022; 113: 141-57.
  • Amaç B. Kankılıç N. Güngören F. Aydın MS. Çakmak Y. Güldür ME. et al. Protective effect of Tulbaghia violacea extract on cardiac damage: deep circulatory arrest rat model. Eur Res J 2022: 8: 396-403. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation. more stable ABTS radical cation. Clin Biochem 2004;37(4):277-85.
  • Erel O. A novel automated colorimetric method for measuring total oxidant status. Clin Biochem 2005; 38: 1103-11.
  • .Jensen RV. Hjortbak MV. Bøtker HE. Ischemic Heart Disease: An Update. Nuc Med Semin 2020; 50: 195-207.
  • Aker H. Hücre zedelenmesi. ölümü ve adaptasyonu. Çevikbaş U.(ed). Robbins and Kumar Basic Pathology. Patoloji. VI. Baskı. Đstanbul: Nobel Tıp Kitabevi 3-24.2000
  • Akkoç H. Miyokardiyal İskemi Reperfüzyon Hasarı. Dicle Tıp Dergisi 2008; 35: 211-15.
  • Wang Z. Wang Y. Ye J. Lu X. Cheng Y. Xiang L. et al. bFGF attenuates endoplasmic reticulum stress and mitochondrial injury on myocardial ischaemia/reperfusion via activation of PI3K/Akt/ERK1/2 pathway. J Cell Mol Med 2015; 19: 595-607.
  • Gurel OM. Demircelik MB. Bilgic MA. Yilmaz H. Yilmaz OC. Cakmak M. et al. The relationship between red blood cell distribution width and coronary artery calcification in patients undergoing 64-multidetector computed tomography. Korean J Circul 2015; 45: 372-7.
  • Korei C. Szabo B. Varga A. Barath B. Deak A. Vanyolos E. et al. Hematological. Micro-Rheological. and Metabolic Changes Modulated by Local Ischemic Pre- and Post-Conditioning in Rat Limb Ischemia-Reperfusion. Metabolites 2021; 11: 776.
  • Granger DN. Kvietys PR. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol 2015; 6: 524-51.
  • Ho E. Karimi Galougahi K. Liu CC. Bhindi R. Figtree GA. Biomarkers of oxidative stress: applications to cardiovascular research and practice. Redox Biol 2013; 1: 483-91.
  • Ayala A. Muñoz MF. Argüelles S. Lipid peroxidation: production. metabolism. and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438.
  • Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal Biochem 2017; 524: 13-30.
  • Zonooz SR. Hasani M. Morvaridzadeh M. Pizarro AB. Heydari H. Yosaee S. et al. Effect of alpha-lipoic acid on oxidative stress parameters: a systematic review and meta-analysis. J Funct Foods 2021; 87: 104774.
  • Galeone A. Grano M. Brunetti G. Tumor Necrosis Factor Family Members and Myocardial Ischemia-Reperfusion Injury: State of the Art and Therapeutic Implications. Int J Mol Sci 2023; 24: 4606.
  • Mielczarek-Palacz A. Sikora J. Kondera-Anasz Z. Smycz M. Changes in concentrations of tumor necrosis factor TNF and its soluble receptors type 1 (sTNF-r1) and type 2 (sTNF-R2) in serum of patients with ST-segment elevation myocardial infarction. Wiad Lek 2011; 64: 71-4.
  • Hamid T. Gu Y. Ortines RV. Bhattacharya C. Wang G. Xuan Y. et al. Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kappaB and inflammatory activation. Circulation 2009; 119: 1386–97.
  • Błyszczuk P. Myocarditis in Humans and Experimental Animal Models. Pre Cardiovasc Med 2019; 6: 64.
  • Liakopoulos OJ. Teucher N. Mühlfeld C. Middel P. Heusch G. Schoendube FA. et al. Prevention of TNFalpha-associated myocardial dysfunction resulting from cardiopulmonary bypass and cardioplegic arrest by glucocorticoid treatment. Eur J Cardiothorac Surg 2006;30:263-70.
  • Cerrada I. Ruiz-Sauri A. Carrero R. Trigueros C. Dorronsoro A. Sanchez-Puelles JM. et al. Hypoxia-inducible factor 1 alpha contributes to cardiac recovery in mesenchymal stem cell-mediated cardiac repair. Stem Cell Dev 2013;22:501–11.
  • Matsushima S. Kuroda J. Ago T. Zhai P. Ikeda Y. Oka S. et al. Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1α and upregulation of peroxisome proliferator-activated receptor-α. Circ Res 2013; 112: 1135-49.
  • Zhou YH. Han QF. Wang LH. Liu T. Meng XY. Wu L. et al. High mobility group box 1 protein attenuates myocardial ischemia reperfusion injury via inhibition of p38 mitogen-activated protein kinase signaling pathway. Exp Ther Med 2017; 14: 1582–8.
  • Zakkar M. Van der Heiden K. Luong A. Chaudhury H. Cuhlmann S. Hamdulay SS. et al. Activation of Nrf2 in endothelial cells prevents arteries from exhibiting a proinflammatory state. Arterioscler Thromb Vasc Biol 2009; 29: 1851-7.
  • Barajas B. Che N. Yin F. Rowshanrad A. Orozco LD. Gong KW. et al. NF-E2-related factor 2 promotes atherosclerosis through effects on plasma lipoproteins and cholesterol transport that trump antioxidant protection. Arterioscler Thromb Vasc Biol 2011; 31: 58-66.
  • Sun G. Li Y. Ji Z. Atorvastatin attenuates ischemia/reperfusion-induced inflammation and oxidative stress in rat heart via Nrf2 transcription factor. Int J Clin Exp Med 2015; 8: 14837-45.
  • El Morsy EM. Kamel R. Protective effect of artichoke leaf extract against paracetamol-induced hepatotoxicity in rats. Pharm Biol 2015;5 3: 167-73.
  • Rolnik A. Olas B. The Plants of the Asteraceae Family as Agents in the Protection of Human Health. Int J Mol Sci 2021: 22: 3009.
  • Moglia A. Lanteri S. Comino C. Acquadro A. de Vos R. Beekwilder Stress-induced biosynthesis of dicaffeoylquinic acids in globe artichoke. J Agric Food Chem 2008; 56: 8641–9.
  • Arnaboldi L. Corsini A. Bellosta S. Artichoke and bergamot extracts: A new opportunity for the management of dyslipidemia and related risk factors. Minerva Med 2022; 113:141-57.
  • Roghani-Dehkordi F. Kamkhah A-F. Artichoke leaf juice has antihypertensive effect in patients with mild hypertension. J Diet Suppl 2009; 6: 328-41.
  • Wang ZB. Jiang SL. Liu SB. Peng JB. Hu S. Wang X. et al. Metabolism of artichoke bud extract in spontaneously hypertensive rats. ACS Omega 2021; 6: 18610-22.
  • Santos HO. Bueno AA. Mota JF. Effect of artichoke on lipid profile: A review of possible mechanisms of action. Pharmacol. Res 2018; 137: 170-8.

The effect of Cynara scolymus L. on cardiac functions in rats with experimental cardiac injury induced by total circulatory arrest

Yıl 2025, Cilt: 16 Sayı: 4, 491 - 496, 01.01.2026

Öz

Objective: In this study, the potential protective effects of Cynara scolymus L. (CSL) extract on cardiac tissue and the underlying mechanisms mediating this effect were evaluated using a total circulatory arrest model in rats.
Methods: A total of 24 adult male Wistar Albino rats were used in this study. The animals were randomly and equally divided into four groups (n=6): Group I (Sham), Group II (Total Circulatory Arrest – TSA), Group III [Treatment Group 1 (TSA + Cynara scolymus L. extract)], and Group IV [Treatment Group 2 (Cynara scolymus L. extract)]. After the completion of the experimental protocol, blood and cardiac tissue samples were collected from the animals. Biochemical analyses were performed to measure the levels of malondialdehyde (MDA), total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), creatine kinase-MB (CK-MB), troponin I, tumor necrosis factor-alpha (TNF-α), hypoxia-inducible factor 1-alpha (HIF-1α), and nuclear factor erythroid 2–related factor 2 (NRF2). Additionally, the harvested cardiac tissues were examined histopathologically to evaluate structural changes.
Results: According to the findings, there were no statistically significant differences between the groups in terms of MDA (p=0.71), TOS (p=0.21), and OSI (p=0.45) levels. However, statistically significant differences were observed in TAS, TNF-α, HIF-1α, and NRF2 levels (p<0.01). Histopathological examination of the heart revealed that the treatment groups had fewer areas of focal necrosis compared to Group II.
Conclusion: The findings of this study indicate that Cynara scolymus L. extract exhibits significant anti-inflammatory and antioxidant protective effects against ischemia-reperfusion-induced cardiac injury. These results support the potential of CSL extract as a cardioprotective agent. However, further studies are needed to elucidate the underlying molecular mechanisms of these protective effects in more detail.

Kaynakça

  • Zheng J. Chen P. Zhong J. Cheng Y. Chen H. He Y. HIF-1α in myocardial ischemia-reperfusion injury (Review). Mol Med Rep 2021; 23:352.
  • Rabinovich-Nikitin I. Kirshenbaum LA. Circadian regulated control of myocardial ischemia-reperfusion injury. Trends Cardiovasc Med 2024; 34: 1-7.
  • Buckley LF. Carbone S. Aldemerdash A. Fatani N. Fanikos J. Novel and emerging therapeutics for primary prevention of cardiovascular disease. Am. J Med 2019; 132: 16-24.
  • Feng X. Li Y. Wang Y. Li L. Little PJ. Xu SW. et al. Danhong injection in cardiovascular and cerebrovascular diseases: pharmacological actions. molecular mechanisms. and therapeutic potential. Pharmacol. Res 2019; 139: 62-75.
  • Dieterle T. Side effects and interactions of frequently used cardiovascular drugs. Ther Umsch 2015; 72: 701-10.
  • Witkowska A. Gryn-Rynko A. Syrkiewicz P. Kitala-Tańska K. Majewski MS. Characterizations of White Mulberry. Sea-Buckthorn. Garlic. Lily of the Valley. Motherwort. and Hawthorn as Potential Candidates for Managing Cardiovascular Disease-In Vitro and Ex Vivo Animal Studies. Nutrients 2024; 16: 1313.
  • Cavini S. Guzzetti L. Givoia F. Regonesi ME. Di Gennaro P. Magoni C. et al. Artichoke (Cynara cadrunculus var. scolymus L.) by-products as inulin source: How to exploit the agricultural supply chain by extracting a value-added compound. Nat. Prod. Res 2022; 36: 2140-4.
  • Salekzaman. S. Ebrahimi-Mameghani M. Rezazadeh K. The antioxidant activity of artichoke (Cynara scolymus): A systematic review and meta-analysis on animal studies. Phytoeuta. Res 2019; 33: 55–71.
  • Arnaboldi L. Corsini A. Bellosta S. Artichoke and bergamot extracts: A new opportunity for the management of dyslipidemia and related risk factors. Minerva Med 2022; 113: 141-57.
  • Amaç B. Kankılıç N. Güngören F. Aydın MS. Çakmak Y. Güldür ME. et al. Protective effect of Tulbaghia violacea extract on cardiac damage: deep circulatory arrest rat model. Eur Res J 2022: 8: 396-403. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation. more stable ABTS radical cation. Clin Biochem 2004;37(4):277-85.
  • Erel O. A novel automated colorimetric method for measuring total oxidant status. Clin Biochem 2005; 38: 1103-11.
  • .Jensen RV. Hjortbak MV. Bøtker HE. Ischemic Heart Disease: An Update. Nuc Med Semin 2020; 50: 195-207.
  • Aker H. Hücre zedelenmesi. ölümü ve adaptasyonu. Çevikbaş U.(ed). Robbins and Kumar Basic Pathology. Patoloji. VI. Baskı. Đstanbul: Nobel Tıp Kitabevi 3-24.2000
  • Akkoç H. Miyokardiyal İskemi Reperfüzyon Hasarı. Dicle Tıp Dergisi 2008; 35: 211-15.
  • Wang Z. Wang Y. Ye J. Lu X. Cheng Y. Xiang L. et al. bFGF attenuates endoplasmic reticulum stress and mitochondrial injury on myocardial ischaemia/reperfusion via activation of PI3K/Akt/ERK1/2 pathway. J Cell Mol Med 2015; 19: 595-607.
  • Gurel OM. Demircelik MB. Bilgic MA. Yilmaz H. Yilmaz OC. Cakmak M. et al. The relationship between red blood cell distribution width and coronary artery calcification in patients undergoing 64-multidetector computed tomography. Korean J Circul 2015; 45: 372-7.
  • Korei C. Szabo B. Varga A. Barath B. Deak A. Vanyolos E. et al. Hematological. Micro-Rheological. and Metabolic Changes Modulated by Local Ischemic Pre- and Post-Conditioning in Rat Limb Ischemia-Reperfusion. Metabolites 2021; 11: 776.
  • Granger DN. Kvietys PR. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol 2015; 6: 524-51.
  • Ho E. Karimi Galougahi K. Liu CC. Bhindi R. Figtree GA. Biomarkers of oxidative stress: applications to cardiovascular research and practice. Redox Biol 2013; 1: 483-91.
  • Ayala A. Muñoz MF. Argüelles S. Lipid peroxidation: production. metabolism. and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438.
  • Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal Biochem 2017; 524: 13-30.
  • Zonooz SR. Hasani M. Morvaridzadeh M. Pizarro AB. Heydari H. Yosaee S. et al. Effect of alpha-lipoic acid on oxidative stress parameters: a systematic review and meta-analysis. J Funct Foods 2021; 87: 104774.
  • Galeone A. Grano M. Brunetti G. Tumor Necrosis Factor Family Members and Myocardial Ischemia-Reperfusion Injury: State of the Art and Therapeutic Implications. Int J Mol Sci 2023; 24: 4606.
  • Mielczarek-Palacz A. Sikora J. Kondera-Anasz Z. Smycz M. Changes in concentrations of tumor necrosis factor TNF and its soluble receptors type 1 (sTNF-r1) and type 2 (sTNF-R2) in serum of patients with ST-segment elevation myocardial infarction. Wiad Lek 2011; 64: 71-4.
  • Hamid T. Gu Y. Ortines RV. Bhattacharya C. Wang G. Xuan Y. et al. Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kappaB and inflammatory activation. Circulation 2009; 119: 1386–97.
  • Błyszczuk P. Myocarditis in Humans and Experimental Animal Models. Pre Cardiovasc Med 2019; 6: 64.
  • Liakopoulos OJ. Teucher N. Mühlfeld C. Middel P. Heusch G. Schoendube FA. et al. Prevention of TNFalpha-associated myocardial dysfunction resulting from cardiopulmonary bypass and cardioplegic arrest by glucocorticoid treatment. Eur J Cardiothorac Surg 2006;30:263-70.
  • Cerrada I. Ruiz-Sauri A. Carrero R. Trigueros C. Dorronsoro A. Sanchez-Puelles JM. et al. Hypoxia-inducible factor 1 alpha contributes to cardiac recovery in mesenchymal stem cell-mediated cardiac repair. Stem Cell Dev 2013;22:501–11.
  • Matsushima S. Kuroda J. Ago T. Zhai P. Ikeda Y. Oka S. et al. Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1α and upregulation of peroxisome proliferator-activated receptor-α. Circ Res 2013; 112: 1135-49.
  • Zhou YH. Han QF. Wang LH. Liu T. Meng XY. Wu L. et al. High mobility group box 1 protein attenuates myocardial ischemia reperfusion injury via inhibition of p38 mitogen-activated protein kinase signaling pathway. Exp Ther Med 2017; 14: 1582–8.
  • Zakkar M. Van der Heiden K. Luong A. Chaudhury H. Cuhlmann S. Hamdulay SS. et al. Activation of Nrf2 in endothelial cells prevents arteries from exhibiting a proinflammatory state. Arterioscler Thromb Vasc Biol 2009; 29: 1851-7.
  • Barajas B. Che N. Yin F. Rowshanrad A. Orozco LD. Gong KW. et al. NF-E2-related factor 2 promotes atherosclerosis through effects on plasma lipoproteins and cholesterol transport that trump antioxidant protection. Arterioscler Thromb Vasc Biol 2011; 31: 58-66.
  • Sun G. Li Y. Ji Z. Atorvastatin attenuates ischemia/reperfusion-induced inflammation and oxidative stress in rat heart via Nrf2 transcription factor. Int J Clin Exp Med 2015; 8: 14837-45.
  • El Morsy EM. Kamel R. Protective effect of artichoke leaf extract against paracetamol-induced hepatotoxicity in rats. Pharm Biol 2015;5 3: 167-73.
  • Rolnik A. Olas B. The Plants of the Asteraceae Family as Agents in the Protection of Human Health. Int J Mol Sci 2021: 22: 3009.
  • Moglia A. Lanteri S. Comino C. Acquadro A. de Vos R. Beekwilder Stress-induced biosynthesis of dicaffeoylquinic acids in globe artichoke. J Agric Food Chem 2008; 56: 8641–9.
  • Arnaboldi L. Corsini A. Bellosta S. Artichoke and bergamot extracts: A new opportunity for the management of dyslipidemia and related risk factors. Minerva Med 2022; 113:141-57.
  • Roghani-Dehkordi F. Kamkhah A-F. Artichoke leaf juice has antihypertensive effect in patients with mild hypertension. J Diet Suppl 2009; 6: 328-41.
  • Wang ZB. Jiang SL. Liu SB. Peng JB. Hu S. Wang X. et al. Metabolism of artichoke bud extract in spontaneously hypertensive rats. ACS Omega 2021; 6: 18610-22.
  • Santos HO. Bueno AA. Mota JF. Effect of artichoke on lipid profile: A review of possible mechanisms of action. Pharmacol. Res 2018; 137: 170-8.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kalp ve Damar Cerrahisi
Bölüm Araştırma Makalesi
Yazarlar

Murat Ziya Bağış 0000-0002-4088-7510

Ezhar Ersöz 0000-0002-7531-4958

Bişar Amaç 0000-0003-0320-4239

İsmail Koyuncu 0000-0002-9469-4757

Muhammet Emin Güldür 0000-0002-6568-3362

Yasemin Hacanlı 0000-0002-4427-8149

Kadir Eği 0000-0003-4802-0994

Serdar Günaydın 0000-0000-0000-0000

Gönderilme Tarihi 16 Ağustos 2025
Kabul Tarihi 17 Kasım 2025
Yayımlanma Tarihi 1 Ocak 2026
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 4

Kaynak Göster

APA Bağış, M. Z., Ersöz, E., Amaç, B., … Koyuncu, İ. (2026). The effect of Cynara scolymus L. on cardiac functions in rats with experimental cardiac injury induced by total circulatory arrest. Turkish Journal of Clinics and Laboratory, 16(4), 491-496. https://doi.org/10.18663/tjcl.1767150
AMA Bağış MZ, Ersöz E, Amaç B, vd. The effect of Cynara scolymus L. on cardiac functions in rats with experimental cardiac injury induced by total circulatory arrest. TJCL. Ocak 2026;16(4):491-496. doi:10.18663/tjcl.1767150
Chicago Bağış, Murat Ziya, Ezhar Ersöz, Bişar Amaç, İsmail Koyuncu, Muhammet Emin Güldür, Yasemin Hacanlı, Kadir Eği, ve Serdar Günaydın. “The effect of Cynara scolymus L. on cardiac functions in rats with experimental cardiac injury induced by total circulatory arrest”. Turkish Journal of Clinics and Laboratory 16, sy. 4 (Ocak 2026): 491-96. https://doi.org/10.18663/tjcl.1767150.
EndNote Bağış MZ, Ersöz E, Amaç B, Koyuncu İ, Güldür ME, Hacanlı Y, Eği K, Günaydın S (01 Ocak 2026) The effect of Cynara scolymus L. on cardiac functions in rats with experimental cardiac injury induced by total circulatory arrest. Turkish Journal of Clinics and Laboratory 16 4 491–496.
IEEE M. Z. Bağış, E. Ersöz, B. Amaç, İ. Koyuncu, M. E. Güldür, Y. Hacanlı, K. Eği, ve S. Günaydın, “The effect of Cynara scolymus L. on cardiac functions in rats with experimental cardiac injury induced by total circulatory arrest”, TJCL, c. 16, sy. 4, ss. 491–496, 2026, doi: 10.18663/tjcl.1767150.
ISNAD Bağış, Murat Ziya vd. “The effect of Cynara scolymus L. on cardiac functions in rats with experimental cardiac injury induced by total circulatory arrest”. Turkish Journal of Clinics and Laboratory 16/4 (Ocak2026), 491-496. https://doi.org/10.18663/tjcl.1767150.
JAMA Bağış MZ, Ersöz E, Amaç B, Koyuncu İ, Güldür ME, Hacanlı Y, Eği K, Günaydın S. The effect of Cynara scolymus L. on cardiac functions in rats with experimental cardiac injury induced by total circulatory arrest. TJCL. 2026;16:491–496.
MLA Bağış, Murat Ziya vd. “The effect of Cynara scolymus L. on cardiac functions in rats with experimental cardiac injury induced by total circulatory arrest”. Turkish Journal of Clinics and Laboratory, c. 16, sy. 4, 2026, ss. 491-6, doi:10.18663/tjcl.1767150.
Vancouver Bağış MZ, Ersöz E, Amaç B, Koyuncu İ, Güldür ME, Hacanlı Y, vd. The effect of Cynara scolymus L. on cardiac functions in rats with experimental cardiac injury induced by total circulatory arrest. TJCL. 2026;16(4):491-6.


e-ISSN: 2149-8296

The content of this site is intended for health care professionals. All the published articles are distributed under the terms of

Creative Commons Attribution Licence,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.