Araştırma Makalesi
BibTex RIS Kaynak Göster

Toros sediri odununun eğilme özellikleri üzerine ısıtma sıcaklığı ve süresinin değerlendirilmesi

Yıl 2021, , 432 - 438, 30.12.2021
https://doi.org/10.18182/tjf.1019032

Öz

Isıl işlem, ağaç malzeme özelliklerinin geliştirilmesinde kullanılan çevre dostu ve uygun maliyetli modifikasyon yöntemlerinden biridir. Fakat özelliklerde dengeli iyileşmeler sağlayabilmek için sıcaklık ve işlem süresi etkilerinin bilinmesi gereklidir. Bu çalışmada, sıcaklık (80, 120, 150, 180 ve 210°C) ve işlem süresinin (2, 5 ve 8 saat) Toros sediri (Cedrus libani) odununda boyuna ultrasonik dalga hızı, yoğunluk, dinamik elastikiyet modülü (Edyn), eğilmede elastikiyet modülü ve eğilme direnci üzerine etkisi incelenmiştir. Edyn lif doğrultusunda yayınım gerçekleştirilen 2.25 MHz frekanslı boyuna ultrasonik dalganın ses hızı ile tahmin edilmiştir. Üç nokta eğilme testi ile statik mekanik değerler belirlenmiştir. Sonuçlara göre yoğun işlem süresi ve sıcaklığın olumsuz yönde en yüksek etkisi eğilme direncinde görülmüş ve bunu dinamik ve statik elastikiyet modülleri takip etmiştir. 150°C'ye kadar ve 8 saatlik işlem seviyelerinde, özellikle eğilmede elastikiyet modülü için bazı kayda değer iyileşmeler (%15.3) görülmüştür. Edyn ile eğilmede elastikiyet modülü, Edyn ile eğilme direnci ve eğilmede elastikiye modülü ile eğilme direnci arasındaki determinayson katsayıları sırası ile 0.83, 0.38 ve 0.37 olarak hesaplanmıştır.  

Kaynakça

  • As, N., Koç, K.H., Doğu, A.D., Atik, C., Aksu, B., Erdinler, E.S., 2001. Türkiye’de yetişen endüstriyel öneme sahip ağaçların anatomik , fiziksel, mekanik ve kimyasal özellikleri. Journal of the Faculty of Forestry Istanbul University, 51(1): 71–88.
  • Awoyemi, L., Jones, I.P., 2011. Anatomical explanations for the changes in properties of western red cedar (Thuja plicata) wood during heat treatment. Wood Science and Technology, 45(2): 261–267.
  • Ayata, Ü., Bal, B.C., 2019. The effect of heat treatment on Taurus cedar (Cedrus libani A. Rich.) wood exposed to microbiologically active soils. EURO ASIA 4. International Congress on Applied Sciences, September 27-29, Kiev, pp.13–18.
  • Bal, B.C., 2013. Effects of heat treatment on the physical properties of heartwood and sapwood of Cedrus libani. BioResources, 8, 211–219.
  • Bal, B.C., 2016a. Some physical properties of Taurus fir wood (Abies cilicica) treated with hot vegetable oil. KSU. Journal of Engineering Sciences, 19(2): 20–26.
  • Bal, B.C., 2016b. Physical properties of beech wood thermally modified in hot oil and in hot air at various temperatures. Maderas Ciencia y Tecnologia, 17(4): 789–798.
  • Bal, B.C., Bektaş, I., Kaymakçı, A., 2012. Some physical and mechanical properties of juvenile wood and mature wood of Taurus cedar. KSU. Journal of Engineering Sciences, 15(2): 17–26.
  • Berkel, A., 1951. Lübnan sedirinde teknolojik araştırmalar. İÜ Orman Fakültesi Dergisi, A1(1): 182–211.
  • Borůvka, V., Novák, D., Šedivka, P., 2020. Comparison and analysis of radial and tangential bending of softwood and hardwood at static and dynamic loading. Forests, 11(8).
  • Chen, J.H., Wang, S.Y., Lin, C.J., Chiu, C.M., Tsai, M.J., 2014. Evaluation of quality of japanese cedar (Cryptomeria japonica) trees grown under different row thinning treatments. Journal of Tropical Forest Science, 26(2): 275–283.
  • Chien, Y.C., Yang, T.C., Hung, K.C., Li, C.C., Xu, J. W., Wu, J.H., 2018. Effects of heat treatment on the chemical compositions and thermal decomposition kinetics of Japanese cedar and beech wood. Polymer Degradation and Stability, 158, 220–227.
  • Chiu, C.M., Lin, C.H., Yang, T.H., 2013. Application of nondestructive methods to evaluate mechanical properties of 32-year-old taiwan incense cedar (Calocedrus formosana) wood. BioResources, 8(1): 688–700.
  • Chuang, S.T., Wang, S.Y., 2001. Evaluation of standing tree quality of Japanese cedar grown with different spacing using stress-wave and ultrasonic-wave methods. Journal of Wood Science, 47(4): 245–253.
  • Dilik, T., Hiziroglu, S., 2012. Bonding strength of heat treated compressed Eastern redcedar wood. Materials and Design, 42(2012): 317-320.
  • Efe, F., 2021. A study on the determination of some physical and mechanical properties of wood of Taurus cedar. Turkish Journal of Agricultural and Natural Sciences, 8(1): 43–52.
  • Esteves, B.M., Domingos, I.J., Pereira, H.M., 2008. Pine wood modification by heat treatment in air. BioResources, 3(1): 142–154.
  • Esteves, B. M., Pereira, H.M., 2009. Wood modification by heat treatment - A review. Bioresources, 4(1965): 370–404.
  • Gennari, E., Picchio, R., Monaco, A.Lo., 2021. Industrial heat treatment of wood: Study of induced effects on ayous wood (Triplochiton scleroxylon K. Schum). Forests, 12(6):730.
  • Güntekin, E., Aydın, T.Y., Niemz, P., 2015a. Prediction of compression properties in three orthotropic directions for some important Turkish wood species using ultrasound. BioResources, 10(4): 7252–7262.
  • Güntekin, E., Yılmaz Aydın, T., Niemz, P., 2015b. Determination of Young’s modulus in three orthotropic directions for Calabrian pine and Taurus cedar using ultrasound and digital image correlation (DIC). 3rd. Int. ISITES, June 3-5,Valecia, pp.42–51.
  • Güntekin, E., Yılmaz Aydın, T., Niemz, P., 2015c. Prediction of Young’s modulus in three orthotropic directions for some important Turkish wood species using ultrasound. 19th International Nondestructive Testing and Evaluation of Wood Symposium, September 22-25, Forest Products Laboratory, Madison, pp.7–14.
  • Güntekin, E., Yılmaz Aydın, T., 2016. Prediction of bending properties for some softwood species grown in Turkey using ultrasound. Wood Research, 61(6): 993–1002.
  • Güntekin, E., Yılmaz Aydın, T., Aydın, M., 2016. Elastic constants of Calabrian pine and Cedar. International Forestry Symposium, December 7-10, Kastamonu Üniversitesi, Kastamonu, pp.645–649.
  • Hasegawa, M., Mori, M., Matsumura, J., 2016. Non-contact velocity measurement of Japanese cedar columns using air-coupled ultrasonics. World Journal of Engineering and Technology, 4(1):45-50.
  • Hasegawa, M., Takata, M., Matsumura, J., Oda, K., 2011. Effect of wood properties on within-tree variation in ultrasonic wave velocity in softwood. Ultrasonics, 51(3): 296–302.
  • Holeček, T., Gašparík, M., Lagaňa, R., Borůvka, V., Oberhofnerová, E., 2016. Measuring the modulus of elasticity of thermally treated Spruce wood using the ultrasound and resonance methods. BioResources, 12(1):819-838.
  • Keskin, H., 2001. Lamine Masif Ağaç Malzemelerin Teknolojik Özellikleri ve Ağaç İşleri Endüstrisinde Kullanım İmkanları. Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Kılınçarslan, Ş., Şimşek Türker, Y., İnce, M., 2020. Prediction of heat-treated cedar wood swelling and shrinkage with artificial neural networks and random forest algorithm. Journal of Engineering Sciences and Design, 8(5): 200–205.
  • Korkut, S., Hiziroglu, S., 2013. Selected properties of heat-treated Eastern red cedar (Juniperus virginiana L.) Wood. BioResources, 8(2): 4756–4765.
  • Liang, S. Q., Fu, F., 2007. Comparative study on three dynamic modulus of elasticity and static modulus of elasticity for Lodgepole pine lumber. Journal of Forestry Research, 18(4): 309–312.
  • Missio, A.L., Gatto, D.A., Modes, K.S., Santini, E.J., Stangerlin, D.M., Calegari, L., 2013. Ultrasonic method for estimation of modulus of elasticity of Eucalyptus grandis wood. Revista Brasileirade Ciencias Agrarias, 8(1): 102–107.
  • Nabil, E., Mahmoud, N., Youssef, A., Saber, E., Kamel, S., 2018. Evaluation of physical, mechanical and chemical properties of Cedar and sycamore woods after heat treatment. Egyptian Journal of Chemistry, 61(6): 1131–1149.
  • Oh, J.-K., Yeo, H.-M., Choi, I.-G., Lee, J.-J., 2011. Feasibility of ultrasonic log sorting in manufacturing structural lamination from Japanese cedar logs. Journal of the Korean Wood Science and Technology, 39(2): 163–171.
  • Öktem, E., Sözen, R., 1992. Sedir odununun anatomik ve teknolojik özellikleri ile kullanım yerleri. In: Sedir, (Ed., Eler, Ü.), Ormancılık Araştırma Enstitüsü, Ankara, 287–297.
  • Perçin, O., Peker, H., Atilgan, A., 2016. The effect of heat treatment on the some physical and mechanical properties of Beech (Fagus orientalis Lipsky) wood. Wood Research, 61(3): 443–456.
  • Sofuoğlu, S.D., Kurtoğlu, A., 2015. Effects of machining conditions on surface roughness in planing and sanding of solid wood. Drvna industrija, 66(4): 265–272.
  • Söğütlü, C., 2017. Determination of the effect of surface roughness on the bonding strength of wooden materials. BioResources, 12(1): 1417–1429.
  • Sözbir, G.D., Bektaş, I., Ak, A.K., 2019. Influence of combined heat treatment and densification on mechanical properties of Poplar wood. Maderas: Ciencia y Tecnologia, 21(3): 481–492.
  • Şahin Kol, H., Aysal Keskin, S., Gündüz Vaydoğan, K., 2017. Effect of heat treatment on the mechanical properties and dimensional stability of beech wood. Journal of Advanced Technology Sciences, 6(3): 820–830.
  • Senalik, C., Schueneman, G., Ross, R., 2014. Ultrasonic-Based Nondestructive Evaluation Methods for Wood a Primer and Historical Review. Madison.
  • Şenel, A., 1994. Toros sediri (Cedrus libani) ağacının malzeme olarak bazı fiziksel, mekanik ve teknolojik özellikleri. Gazi Üniversitesi, End. San. Eğt. Fak. Der., 2(2): 145–150.
  • TS 2472, 2005. Wood - Determination of Density for Physical and Mechanical Tests, Wood, sawlogs and sawn timber (ICS 79.040), Ankara.
  • Ünsal, O., Korkut, S., Atik, C., 2003. THE effect of heat treatment on some properties and colour in Eucalyptus (Eucalyptus camaldulensis DEHN.) wood. Maderas Ciencia y tecnología, 5(2): 145-152.
  • Wang, S.Y., Chen, J.H., Hsu, K.P., Lin, C.J., Jane, M.C., 2008. Ring characteristics and compressive strength of Japanese cedar trees grown under different silvicultural treatments. Wood and Fiber Science, 40(3): 384–391.
  • Won, K.R., Hong, N.E., Park, H.M., Moon, S.O., Byeon, H.S., 2015. Effects of heating temperature and time on the mechanical properties of heat-treated woods. Journal of the Korean Wood Science and Technology, 43(2): 168–176.
  • Yang, T.H., Chang, F.R., Lin, C.J., Chang, F.C., 2016. Effects of temperature and duration of heat treatment on the physical, surface, and mechanical properties of Japanese cedar wood. BioResources, 11(2): 3947–3963.
  • Yeh, M.C., Liu, C.K., Lin, Y.L., 2007. Effects of ultrasonic detection modes on the longitudinal ultrasonic wave transmission in domestic plantation lumber. Taiwan Journal of Forest Science, 22(1): 57–68.
  • Yılmaz Aydin, T., 2020. Ultrasonic evaluation of time and temperature-dependent orthotropic compression properties of Oak wood. Journal of Materials Research and Technology, 9(3):6028-6036.
  • Yılmaz Aydın, T., Aydın, M., 2017. Determination of compression properties in radial direction of Oriental beech exposed to temperature using ultrasound and static tests. 20th International Nondestructive Testing and Evaluation of Wood Symposium, September 12-15, Forest Products Laboratory, Madison, pp.249–254.
  • Yılmaz Aydın, T., Aydın, M., 2018a. Relationship between density or propagation length and ultrasonic wave velocity in Cedar (Cedrus libani) wood. International Science and Technology Conference, July 18-20, Paris, pp. 531–535.
  • Yılmaz Aydın, T., Aydın, M., 2018b. Prediction of bending properties of Oriental beech wood exposed to temperature. International Forest Products Congress, September 26-29, Trabzon, pp.772–778.
  • Yılmaz Aydın, T., Aydın, M., 2018c. Relationship between density or propagation length and ultrasonic wave velocity in Sessile oak (Quercus petraea) wood. 4th Int. Conf. on Advances in Mechanical Enginering, December 19-21,Yıldız Technical University, İstanbul, pp. 1708–1712.
  • Yılmaz Aydın, T., Aydın, M., 2020. Influence of temperature and exposure duration on the bending properties of Oak wood. Journal of Bartin Faculty of Forestry, 22(3), 871–877.

Evaluation of heating temperature and time on bending properties of Taurus cedar wood

Yıl 2021, , 432 - 438, 30.12.2021
https://doi.org/10.18182/tjf.1019032

Öz

Heat treatment is one of the environmentally friendly and cost-effective modification methods applied for improvements of wood properties. However, influences of exposure duration and temperature should be known to provide balanced improvements for properties. In this study, effect of temperature (80, 120, 150, 180, and 210°C) and exposure duration (2, 5, and 8 h) on the longitudinal ultrasonic wave velocity, density, dynamic Modulus of Elasticity-MOE (Edyn), MOE in bending, and Modulus of Rupture (MOR) properties of Taurus cedar (Cedrus libani) was figured out. Edyn was predicted using ultrasonic wave velocity of 2.25 MHz longitudinal ultrasonic wave propagated through the longitudinal axis. The three-point bending test was performed to determine static mechanical properties. According to results, the highest adverse effects of extended duration and temperature were observed for MOR and followed by Edyn, and MOE in bending. Up to 150°C and 8 h treatment levels, some remarkable increases (15.3%) were observed particularly for MOE in bending. Coefficients of determinations were calculated as 0.83, 0.38, and 0.37 for Edyn vs MOE in bending, Edyn vs MOR, and MOE in bending vs MOR, respectively.

Kaynakça

  • As, N., Koç, K.H., Doğu, A.D., Atik, C., Aksu, B., Erdinler, E.S., 2001. Türkiye’de yetişen endüstriyel öneme sahip ağaçların anatomik , fiziksel, mekanik ve kimyasal özellikleri. Journal of the Faculty of Forestry Istanbul University, 51(1): 71–88.
  • Awoyemi, L., Jones, I.P., 2011. Anatomical explanations for the changes in properties of western red cedar (Thuja plicata) wood during heat treatment. Wood Science and Technology, 45(2): 261–267.
  • Ayata, Ü., Bal, B.C., 2019. The effect of heat treatment on Taurus cedar (Cedrus libani A. Rich.) wood exposed to microbiologically active soils. EURO ASIA 4. International Congress on Applied Sciences, September 27-29, Kiev, pp.13–18.
  • Bal, B.C., 2013. Effects of heat treatment on the physical properties of heartwood and sapwood of Cedrus libani. BioResources, 8, 211–219.
  • Bal, B.C., 2016a. Some physical properties of Taurus fir wood (Abies cilicica) treated with hot vegetable oil. KSU. Journal of Engineering Sciences, 19(2): 20–26.
  • Bal, B.C., 2016b. Physical properties of beech wood thermally modified in hot oil and in hot air at various temperatures. Maderas Ciencia y Tecnologia, 17(4): 789–798.
  • Bal, B.C., Bektaş, I., Kaymakçı, A., 2012. Some physical and mechanical properties of juvenile wood and mature wood of Taurus cedar. KSU. Journal of Engineering Sciences, 15(2): 17–26.
  • Berkel, A., 1951. Lübnan sedirinde teknolojik araştırmalar. İÜ Orman Fakültesi Dergisi, A1(1): 182–211.
  • Borůvka, V., Novák, D., Šedivka, P., 2020. Comparison and analysis of radial and tangential bending of softwood and hardwood at static and dynamic loading. Forests, 11(8).
  • Chen, J.H., Wang, S.Y., Lin, C.J., Chiu, C.M., Tsai, M.J., 2014. Evaluation of quality of japanese cedar (Cryptomeria japonica) trees grown under different row thinning treatments. Journal of Tropical Forest Science, 26(2): 275–283.
  • Chien, Y.C., Yang, T.C., Hung, K.C., Li, C.C., Xu, J. W., Wu, J.H., 2018. Effects of heat treatment on the chemical compositions and thermal decomposition kinetics of Japanese cedar and beech wood. Polymer Degradation and Stability, 158, 220–227.
  • Chiu, C.M., Lin, C.H., Yang, T.H., 2013. Application of nondestructive methods to evaluate mechanical properties of 32-year-old taiwan incense cedar (Calocedrus formosana) wood. BioResources, 8(1): 688–700.
  • Chuang, S.T., Wang, S.Y., 2001. Evaluation of standing tree quality of Japanese cedar grown with different spacing using stress-wave and ultrasonic-wave methods. Journal of Wood Science, 47(4): 245–253.
  • Dilik, T., Hiziroglu, S., 2012. Bonding strength of heat treated compressed Eastern redcedar wood. Materials and Design, 42(2012): 317-320.
  • Efe, F., 2021. A study on the determination of some physical and mechanical properties of wood of Taurus cedar. Turkish Journal of Agricultural and Natural Sciences, 8(1): 43–52.
  • Esteves, B.M., Domingos, I.J., Pereira, H.M., 2008. Pine wood modification by heat treatment in air. BioResources, 3(1): 142–154.
  • Esteves, B. M., Pereira, H.M., 2009. Wood modification by heat treatment - A review. Bioresources, 4(1965): 370–404.
  • Gennari, E., Picchio, R., Monaco, A.Lo., 2021. Industrial heat treatment of wood: Study of induced effects on ayous wood (Triplochiton scleroxylon K. Schum). Forests, 12(6):730.
  • Güntekin, E., Aydın, T.Y., Niemz, P., 2015a. Prediction of compression properties in three orthotropic directions for some important Turkish wood species using ultrasound. BioResources, 10(4): 7252–7262.
  • Güntekin, E., Yılmaz Aydın, T., Niemz, P., 2015b. Determination of Young’s modulus in three orthotropic directions for Calabrian pine and Taurus cedar using ultrasound and digital image correlation (DIC). 3rd. Int. ISITES, June 3-5,Valecia, pp.42–51.
  • Güntekin, E., Yılmaz Aydın, T., Niemz, P., 2015c. Prediction of Young’s modulus in three orthotropic directions for some important Turkish wood species using ultrasound. 19th International Nondestructive Testing and Evaluation of Wood Symposium, September 22-25, Forest Products Laboratory, Madison, pp.7–14.
  • Güntekin, E., Yılmaz Aydın, T., 2016. Prediction of bending properties for some softwood species grown in Turkey using ultrasound. Wood Research, 61(6): 993–1002.
  • Güntekin, E., Yılmaz Aydın, T., Aydın, M., 2016. Elastic constants of Calabrian pine and Cedar. International Forestry Symposium, December 7-10, Kastamonu Üniversitesi, Kastamonu, pp.645–649.
  • Hasegawa, M., Mori, M., Matsumura, J., 2016. Non-contact velocity measurement of Japanese cedar columns using air-coupled ultrasonics. World Journal of Engineering and Technology, 4(1):45-50.
  • Hasegawa, M., Takata, M., Matsumura, J., Oda, K., 2011. Effect of wood properties on within-tree variation in ultrasonic wave velocity in softwood. Ultrasonics, 51(3): 296–302.
  • Holeček, T., Gašparík, M., Lagaňa, R., Borůvka, V., Oberhofnerová, E., 2016. Measuring the modulus of elasticity of thermally treated Spruce wood using the ultrasound and resonance methods. BioResources, 12(1):819-838.
  • Keskin, H., 2001. Lamine Masif Ağaç Malzemelerin Teknolojik Özellikleri ve Ağaç İşleri Endüstrisinde Kullanım İmkanları. Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Kılınçarslan, Ş., Şimşek Türker, Y., İnce, M., 2020. Prediction of heat-treated cedar wood swelling and shrinkage with artificial neural networks and random forest algorithm. Journal of Engineering Sciences and Design, 8(5): 200–205.
  • Korkut, S., Hiziroglu, S., 2013. Selected properties of heat-treated Eastern red cedar (Juniperus virginiana L.) Wood. BioResources, 8(2): 4756–4765.
  • Liang, S. Q., Fu, F., 2007. Comparative study on three dynamic modulus of elasticity and static modulus of elasticity for Lodgepole pine lumber. Journal of Forestry Research, 18(4): 309–312.
  • Missio, A.L., Gatto, D.A., Modes, K.S., Santini, E.J., Stangerlin, D.M., Calegari, L., 2013. Ultrasonic method for estimation of modulus of elasticity of Eucalyptus grandis wood. Revista Brasileirade Ciencias Agrarias, 8(1): 102–107.
  • Nabil, E., Mahmoud, N., Youssef, A., Saber, E., Kamel, S., 2018. Evaluation of physical, mechanical and chemical properties of Cedar and sycamore woods after heat treatment. Egyptian Journal of Chemistry, 61(6): 1131–1149.
  • Oh, J.-K., Yeo, H.-M., Choi, I.-G., Lee, J.-J., 2011. Feasibility of ultrasonic log sorting in manufacturing structural lamination from Japanese cedar logs. Journal of the Korean Wood Science and Technology, 39(2): 163–171.
  • Öktem, E., Sözen, R., 1992. Sedir odununun anatomik ve teknolojik özellikleri ile kullanım yerleri. In: Sedir, (Ed., Eler, Ü.), Ormancılık Araştırma Enstitüsü, Ankara, 287–297.
  • Perçin, O., Peker, H., Atilgan, A., 2016. The effect of heat treatment on the some physical and mechanical properties of Beech (Fagus orientalis Lipsky) wood. Wood Research, 61(3): 443–456.
  • Sofuoğlu, S.D., Kurtoğlu, A., 2015. Effects of machining conditions on surface roughness in planing and sanding of solid wood. Drvna industrija, 66(4): 265–272.
  • Söğütlü, C., 2017. Determination of the effect of surface roughness on the bonding strength of wooden materials. BioResources, 12(1): 1417–1429.
  • Sözbir, G.D., Bektaş, I., Ak, A.K., 2019. Influence of combined heat treatment and densification on mechanical properties of Poplar wood. Maderas: Ciencia y Tecnologia, 21(3): 481–492.
  • Şahin Kol, H., Aysal Keskin, S., Gündüz Vaydoğan, K., 2017. Effect of heat treatment on the mechanical properties and dimensional stability of beech wood. Journal of Advanced Technology Sciences, 6(3): 820–830.
  • Senalik, C., Schueneman, G., Ross, R., 2014. Ultrasonic-Based Nondestructive Evaluation Methods for Wood a Primer and Historical Review. Madison.
  • Şenel, A., 1994. Toros sediri (Cedrus libani) ağacının malzeme olarak bazı fiziksel, mekanik ve teknolojik özellikleri. Gazi Üniversitesi, End. San. Eğt. Fak. Der., 2(2): 145–150.
  • TS 2472, 2005. Wood - Determination of Density for Physical and Mechanical Tests, Wood, sawlogs and sawn timber (ICS 79.040), Ankara.
  • Ünsal, O., Korkut, S., Atik, C., 2003. THE effect of heat treatment on some properties and colour in Eucalyptus (Eucalyptus camaldulensis DEHN.) wood. Maderas Ciencia y tecnología, 5(2): 145-152.
  • Wang, S.Y., Chen, J.H., Hsu, K.P., Lin, C.J., Jane, M.C., 2008. Ring characteristics and compressive strength of Japanese cedar trees grown under different silvicultural treatments. Wood and Fiber Science, 40(3): 384–391.
  • Won, K.R., Hong, N.E., Park, H.M., Moon, S.O., Byeon, H.S., 2015. Effects of heating temperature and time on the mechanical properties of heat-treated woods. Journal of the Korean Wood Science and Technology, 43(2): 168–176.
  • Yang, T.H., Chang, F.R., Lin, C.J., Chang, F.C., 2016. Effects of temperature and duration of heat treatment on the physical, surface, and mechanical properties of Japanese cedar wood. BioResources, 11(2): 3947–3963.
  • Yeh, M.C., Liu, C.K., Lin, Y.L., 2007. Effects of ultrasonic detection modes on the longitudinal ultrasonic wave transmission in domestic plantation lumber. Taiwan Journal of Forest Science, 22(1): 57–68.
  • Yılmaz Aydin, T., 2020. Ultrasonic evaluation of time and temperature-dependent orthotropic compression properties of Oak wood. Journal of Materials Research and Technology, 9(3):6028-6036.
  • Yılmaz Aydın, T., Aydın, M., 2017. Determination of compression properties in radial direction of Oriental beech exposed to temperature using ultrasound and static tests. 20th International Nondestructive Testing and Evaluation of Wood Symposium, September 12-15, Forest Products Laboratory, Madison, pp.249–254.
  • Yılmaz Aydın, T., Aydın, M., 2018a. Relationship between density or propagation length and ultrasonic wave velocity in Cedar (Cedrus libani) wood. International Science and Technology Conference, July 18-20, Paris, pp. 531–535.
  • Yılmaz Aydın, T., Aydın, M., 2018b. Prediction of bending properties of Oriental beech wood exposed to temperature. International Forest Products Congress, September 26-29, Trabzon, pp.772–778.
  • Yılmaz Aydın, T., Aydın, M., 2018c. Relationship between density or propagation length and ultrasonic wave velocity in Sessile oak (Quercus petraea) wood. 4th Int. Conf. on Advances in Mechanical Enginering, December 19-21,Yıldız Technical University, İstanbul, pp. 1708–1712.
  • Yılmaz Aydın, T., Aydın, M., 2020. Influence of temperature and exposure duration on the bending properties of Oak wood. Journal of Bartin Faculty of Forestry, 22(3), 871–877.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Orijinal Araştırma Makalesi
Yazarlar

Tuğba Yılmaz Aydın 0000-0002-6792-9602

Yayımlanma Tarihi 30 Aralık 2021
Kabul Tarihi 9 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Yılmaz Aydın, T. (2021). Evaluation of heating temperature and time on bending properties of Taurus cedar wood. Turkish Journal of Forestry, 22(4), 432-438. https://doi.org/10.18182/tjf.1019032
AMA Yılmaz Aydın T. Evaluation of heating temperature and time on bending properties of Taurus cedar wood. Turkish Journal of Forestry. Aralık 2021;22(4):432-438. doi:10.18182/tjf.1019032
Chicago Yılmaz Aydın, Tuğba. “Evaluation of Heating Temperature and Time on Bending Properties of Taurus Cedar Wood”. Turkish Journal of Forestry 22, sy. 4 (Aralık 2021): 432-38. https://doi.org/10.18182/tjf.1019032.
EndNote Yılmaz Aydın T (01 Aralık 2021) Evaluation of heating temperature and time on bending properties of Taurus cedar wood. Turkish Journal of Forestry 22 4 432–438.
IEEE T. Yılmaz Aydın, “Evaluation of heating temperature and time on bending properties of Taurus cedar wood”, Turkish Journal of Forestry, c. 22, sy. 4, ss. 432–438, 2021, doi: 10.18182/tjf.1019032.
ISNAD Yılmaz Aydın, Tuğba. “Evaluation of Heating Temperature and Time on Bending Properties of Taurus Cedar Wood”. Turkish Journal of Forestry 22/4 (Aralık 2021), 432-438. https://doi.org/10.18182/tjf.1019032.
JAMA Yılmaz Aydın T. Evaluation of heating temperature and time on bending properties of Taurus cedar wood. Turkish Journal of Forestry. 2021;22:432–438.
MLA Yılmaz Aydın, Tuğba. “Evaluation of Heating Temperature and Time on Bending Properties of Taurus Cedar Wood”. Turkish Journal of Forestry, c. 22, sy. 4, 2021, ss. 432-8, doi:10.18182/tjf.1019032.
Vancouver Yılmaz Aydın T. Evaluation of heating temperature and time on bending properties of Taurus cedar wood. Turkish Journal of Forestry. 2021;22(4):432-8.