Araştırma Makalesi
BibTex RIS Kaynak Göster

Boz Dağlar’ında (Batı Türkiye) Cedrus libani, Pinus brutia ve Pinus nigra subsp. pallasiana’nın iklim-büyüme ilişkileri ve büyüme eğilimleri

Yıl 2025, Cilt: 26 Sayı: 2, 137 - 147, 30.06.2025
https://doi.org/10.18182/tjf.1508195

Öz

İklim değişikliği orman ağaçlarının büyüme koşullarını giderek daha fazla etkilemektedir. Akdeniz bölgesinde, yağışlarda bir azalma ve sıcaklıkta bir artış beklenmekte ve bu durum ağaç büyümesini olumsuz şekilde etkileyecektir. Bu çalışmanın amacı, Batı Türkiye’nin Boz Dağlarında bulunan ağaçlandırma sahasındaki Toros sediri (Cedrus libani A. Rich) ile doğal yetişen kızılçam (Pinus brutia Ten.) ve Anadolu karaçamında (Pinus nigra subsp. pallasiana (Lamb.) Holmboe) dendrokronolojik yöntemler kullanarak bazı iklim parametrelerinin (sıcaklık, yağış, bağıl nem ve buhar basıncı açığı) gövde büyümesi üzerindeki etkisini analiz etmektir. Ekolojik ve ekonomik açıdan önemli olan bu üç orman ağacı türü arasındaki büyüme farklılıklarını tespit edebilmek için göğüs yüzey alanı artışına dayalı büyüme eğilimlerine bakılmıştır. Toros sediri, iyi bir ağaç canlılığına işaret eden pozitif bir büyüme eğilimi göstermiştir. Kızılçam ve Anadolu karaçamında son 25 yılda ne pozitif ne de negatif bir büyüme eğilimine rastlanmamıştır. Kızılçam, yıllık halka genişliği ve göğüs yüzeyi alanı artışında yıldan yıla en büyük değişkenliği sergilemiş ve iklim koşullarına en yüksek duyarlılığı göstermiştir. Bundan dolayı bu çalışmada en anlamlı tepki fonksiyonu ve korelasyon analizi sonuçlarına kızılçamda rastlanmıştır. Kızılçamın büyümesini en çok kış yağışları ve halka oluşum yılının temmuz yağışları olumsuz yönde etkilemiştir. Anadolu karaçamında ise, halka oluşum yılının mayıs ayındaki yüksek sıcaklıklar ve kurak koşullar yıllık halka gelişimini olumsuz yönde etkilemiştir. Ek olarak, sonuçlarımız çalışma sahasındaki sedirlerin yıldan yıla değişen iklim özelliklerine karşı çok duyarlı olmadığını ortaya koymuştur.

Kaynakça

  • Akkemik, Ü., 2000. Tree-ring chronology of Abies cilicica Carr. in the Western Mediterranean region of Turkey and its response to climate. Dendrochronologia, 18: 73-81.
  • Akkemik, Ü., 2003. Tree rings of Cedrus libani at the northern boundary of its natural distribution. IAWA Journal, 24(1): 63-73.
  • Akkemik, Ü., 2006. Tree-ring data in last 300 years of Turkey: Signatures of drought-record over the years. Science Echoes, 3: 34-40.
  • Akkemik, Ü., 2014. Türkiye'nin Doğal-Egzotik Ağaç ve Çalıları. T.C. Orman ve Su İşleri Bakanlığı, Orman Genel Müdürlüğü Yayınları, Ankara.
  • Akkemik, Ü., D'Arrigo, R., Cherubini, P., Köse, N., Jacoby, G.C., 2008. Tree-ring reconstructions of precipitation and streamflow for north-western Turkey. International Journal of Climatology, 28(2): 173-183.
  • Alizadeh, A., Toudeshki, A., Ehsani, R., Migliaccio, K., Wang, D. J. S. A. T., 2021. Detecting tree water stress using a trunk relative water content measurement sensor. Smart Agricultural Technology, 1:100003.
  • Alkan, I., Irdem, C., 2023. The effect of climate on tree-ring of Fir, Spruce and Scotch pine in Karçal Mountains. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 24(1): 206-217.
  • Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M.,…Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4): 660-684. Anderegg W.R.L., Schwalm, C., Biondi, F., Camarero, J.J., Koch, G., Litvak, M., Ogle, K., Shaw, J.D., Shevliakova, E., Williams A.P., Wolf, A., Ziaco, E., Pacala, S., 2015. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349(6247): 528-532.
  • Baillie, M.G.L., Pilcher, J.R., 1973. A simple cross-dating program for tree-ring research. Tree-Ring Bulletin, 33: 7-14.
  • Biondi, F., Waikul, K., 2004. DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers & Geosciences, 30(3): 303-311.
  • Boydak, M., 2003. Regeneration of Lebanon cedar (Cedrus libani A. Rich.) on karstic lands in Turkey. Forest Ecology and Management, 178(3): 231-243.
  • Boydak, M., 2004. Silvicultural characteristics and natural regeneration of Pinus brutia Ten. a review. Plant Ecology, 171(1): 153-163.
  • Boydak, M., 2007. Reforestation of Lebanon cedar (Cedrus libani A. Rich.) in bare karstic lands by broadcast seeding in Turkey. Options méditerranéennes, Series A: Mediterranean Seminars 75: 33-42.
  • Boydak, M., Çalıkoğlu, M., 2008. Biology and Silviculture of Lebanon Cedar (Cedrus libani A.Rich.). Ormancılığı Geliştirme ve Orman Yangınları ile Mücadele Hizmetlerini Destekleme Vakfı Yayını, Lazer Ofset Matbaası, Ankara.
  • Bunn, A., Korpela, M., 2020. An introduction to dplR. Processed with dplR, 1(2): 1-16.
  • Bunn, A.G., 2008. A dendrochronology program library in R (dplR). Dendrochronologia, 26(2): 115-124.
  • Camarero, J.J., Olano, J.M. and Parras, A., 2010. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytologist, 185(2): 471-80.
  • Castagneri, D., Storaunet, K.O., Rolstad, J., 2013. Age and growth patterns of old Norway spruce trees in Trillemarka forest, Norway. Scandinavian Journal of Forest Research, 28(3): 232-240.
  • Cook, E.R., Peters, K., 1981. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bulletin, (41): 45–53.
  • Coulthard, L., Smith, D.J., 2013. Dendrochronology. In: Encyclopedia of Quaternary Science, Volume 1 (Ed: Scott, A.E.), Elsevier, Amsterdam, pp. 453-458.
  • Dağdeviren, N., Akkemik, Ü., Dalfes, N., 2004. Dendroklimatolojik analizlerde tepki fonksiyonunun kullanımı. Journal of the Faculty of Forestry Istanbul University, 54(2):61-82.
  • Dai, A., 2013. Increasing drought under global warming in observations and models. Nature Climate Change, 3(1): 52-58.
  • de Miguel Magaña, S., 2014. Growth and yield modelling for optimal multi-objective forest management of eastern Mediterranean Pinus brutia. PhD Dissertation, University of Eastern Finland, Finland.
  • Deligöz, A., Cankara, F.G., 2020. Differences in physiological and biochemical responses to summer drought of Pinus nigra subsp. pallasiana and Pinus brutia in a natural mixed stand. Journal of Forestry Research, 31(5): 1479-1487.
  • DeSoto, L., Varino, F., Andrade, J. P., Gouveia, C. M., Campelo, F., Trigo, R. M., Nabais, C., 2014. Different growth sensitivity to climate of the conifer Juniperus thurifera on both sides of the Mediterranean Sea. Internation Journal of Biometeorology, 58(10): 2095-109.
  • Diers, M., Weigel, R., Leuschner, C., 2023. Both climate sensitivity and growth trend of European beech decrease in the North German Lowlands, while Scots pine still thrives, despite growing sensitivity. Trees, 37(2): 523-543.
  • Dobbertin, M., 2005. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. European Journal of Forest Research, 124(4): 319-333.
  • Doğan, M., Köse, N., 2015. Sandıras Dağı'ndaki (Muğla) yaşlı karaçam ormanlarından dört yeni yıllık halka kronolojisi. İstanbul Üniversitesi Orman Fakültesi Dergisi, 65(2): 1-16.
  • Doğan, M., Köse, N., 2019. Influence of climate on radial growth of black pine on the mountain regions of southwestern Turkey. Plants, 8(276):1-15.
  • Doğan, M., 2020. Bornova Ovası ve Çevresinde İklim Değişkenliğinin Ağaç Gelişimine Etkisi. Kriter Yayınevi, İstanbul.
  • Dönmez, Y., Aydınözü, D., 2012. Bitki özellikleri açısından Türkiye. Coğrafya Dergisi, 1(24): 1-17.
  • Ducci, F., Fusaro, E., Lucci, S., Ricciotti, L., 2007. Strategies for finalizing conifers experimental tests to the production of improved reproductive materials, Proceedings of the Inter. Workshop MEDPINE3“Conservation, Regeneration and restauration of Mediterranean Pines and thei Ecosystems”,(Valenzano-BA, 2005) Options médit., Serie A, pp. 99-104.
  • Foster, T.E., Schmalzer, P.A., Fox, G.A., 2015. Seasonal climate and its differential impact on growth of co-occurring species. European Journal of Forest Research, 134: 497-510.
  • Fritts, H., 1976. Tree rings and climate. Academic Press, Lomdon.
  • Galván, J., Camarero, J.J., Sangüesa‐Barreda, G., Alla, A.Q., Gutierrez, E., 2012. Sapwood area drives growth in mountain conifer forests. Journal of Ecology, 100(5):1233-1244.
  • Gauli, A., Neupane, P.R., Mundhenk, P., Köhl, M., 2022. Effect of climate change on the growth of tree species: dendroclimatological analysis. Forests, 13(4): 496.
  • General Directorate of Forestry, 2020. Türkiye orman varlığı (Forest Asset of Türkiye). Orman Genel Müdürlüğü, Ankara, https://www.ogm.gov.tr/tr/ormanlarimiz-sitesi/TurkiyeOrmanVarligi/Yayinlar/2020%20Türkiye%20Orman%20Varlığı.pdf, Accessed: 18.06.2024.
  • General Directorate of Meteorology, 2014. Türkiye kuraklık değerlendirme raporu (Turkey Drought Assessment Report). Meteoroloji Genel Müdürlüğü, Ankara, https://www.mgm.gov.tr/FILES/iklim/yayinlar/2014/Türkiye-Kuraklik-Degerlendirmesi-2014.pdf, Accessed: 10.05.2024.
  • Gribbe, S., Enderle, L., Weigel, R., Hertel, D., Leuschner, C., Muffler, L., 2024. Recent growth decline and shifts in climatic growth constraints suggest climate vulnerability of beech, Douglas fir, pine and oak in Northern Germany. Forest Ecology and Management, 566(122022): 1-14.
  • Griggs, C., Pearson, C., Manning, S.W., Lorentzen, B., 2014. A 250-year annual precipitation reconstruction and drought assessment for Cyprus from Pinus brutia Ten. tree-rings. International Journal of Climatology, 34(8): 2702-2714.
  • Grissino-Mayer, H.D., 2001. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Research, 57(2): 205-221.
  • Günal, N., 1992. Bozdağlar’ da Maki Formasyonunun Özellikleri. İstanbul Üniversitesi Deniz Bilimleri ve Coğrafya Enstitüsü, Teknik Bülten Serisi, No: 8, İstanbul.
  • Günal, N., 2013. Türkiye’de iklimin doğal bitki örtüsü üzerindeki etkileri. Acta Turcica, 1(5): 1-22.
  • Güney, A., Zweifel, R., Türkan, S., Zimmermann, R., Wachendorf, M., Güney, C.O., 2020. Drought responses and their effects on radial stem growth of two co-occurring conifer species in the Mediterranean mountain range. Annals of Forest Science, 77(4):1-16.
  • Hepcan, Ş., Hepcan, Ç.C., Bouwma, I.M., Jongman, R.H.G., Özkan, M.B., 2009. Ecological networks as a new approach for nature conservation in Turkey: A case study of İzmir Province. Landscape and Urban Planning, 90(3-4): 143-154.
  • Holmes, R.L., 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43:69-78.
  • Hood, S.M., Reed, C.C., Kane, J.M.J.M., 2020. Axial resin duct quantification in tree rings: A functional defense trait. MethodsX, 7: 101035.
  • Huang, J.G., Ma, Q., Rossi, S., Biondi, F., Deslauriers, A., Fonti, P., …Ziaco, E., 2020. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences, 117(34): 20645-20652.
  • IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Janssen, E., Kint, V., Bontemps, J.D., Özkan, K., Mert, A., Köse, N., Icel, B., Muys, B., 2018. Recent growth trends of black pine (Pinus nigra JF Arnold) in the eastern mediterranean. Forest Ecology and Management, 412: 21-28.
  • Kahriman, A., Şahin, A., Sönmez, T., Yavuz, M., 2023. Growth models for natural stands of Calabrian pine in the central Mediterranean region of Türkiye. Šumarski List, 147(3-4): 107-120.
  • Kara, S., 2011. Dendrokronolojik analizler ile sıcaklık yağış koşullarının ilişkisinin değerlendirilmesi: Uludağ'ın güneyinden iki örnek alan. Yüksek Lisans Tezi, İstanbul Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.
  • Kašpar, J., Tumajer, J., Altman, J., Altmanova, N., Čada, V., Čihák, T., Doležal, J., Fibich, P., Janda, P., Kaczka, R., 2024. Major tree species of Central European forests differ in their proportion of positive, negative, and nonstationary growth trends. Global Change Biology, 30(1): e17146.
  • Klisz, M., Puchałka, R., Jakubowski, M., Koprowski, M., Netsvetov, M., Prokopuk, Y., Jevšenak, J., 2023. Local site conditions reduce interspecific differences in climate sensitivity between native and non-native pines. Agricultural and Forest Meteorology, 341: 109694.
  • Köse, N., Akkemik, Ü., Dalfes, H.N., Özeren, M.S., Tolunay, D., 2012. Tree-ring growth of Pinus nigra Arn. subsp. pallasiana under different climate conditions throughout western Anatolia. Dendrochronologia, 30(4): 295-301.
  • Ladjal, M., Deloche, N., Huc, R., Ducrey, M., 2007. Effects of soil and air drought on growth, plant water status and leaf gas exchange in three Mediterranean cedar species: Cedrus atlantica, C. brevifolia and C. libani. Trees, 21(2): 201-213.
  • LeBlanc, D.C., 1990. Relationships between breast-height and whole-stem growth indices for red spruce on Whiteface Mountain, New York. Canadian Journal of Forest Research, 20(9): 1399-1407.
  • Malkoç, E., Nurlu, E., 2023. Monitoring three decades of forest cover change using Landsat imagery in Bozdağlar region, Turkey. Current Research in Agriculture, Forestry and Aquaculture (Eds: Doğanlar, O., Çeritoğlu, F.), Gece Publishing, Ankara, pp. 39-53.
  • Martín-Benito, D., Cherubini, P., Del Río, M., Cañellas, I., 2008. Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees, 22: 363-373.
  • Mazza, G., Markou, L., Sarris, D., 2021. Species-specific growth dynamics and vulnerability to drought at the single tree level in a Mediterranean reforestation. Trees, 35(5): 1697-1710.
  • Messinger, J., Güney, A., Zimmermann, R., Ganser, B., Bachmann, M., Remmele, S., Aas, G., Messinger, J., 2015. Cedrus libani: A promising tree species for Central European forestry facing climate change? European Journal of Forest Research, 134(6): 1005-1017.
  • Michelot, A., Simard, S., Rathgeber, C., Dufrene, E., Damesin, C., 2012. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree physiology, 32(8): 1033-45.
  • Ministry of Environment, Urbanization and Climate Change, 2019. Anıt ağaçlar. Çevre, Şehircilik ve İklim Değişiklği Bakanlığı, Ankara, https://www.anitagaclar.gov.tr/detail/kizilcam-pinus-brutia/287, Accessed: 27.06.2024.
  • Nahal, I., 1983. Le Pin brutia (Pinus brutia Ten. subsp. brutia). 1ère partie. Foret Mediterraneenne, (2): 165-172.
  • Noetzli, K.P., Müller, B., Sieber, T.N., 2003. Impact of population dynamics of white mistletoe (Viscum album ssp. abietis) on European silver fir (Abies alba). Annals of Forest Science, 60(8): 773-779.
  • Öner, N., Kondur, Y., Simsek, Z., Aslan, S., 2015. Evaluation of survival ratios and growth of the common plantation species (Black pine and Taurus cedar) on arid and semiarid sites in Turkey. Fresenius Environmental Bulletin, 24(9a): 2906-2915.
  • R Core Team, 2024. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/, Accessed: 15.05.2024.
  • Reis, M., Dutal, H., Abız, B., Tat, S., 2018. Impacts of climate change on annual diameter increment of natural Calabrian pine (Pinus brutia Ten.) forests in Kahramanmaras. Turkish Journal of Forestry, 19(3): 219-225.
  • Rozas, V., Pérez-de-Lis, G., García-González, I., Arévalo, J.R., 2011. Contrasting effects of wildfire and climate on radial growth of Pinus canariensis on windward and leeward slopes on Tenerife, Canary Islands. Trees, 25(5): 895-905.
  • Salomon, R. L., Peters, R. L., Zweifel, R., Sass-Klaassen, U.G.W., Stegehuis, A.I., Smiljanic, M.,…Steppe, K., 2022. The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nature Communications, 13(1): 28.
  • Sánchez-Salguero, R., Camarero, J.J., Dobbertin, M., Fernández-Cancio, Á., Vilà-Cabrera, A., Manzanedo, R.D., Zavala, M.A., Navarro-Cerrillo, R.M., 2013. Contrasting vulnerability and resilience to drought-induced decline of densely planted vs. natural rear-edge Pinus nigra forests. Forest Ecology and Management, 310: 956-967.
  • Sarris, D., Christodoulakis, D., Körner, C., 2007. Recent decline in precipitation and tree growth in the eastern Mediterranean. Global Change Biology, 13(6): 1187-1200.
  • Schuster, R., Oberhuber, W., 2013. Age-dependent climate–growth relationships and regeneration of Picea abies in a drought-prone mixed-coniferous forest in the Alps. Canadian Journal of Forest Research, 43(7): 609-618.
  • Semerci, A., İmal, B., Gonzalez-Benecke, C., 2021. Intraspecific variability in cold tolerance in Pinus brutia sampled from two contrasting provenance trials. New Forests, 52: 621-637.
  • Sevgi, O., Tecimen, B., Okan, T., 2022. Karaçam. TOD Yayın No: E/22/62, Ankara.
  • Sökücü, A., Güney, A., 2021. Vitality versus cambium, xylem, and phloem characteristics in Cedrus libani. Iawa Journal, 2(42): 143-157.
  • Touchan, R., Xoplaki, E., Funkhouser, G., Luterbacher, J., Hughes, M. K., Erkan, N., Akkemik, Ü., Stephan, J., 2005. Reconstructions of spring/summer precipitation for the Eastern Mediterranean from tree-ring widths and its connection to large-scale atmospheric circulation. Climate Dynamics, 25(1): 75-98. Touchan, R., Anchukaitis, K.J., Shishov, V.V., Sivrikaya, F., Attieh, J., Ketmen, M., Stephan, J., Mitsopoulos, I., Christou, A., Meko, D.M., 2014. Spatial patterns of eastern Mediterranean climate influence on tree growth. The Holocene, 24(4): 381-392.
  • Vacek, Z., Vacek, S., Cukor, J., 2023. European forests under global climate change: Review of tree growth processes, crises and management strategies. Journal of Environmental Management, 332: 117353.
  • Veuillen, L., Prévosto, B., Zeoli, L., Pichot, C., Cailleret, M., 2023. Pinus halepensis and P. brutia provenances present similar resilience to drought despite contrasting survival, growth, cold tolerance and stem quality: Insights from a 45 year-old common garden experiment. Forest Ecology and Management, 544: 121146.
  • Vieira, J., Nabais, C., Rossi, S., Carvalho, A., Freitas, H., Campelo, F., 2017. Rain exclusion affects cambial activity in adult maritime pines. Agricultural and Forest Meteorology, 237: 303-310.
  • Wigley, T.M., Briffa, K.R., Jones, P.D., 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Applied Meteorology and Climatology, 23(2): 201-213.
  • Yaltırık, F., Boydak, M., 2000. A new variety of Calabrian pine (Pinus brutia Ten.) from Anatolia (Anadolu’da Saptanan Yeni Bir Kızılçam Varyetesi). The Karaca Arboretum Magazine, 5 (4): 173-180.
  • Yamaguchi, D.K., 1991. A simple method for cross-dating increment cores from living trees. Canadian Journal of Forest Research, 21(3): 414-416.
  • Yurtseven, N., 2021. Yamanlar Dağı'nda (İzmir) dendrokronolojik araştırmalar. Yüksek Lisans Tezi, Ege Üniversitesi, Sosyal Bilimler Enstitüsü, İzmir.
  • Zang, C., Biondi, F., 2015. Treeclim: An R package for the numerical calibration of proxy‐climate relationships. Ecography, 38(4): 431-436.
  • Zhang, Z., 2015. Tree-rings, a key ecological indicator of environment and climate change. Ecological indicators, 51: 107-116.
  • Zsolnay, N., Walentowitz, A., Aas, G., 2023. Impact of climatic conditions on radial growth of non-native Cedrus libani compared to native conifers in Central Europe. Plos One, 18(5): e0275317.

Climate-growth relationships and growth trends of Cedrus libani, Pinus brutia, and Pinus nigra subsp. pallasiana in the Boz Mountains (Western Türkiye)

Yıl 2025, Cilt: 26 Sayı: 2, 137 - 147, 30.06.2025
https://doi.org/10.18182/tjf.1508195

Öz

The ongoing climate change is increasingly affecting the growth conditions of forest trees. In the Mediterranean region, a reduction in precipitation and an increase in temperature are anticipated, which will have an adverse impact on tree growth. We used dendrochronology methods to analyze the impact of climate variables (air temperature, precipitation, relative humidity, and vapor pressure deficit) on stem growth of planted Taurus cedar (Cedrus libani A. Rich) and natural occurring Turkish pine (Pinus brutia Ten.) and Anatolian black pine (Pinus nigra subsp. pallasiana (Lamb.) Holmboe) growing in the Boz Mountains, Western Türkiye. We further investigated their growth trends based on basal area increment to detect growth differences between these three ecologically and economically important forest tree species. Taurus cedar showed a positive growth trend indicating good tree vitality. Turkish pine and black pine showed neither a positive nor a negative growth trend over the past 25 years. Turkish pine exhibited the greatest year-to-year variability in tree ring width and basal area increment and was the most sensitive to climate, resulting in significant response function and correlation analysis results. Turkish pine growth was most limited by winter precipitation and current year’s July precipitation. Radial growth in black pine was negatively correlated to high temperatures and dry conditions in current year May. Our results further showed, that Taurus cedar was the least sensitive to year-to-year climate variability.

Teşekkür

Eren ÖZER received funding from the 2209-A-Research Project Support Programme for Undergraduate Students (Project number: 1919B012318955) of the Scientific and Technological Research Council of Türkiye (TÜBİTAK). We would like to thank Mustafa BATUR, Niyazi ÖZÇANKAYA and Burak BAHAR for their assistance in the field.

Kaynakça

  • Akkemik, Ü., 2000. Tree-ring chronology of Abies cilicica Carr. in the Western Mediterranean region of Turkey and its response to climate. Dendrochronologia, 18: 73-81.
  • Akkemik, Ü., 2003. Tree rings of Cedrus libani at the northern boundary of its natural distribution. IAWA Journal, 24(1): 63-73.
  • Akkemik, Ü., 2006. Tree-ring data in last 300 years of Turkey: Signatures of drought-record over the years. Science Echoes, 3: 34-40.
  • Akkemik, Ü., 2014. Türkiye'nin Doğal-Egzotik Ağaç ve Çalıları. T.C. Orman ve Su İşleri Bakanlığı, Orman Genel Müdürlüğü Yayınları, Ankara.
  • Akkemik, Ü., D'Arrigo, R., Cherubini, P., Köse, N., Jacoby, G.C., 2008. Tree-ring reconstructions of precipitation and streamflow for north-western Turkey. International Journal of Climatology, 28(2): 173-183.
  • Alizadeh, A., Toudeshki, A., Ehsani, R., Migliaccio, K., Wang, D. J. S. A. T., 2021. Detecting tree water stress using a trunk relative water content measurement sensor. Smart Agricultural Technology, 1:100003.
  • Alkan, I., Irdem, C., 2023. The effect of climate on tree-ring of Fir, Spruce and Scotch pine in Karçal Mountains. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 24(1): 206-217.
  • Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M.,…Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4): 660-684. Anderegg W.R.L., Schwalm, C., Biondi, F., Camarero, J.J., Koch, G., Litvak, M., Ogle, K., Shaw, J.D., Shevliakova, E., Williams A.P., Wolf, A., Ziaco, E., Pacala, S., 2015. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349(6247): 528-532.
  • Baillie, M.G.L., Pilcher, J.R., 1973. A simple cross-dating program for tree-ring research. Tree-Ring Bulletin, 33: 7-14.
  • Biondi, F., Waikul, K., 2004. DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers & Geosciences, 30(3): 303-311.
  • Boydak, M., 2003. Regeneration of Lebanon cedar (Cedrus libani A. Rich.) on karstic lands in Turkey. Forest Ecology and Management, 178(3): 231-243.
  • Boydak, M., 2004. Silvicultural characteristics and natural regeneration of Pinus brutia Ten. a review. Plant Ecology, 171(1): 153-163.
  • Boydak, M., 2007. Reforestation of Lebanon cedar (Cedrus libani A. Rich.) in bare karstic lands by broadcast seeding in Turkey. Options méditerranéennes, Series A: Mediterranean Seminars 75: 33-42.
  • Boydak, M., Çalıkoğlu, M., 2008. Biology and Silviculture of Lebanon Cedar (Cedrus libani A.Rich.). Ormancılığı Geliştirme ve Orman Yangınları ile Mücadele Hizmetlerini Destekleme Vakfı Yayını, Lazer Ofset Matbaası, Ankara.
  • Bunn, A., Korpela, M., 2020. An introduction to dplR. Processed with dplR, 1(2): 1-16.
  • Bunn, A.G., 2008. A dendrochronology program library in R (dplR). Dendrochronologia, 26(2): 115-124.
  • Camarero, J.J., Olano, J.M. and Parras, A., 2010. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytologist, 185(2): 471-80.
  • Castagneri, D., Storaunet, K.O., Rolstad, J., 2013. Age and growth patterns of old Norway spruce trees in Trillemarka forest, Norway. Scandinavian Journal of Forest Research, 28(3): 232-240.
  • Cook, E.R., Peters, K., 1981. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bulletin, (41): 45–53.
  • Coulthard, L., Smith, D.J., 2013. Dendrochronology. In: Encyclopedia of Quaternary Science, Volume 1 (Ed: Scott, A.E.), Elsevier, Amsterdam, pp. 453-458.
  • Dağdeviren, N., Akkemik, Ü., Dalfes, N., 2004. Dendroklimatolojik analizlerde tepki fonksiyonunun kullanımı. Journal of the Faculty of Forestry Istanbul University, 54(2):61-82.
  • Dai, A., 2013. Increasing drought under global warming in observations and models. Nature Climate Change, 3(1): 52-58.
  • de Miguel Magaña, S., 2014. Growth and yield modelling for optimal multi-objective forest management of eastern Mediterranean Pinus brutia. PhD Dissertation, University of Eastern Finland, Finland.
  • Deligöz, A., Cankara, F.G., 2020. Differences in physiological and biochemical responses to summer drought of Pinus nigra subsp. pallasiana and Pinus brutia in a natural mixed stand. Journal of Forestry Research, 31(5): 1479-1487.
  • DeSoto, L., Varino, F., Andrade, J. P., Gouveia, C. M., Campelo, F., Trigo, R. M., Nabais, C., 2014. Different growth sensitivity to climate of the conifer Juniperus thurifera on both sides of the Mediterranean Sea. Internation Journal of Biometeorology, 58(10): 2095-109.
  • Diers, M., Weigel, R., Leuschner, C., 2023. Both climate sensitivity and growth trend of European beech decrease in the North German Lowlands, while Scots pine still thrives, despite growing sensitivity. Trees, 37(2): 523-543.
  • Dobbertin, M., 2005. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. European Journal of Forest Research, 124(4): 319-333.
  • Doğan, M., Köse, N., 2015. Sandıras Dağı'ndaki (Muğla) yaşlı karaçam ormanlarından dört yeni yıllık halka kronolojisi. İstanbul Üniversitesi Orman Fakültesi Dergisi, 65(2): 1-16.
  • Doğan, M., Köse, N., 2019. Influence of climate on radial growth of black pine on the mountain regions of southwestern Turkey. Plants, 8(276):1-15.
  • Doğan, M., 2020. Bornova Ovası ve Çevresinde İklim Değişkenliğinin Ağaç Gelişimine Etkisi. Kriter Yayınevi, İstanbul.
  • Dönmez, Y., Aydınözü, D., 2012. Bitki özellikleri açısından Türkiye. Coğrafya Dergisi, 1(24): 1-17.
  • Ducci, F., Fusaro, E., Lucci, S., Ricciotti, L., 2007. Strategies for finalizing conifers experimental tests to the production of improved reproductive materials, Proceedings of the Inter. Workshop MEDPINE3“Conservation, Regeneration and restauration of Mediterranean Pines and thei Ecosystems”,(Valenzano-BA, 2005) Options médit., Serie A, pp. 99-104.
  • Foster, T.E., Schmalzer, P.A., Fox, G.A., 2015. Seasonal climate and its differential impact on growth of co-occurring species. European Journal of Forest Research, 134: 497-510.
  • Fritts, H., 1976. Tree rings and climate. Academic Press, Lomdon.
  • Galván, J., Camarero, J.J., Sangüesa‐Barreda, G., Alla, A.Q., Gutierrez, E., 2012. Sapwood area drives growth in mountain conifer forests. Journal of Ecology, 100(5):1233-1244.
  • Gauli, A., Neupane, P.R., Mundhenk, P., Köhl, M., 2022. Effect of climate change on the growth of tree species: dendroclimatological analysis. Forests, 13(4): 496.
  • General Directorate of Forestry, 2020. Türkiye orman varlığı (Forest Asset of Türkiye). Orman Genel Müdürlüğü, Ankara, https://www.ogm.gov.tr/tr/ormanlarimiz-sitesi/TurkiyeOrmanVarligi/Yayinlar/2020%20Türkiye%20Orman%20Varlığı.pdf, Accessed: 18.06.2024.
  • General Directorate of Meteorology, 2014. Türkiye kuraklık değerlendirme raporu (Turkey Drought Assessment Report). Meteoroloji Genel Müdürlüğü, Ankara, https://www.mgm.gov.tr/FILES/iklim/yayinlar/2014/Türkiye-Kuraklik-Degerlendirmesi-2014.pdf, Accessed: 10.05.2024.
  • Gribbe, S., Enderle, L., Weigel, R., Hertel, D., Leuschner, C., Muffler, L., 2024. Recent growth decline and shifts in climatic growth constraints suggest climate vulnerability of beech, Douglas fir, pine and oak in Northern Germany. Forest Ecology and Management, 566(122022): 1-14.
  • Griggs, C., Pearson, C., Manning, S.W., Lorentzen, B., 2014. A 250-year annual precipitation reconstruction and drought assessment for Cyprus from Pinus brutia Ten. tree-rings. International Journal of Climatology, 34(8): 2702-2714.
  • Grissino-Mayer, H.D., 2001. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Research, 57(2): 205-221.
  • Günal, N., 1992. Bozdağlar’ da Maki Formasyonunun Özellikleri. İstanbul Üniversitesi Deniz Bilimleri ve Coğrafya Enstitüsü, Teknik Bülten Serisi, No: 8, İstanbul.
  • Günal, N., 2013. Türkiye’de iklimin doğal bitki örtüsü üzerindeki etkileri. Acta Turcica, 1(5): 1-22.
  • Güney, A., Zweifel, R., Türkan, S., Zimmermann, R., Wachendorf, M., Güney, C.O., 2020. Drought responses and their effects on radial stem growth of two co-occurring conifer species in the Mediterranean mountain range. Annals of Forest Science, 77(4):1-16.
  • Hepcan, Ş., Hepcan, Ç.C., Bouwma, I.M., Jongman, R.H.G., Özkan, M.B., 2009. Ecological networks as a new approach for nature conservation in Turkey: A case study of İzmir Province. Landscape and Urban Planning, 90(3-4): 143-154.
  • Holmes, R.L., 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43:69-78.
  • Hood, S.M., Reed, C.C., Kane, J.M.J.M., 2020. Axial resin duct quantification in tree rings: A functional defense trait. MethodsX, 7: 101035.
  • Huang, J.G., Ma, Q., Rossi, S., Biondi, F., Deslauriers, A., Fonti, P., …Ziaco, E., 2020. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences, 117(34): 20645-20652.
  • IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Janssen, E., Kint, V., Bontemps, J.D., Özkan, K., Mert, A., Köse, N., Icel, B., Muys, B., 2018. Recent growth trends of black pine (Pinus nigra JF Arnold) in the eastern mediterranean. Forest Ecology and Management, 412: 21-28.
  • Kahriman, A., Şahin, A., Sönmez, T., Yavuz, M., 2023. Growth models for natural stands of Calabrian pine in the central Mediterranean region of Türkiye. Šumarski List, 147(3-4): 107-120.
  • Kara, S., 2011. Dendrokronolojik analizler ile sıcaklık yağış koşullarının ilişkisinin değerlendirilmesi: Uludağ'ın güneyinden iki örnek alan. Yüksek Lisans Tezi, İstanbul Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.
  • Kašpar, J., Tumajer, J., Altman, J., Altmanova, N., Čada, V., Čihák, T., Doležal, J., Fibich, P., Janda, P., Kaczka, R., 2024. Major tree species of Central European forests differ in their proportion of positive, negative, and nonstationary growth trends. Global Change Biology, 30(1): e17146.
  • Klisz, M., Puchałka, R., Jakubowski, M., Koprowski, M., Netsvetov, M., Prokopuk, Y., Jevšenak, J., 2023. Local site conditions reduce interspecific differences in climate sensitivity between native and non-native pines. Agricultural and Forest Meteorology, 341: 109694.
  • Köse, N., Akkemik, Ü., Dalfes, H.N., Özeren, M.S., Tolunay, D., 2012. Tree-ring growth of Pinus nigra Arn. subsp. pallasiana under different climate conditions throughout western Anatolia. Dendrochronologia, 30(4): 295-301.
  • Ladjal, M., Deloche, N., Huc, R., Ducrey, M., 2007. Effects of soil and air drought on growth, plant water status and leaf gas exchange in three Mediterranean cedar species: Cedrus atlantica, C. brevifolia and C. libani. Trees, 21(2): 201-213.
  • LeBlanc, D.C., 1990. Relationships between breast-height and whole-stem growth indices for red spruce on Whiteface Mountain, New York. Canadian Journal of Forest Research, 20(9): 1399-1407.
  • Malkoç, E., Nurlu, E., 2023. Monitoring three decades of forest cover change using Landsat imagery in Bozdağlar region, Turkey. Current Research in Agriculture, Forestry and Aquaculture (Eds: Doğanlar, O., Çeritoğlu, F.), Gece Publishing, Ankara, pp. 39-53.
  • Martín-Benito, D., Cherubini, P., Del Río, M., Cañellas, I., 2008. Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees, 22: 363-373.
  • Mazza, G., Markou, L., Sarris, D., 2021. Species-specific growth dynamics and vulnerability to drought at the single tree level in a Mediterranean reforestation. Trees, 35(5): 1697-1710.
  • Messinger, J., Güney, A., Zimmermann, R., Ganser, B., Bachmann, M., Remmele, S., Aas, G., Messinger, J., 2015. Cedrus libani: A promising tree species for Central European forestry facing climate change? European Journal of Forest Research, 134(6): 1005-1017.
  • Michelot, A., Simard, S., Rathgeber, C., Dufrene, E., Damesin, C., 2012. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree physiology, 32(8): 1033-45.
  • Ministry of Environment, Urbanization and Climate Change, 2019. Anıt ağaçlar. Çevre, Şehircilik ve İklim Değişiklği Bakanlığı, Ankara, https://www.anitagaclar.gov.tr/detail/kizilcam-pinus-brutia/287, Accessed: 27.06.2024.
  • Nahal, I., 1983. Le Pin brutia (Pinus brutia Ten. subsp. brutia). 1ère partie. Foret Mediterraneenne, (2): 165-172.
  • Noetzli, K.P., Müller, B., Sieber, T.N., 2003. Impact of population dynamics of white mistletoe (Viscum album ssp. abietis) on European silver fir (Abies alba). Annals of Forest Science, 60(8): 773-779.
  • Öner, N., Kondur, Y., Simsek, Z., Aslan, S., 2015. Evaluation of survival ratios and growth of the common plantation species (Black pine and Taurus cedar) on arid and semiarid sites in Turkey. Fresenius Environmental Bulletin, 24(9a): 2906-2915.
  • R Core Team, 2024. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/, Accessed: 15.05.2024.
  • Reis, M., Dutal, H., Abız, B., Tat, S., 2018. Impacts of climate change on annual diameter increment of natural Calabrian pine (Pinus brutia Ten.) forests in Kahramanmaras. Turkish Journal of Forestry, 19(3): 219-225.
  • Rozas, V., Pérez-de-Lis, G., García-González, I., Arévalo, J.R., 2011. Contrasting effects of wildfire and climate on radial growth of Pinus canariensis on windward and leeward slopes on Tenerife, Canary Islands. Trees, 25(5): 895-905.
  • Salomon, R. L., Peters, R. L., Zweifel, R., Sass-Klaassen, U.G.W., Stegehuis, A.I., Smiljanic, M.,…Steppe, K., 2022. The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nature Communications, 13(1): 28.
  • Sánchez-Salguero, R., Camarero, J.J., Dobbertin, M., Fernández-Cancio, Á., Vilà-Cabrera, A., Manzanedo, R.D., Zavala, M.A., Navarro-Cerrillo, R.M., 2013. Contrasting vulnerability and resilience to drought-induced decline of densely planted vs. natural rear-edge Pinus nigra forests. Forest Ecology and Management, 310: 956-967.
  • Sarris, D., Christodoulakis, D., Körner, C., 2007. Recent decline in precipitation and tree growth in the eastern Mediterranean. Global Change Biology, 13(6): 1187-1200.
  • Schuster, R., Oberhuber, W., 2013. Age-dependent climate–growth relationships and regeneration of Picea abies in a drought-prone mixed-coniferous forest in the Alps. Canadian Journal of Forest Research, 43(7): 609-618.
  • Semerci, A., İmal, B., Gonzalez-Benecke, C., 2021. Intraspecific variability in cold tolerance in Pinus brutia sampled from two contrasting provenance trials. New Forests, 52: 621-637.
  • Sevgi, O., Tecimen, B., Okan, T., 2022. Karaçam. TOD Yayın No: E/22/62, Ankara.
  • Sökücü, A., Güney, A., 2021. Vitality versus cambium, xylem, and phloem characteristics in Cedrus libani. Iawa Journal, 2(42): 143-157.
  • Touchan, R., Xoplaki, E., Funkhouser, G., Luterbacher, J., Hughes, M. K., Erkan, N., Akkemik, Ü., Stephan, J., 2005. Reconstructions of spring/summer precipitation for the Eastern Mediterranean from tree-ring widths and its connection to large-scale atmospheric circulation. Climate Dynamics, 25(1): 75-98. Touchan, R., Anchukaitis, K.J., Shishov, V.V., Sivrikaya, F., Attieh, J., Ketmen, M., Stephan, J., Mitsopoulos, I., Christou, A., Meko, D.M., 2014. Spatial patterns of eastern Mediterranean climate influence on tree growth. The Holocene, 24(4): 381-392.
  • Vacek, Z., Vacek, S., Cukor, J., 2023. European forests under global climate change: Review of tree growth processes, crises and management strategies. Journal of Environmental Management, 332: 117353.
  • Veuillen, L., Prévosto, B., Zeoli, L., Pichot, C., Cailleret, M., 2023. Pinus halepensis and P. brutia provenances present similar resilience to drought despite contrasting survival, growth, cold tolerance and stem quality: Insights from a 45 year-old common garden experiment. Forest Ecology and Management, 544: 121146.
  • Vieira, J., Nabais, C., Rossi, S., Carvalho, A., Freitas, H., Campelo, F., 2017. Rain exclusion affects cambial activity in adult maritime pines. Agricultural and Forest Meteorology, 237: 303-310.
  • Wigley, T.M., Briffa, K.R., Jones, P.D., 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Applied Meteorology and Climatology, 23(2): 201-213.
  • Yaltırık, F., Boydak, M., 2000. A new variety of Calabrian pine (Pinus brutia Ten.) from Anatolia (Anadolu’da Saptanan Yeni Bir Kızılçam Varyetesi). The Karaca Arboretum Magazine, 5 (4): 173-180.
  • Yamaguchi, D.K., 1991. A simple method for cross-dating increment cores from living trees. Canadian Journal of Forest Research, 21(3): 414-416.
  • Yurtseven, N., 2021. Yamanlar Dağı'nda (İzmir) dendrokronolojik araştırmalar. Yüksek Lisans Tezi, Ege Üniversitesi, Sosyal Bilimler Enstitüsü, İzmir.
  • Zang, C., Biondi, F., 2015. Treeclim: An R package for the numerical calibration of proxy‐climate relationships. Ecography, 38(4): 431-436.
  • Zhang, Z., 2015. Tree-rings, a key ecological indicator of environment and climate change. Ecological indicators, 51: 107-116.
  • Zsolnay, N., Walentowitz, A., Aas, G., 2023. Impact of climatic conditions on radial growth of non-native Cedrus libani compared to native conifers in Central Europe. Plos One, 18(5): e0275317.
Toplam 87 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ağaç Beslenme ve Fizyolojisi, Orman Botaniği
Bölüm Araştırma Makalesi
Yazarlar

Aylin Güney 0000-0002-8955-2770

Tuğba Erkan 0009-0008-2557-2933

Raziye Oğlakcı 0009-0004-6381-3436

Eren Özer 0009-0002-2804-581X

Gönderilme Tarihi 22 Ağustos 2024
Kabul Tarihi 13 Mart 2025
Yayımlanma Tarihi 30 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 26 Sayı: 2

Kaynak Göster

APA Güney, A., Erkan, T., Oğlakcı, R., Özer, E. (2025). Climate-growth relationships and growth trends of Cedrus libani, Pinus brutia, and Pinus nigra subsp. pallasiana in the Boz Mountains (Western Türkiye). Turkish Journal of Forestry, 26(2), 137-147. https://doi.org/10.18182/tjf.1508195
AMA Güney A, Erkan T, Oğlakcı R, Özer E. Climate-growth relationships and growth trends of Cedrus libani, Pinus brutia, and Pinus nigra subsp. pallasiana in the Boz Mountains (Western Türkiye). Turkish Journal of Forestry. Haziran 2025;26(2):137-147. doi:10.18182/tjf.1508195
Chicago Güney, Aylin, Tuğba Erkan, Raziye Oğlakcı, ve Eren Özer. “Climate-growth relationships and growth trends of Cedrus libani, Pinus brutia, and Pinus nigra subsp. pallasiana in the Boz Mountains (Western Türkiye)”. Turkish Journal of Forestry 26, sy. 2 (Haziran 2025): 137-47. https://doi.org/10.18182/tjf.1508195.
EndNote Güney A, Erkan T, Oğlakcı R, Özer E (01 Haziran 2025) Climate-growth relationships and growth trends of Cedrus libani, Pinus brutia, and Pinus nigra subsp. pallasiana in the Boz Mountains (Western Türkiye). Turkish Journal of Forestry 26 2 137–147.
IEEE A. Güney, T. Erkan, R. Oğlakcı, ve E. Özer, “Climate-growth relationships and growth trends of Cedrus libani, Pinus brutia, and Pinus nigra subsp. pallasiana in the Boz Mountains (Western Türkiye)”, Turkish Journal of Forestry, c. 26, sy. 2, ss. 137–147, 2025, doi: 10.18182/tjf.1508195.
ISNAD Güney, Aylin vd. “Climate-growth relationships and growth trends of Cedrus libani, Pinus brutia, and Pinus nigra subsp. pallasiana in the Boz Mountains (Western Türkiye)”. Turkish Journal of Forestry 26/2 (Haziran2025), 137-147. https://doi.org/10.18182/tjf.1508195.
JAMA Güney A, Erkan T, Oğlakcı R, Özer E. Climate-growth relationships and growth trends of Cedrus libani, Pinus brutia, and Pinus nigra subsp. pallasiana in the Boz Mountains (Western Türkiye). Turkish Journal of Forestry. 2025;26:137–147.
MLA Güney, Aylin vd. “Climate-growth relationships and growth trends of Cedrus libani, Pinus brutia, and Pinus nigra subsp. pallasiana in the Boz Mountains (Western Türkiye)”. Turkish Journal of Forestry, c. 26, sy. 2, 2025, ss. 137-4, doi:10.18182/tjf.1508195.
Vancouver Güney A, Erkan T, Oğlakcı R, Özer E. Climate-growth relationships and growth trends of Cedrus libani, Pinus brutia, and Pinus nigra subsp. pallasiana in the Boz Mountains (Western Türkiye). Turkish Journal of Forestry. 2025;26(2):137-4.