Araştırma Makalesi
BibTex RIS Kaynak Göster

Experimental and finite element analysis of some WPC profiles in bending

Yıl 2025, Cilt: 26 Sayı: 4, 602 - 609, 29.12.2025
https://doi.org/10.18182/tjf.1714216

Öz

The bending properties of some commercially manufactured WPC profiles were analyzed using both experimental and numerical methods. First, the MOE of PVC-wood flour composites was determined on small samples using 3-point bending tests according to the ASTM D790 standard. Three WPC profiles were experimentally tested and modelled using the finite element method. Isotropic material properties were used in numerical modelling. The study results demonstrate that numerical models can accurately predict the bending behavior of WPC profiles until failure. The bending stiffness of the WPC profiles was similar however the strength properties were significantly different. The results of the study indicate that WPC profiles can be modelled using isotropic material properties.

Kaynakça

  • Alharbi, M., Kong, I. Patel, V.I., 2020. Simulation of uniaxial stress–strain response of 3D-printed polylactic acid by nonlinear finite element analysis. Applied Adhesion Science, 8(1): 5 https://doi.org/ 10.1186/s40563-020-00128-1
  • Alves, L. M., Martins, P. A. F., 2009. Understanding invert forming of thin-walled polyvinyl chloride tubes using a die based on a mechanical flow formulation. Materials and Manufacturing Processes, 24 (12): 1398 -1404. doi: 10.1080/10426910902997530
  • Ameen, M., 2001. Boundary Element Analysis: Theory and Programming. CRC Press: Boca Raton, FL, USA.
  • Ashori, A., Matini Behzad, H., Tarmian, A., 2013. Effects of chemical preservative treatments on durability of wood flour/HDPE composites. Composites Part B: Engineering, 47: 308–313. https://doi.org/10.1016/j.compositesb.2012.11.022
  • ASTM D790-17, 2017. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International, West Conshohocken, PA, USA.
  • Ayrilmis, N., Jarusombuti, S., Fueangvivat, V., Bauchongkol, P., 2011. Effect of thermal-treatment of wood fibres on properties of flat-pressed wood plastic composites. Polymer Degradation and Stability, 96: 818–822. https://doi.org/10.1016/j. polymdegradstab. 2011.02.005
  • Bhandari, S., Lopez-Anido, R., 2018. Finite element analysis of thermoplastic polymer extrusion 3D printed material for mechanical property prediction. Additive Manufacturing, 22, 187–196. doi:10.1016/J.ADDMA.2018.05.009
  • Başboğa, H.I., Güntekin, E., 2016. The optimization of wood trusses connected with metal plates using ANSYS. Pro Ligno, 12(4): 12-20.
  • Bhaskar, K., Jayabalakrishnan, D., Vinoth Kumar, M., Sendilvelan, S., Prabhahar, M., 2021. Analysis on mechanical properties of wood plastic composite. Materials Today: Proceedings, 45(7): 5886-5891. https://doi.org/10.1016/j.matpr.2020.08.570.
  • Caminero, M.A., Chacón, J.M., García-Moreno, I., Rodríguez, G.P., 2018. Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Composites Part B: Engineering, 148: 93–103. https://doi.org/10.1016/j.compositesb.2018.04.054
  • Dickson, A.N., Barry, J.N., McDonnell, K.A., Dowling, D.P., 2017. Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Additive Manufacturing, 16, 146–152. https://doi.org/10.1016/j.addma. 2017.06.004.
  • Diouf, P.M., Thiandoume, C., Abdulrahman, S.T., Ndour, O., Jibin, K.P., Maria, H.J., Thomas, S., Tidjani, A., 2022. Mechanical and rheological properties of recycled high-density polyethylene and ronier palm leaf fiber based biocomposites. Journal of Applied Polymer Science, 139(9), 51713. https://doi.org/10.1002/app.51713
  • Duan, G., Chunxia, He., Min, W., Xingxing, Y., Wei, W., Yanping, W., 2023. Effect of silica on thermal and mechanical properties of eucalyptus-PVC wood-polymer composites. BioResources, 18(1):1803-1811. doi: 10.15376/biores.18.1.1803-1811
  • Echeverria, C., Pahlevani, F., Gaikwad, V., Sahajwalla, V., 2017. The effect of microstructure, filler load and surface adhesion of marine bio-fillers, in the performance of hybrid wood-polypropylene particulate bio-composite. Journal of Cleaner Productions, 154:284–294. https://doi.org/10.1016/j.jclepro.2017.04.020
  • Ezzaraa, I., Ayrilmis, N., Abouelmajd, M., Kuzman, M. K., Bahlaoui, A., Arroub, I., Bengourram, J., Lagache, M., Belhouideg, S., 2023. Numerical modeling based on finite element analysis of 3D-printed wood-polylactic acid composites: A Comparison with Experimental Data. Forests, 14(1): 95. https://doi.org/10.3390/f14010095
  • Fei,G., Yuyu,L., Wenhui,H., Xiaolong,H., Rongxian,O., Qingwen, W., 2024. Experimental study and finite element analysis of wood-plastic composite hollow columns subjected to axial compression. Chinese Journal of Wood Science and Technology, 38(3): 40-48. doi:10.12326/j.2096-9694.2024044
  • Feng, L., Wang, D., Yan, J., 2023. Reliability study of wood–plastic composites based on probabilistic finite elements. Polymers, 15: 312. https://doi.org/10.3390/polym15020312
  • Güntekin, E., Uysal, M., 2024. Doğu kayını (Fagus orientalis L.) kontrplak ile güçlendirilmiş yongalevha ve liflevhanın eğilme davranışının deneysel ve nümerik analizi. Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 7(1): 26-37. doi: 10.33725/mamad.1464366
  • Haque, M.M.U., 2021. Property improvements of wood and wood-plastic composites. In: Wood Polymer Composites.(Ed: Mavinkere Rangappa, S., Parameswaranpillai, J., Kumar, M.H., Siengchin, S.) Composites Science and Technology, Springer, Singapore. https://doi.org/10.1007/978-981-16-1606-8_4
  • Hosseini, S.B., Gaff, M., Smardzewski, J., 2024. Plastic deformation assessment of sawdust-rPET composites under bending load. Composites Part C: Open Access, 15: 100538: 1-14. https://doi.org/10.1016/j.jcomc.2024.100538
  • Ilyas, R.A., Zuhri, M.Y.M., Aisyah, H.A., Asyraf, M.R.M., Hassan, S.A., Zainudin, E.S., Sapuan, S.M., Sharma, S., Bangar, S.P., Jumaidin, R., Nawab, Y., Faudzi, A. A. M., Abral, H., Asrofi, M., Syafri, E., Sari, N.H., 2022. Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications. Polymers, 14(1): 202. https://doi.org/10.3390/polym14010202
  • Jian, B., Mohrmann, S., Li, H., Li, Y., Ashraf, M., Zhou, J., Zheng, X., 2022. A Review on flexural properties of wood-plastic composites. Polymers, 14, 3942. https://doi.org/ 10.3390/polym14193942
  • Li, J., Huo, R., Liu, W., Fang, H., Jiang, L., Zhou, D., 2022. Mechanical properties of PVC-based wood–plastic composites effected by temperature. Frontiers in Materials, 9: 1018902. doi: 10.3389/fmats.2022.1018902
  • Mirowski, J., Oliwa, R., Oleksy, M., Tomaszewska, J., Ryszkowska, J., Budzik, G., 2021. Poly(vinyl chloride) composites with raspberry pomace filler. Polymers, 13(7): 1079. https://doi.org/10.3390/polym13071079
  • Mirski, R., Dukarska, D., Walkiewicz, J., Derkowski, A., 2021. Waste wood particles from primary wood processing as a filler of insulation PUR foams. Materials, 14(17): 4781. https://doi.org/10.3390/ma14174781
  • Mishra, S., Sain, M., 2007 Strength analysis of chair base from wood plastic composites by finite element method. Materials Research Innovations, 11(3): 137-143, doi:10.1179/ 143307507X225623
  • Mo, X., Zhang, X., Fang, L., Zhang, Y., 2022. Research progress of wood-based panels made of thermoplastics as wood adhesives. Polymers, 14(1): 98. https://doi.org/10.3390/ polym14010098
  • Moreno, D.D.P., de Camargo, R.V., dos Santos Luiz, D., Branco, L.T.P., Grillo, C.C., Saron, C., 2021. Composites of recycled polypropylene from cotton swab waste with pyrolyzed rice husk. Journal of Polymers and the Environment, 29: 350–362. https://doi.org/10.1007/s10924-020-01883-9
  • Nukala, S.G., Kong, I., Kakarla, A.B., Patel, V.I., Abuel-Naga, H., 2023. Simulation of wood polymer composites with finite element analysis. Polymers, 15: 1977. https://doi.org/10.3390/ polym15091977
  • Oksman, K., 2000. Mechanical properties of natural fibre mat reinforced thermoplastic. Applied Composite Materials, 7: 403–414. https://doi.org/10.1023/A:1026546426764
  • Özdemir, F., Çota, A., Alma, H., 2018. Odun plastik kompozit malzemelerin termal ve ısı iletkenliği özelikleri üzerine sepiolit mineralinin etkisi. Turkish Journal of Forestry, 19(2): 205-209. doi:10.18182/tjf.415069
  • Rahman, K.S., Islam, M.N., Rahman, M.M., Hannan, M.O., Dungani, R., Abdul Khalil, H.P.S., 2013. Flat-pressed wood plastic composites from sawdust and recycled polyethylene terephthalate (PET): physical and mechanical properties. Springer Plus, 2: 629. https://doi.org/10.1186/2193-1801-2-629
  • Roy, H., Pahlevani, F., Cholake, S., Echeverria, C., Banerjee, A., Sahajwalla, V., 2018. Simulation of marine bio-composite using empirical data combined with finite element technique. Journal of Composites Science, 2(3): 48. https://doi.org/10.3390/jcs2030048
  • Sanvezzo, P.B., Branciforti, M.C., 2021. Recycling of industrial waste based on jute fiber-polypropylene: Manufacture of sustainable fiber-reinforced polymer composites and their characterization before and after accelerated aging. Industrial Crops and Products, 168: 113568 https://doi.org/10.1016/j.indcrop. 2021.113568
  • Soury, E., Behravesh, A.H., Rouhani Esfahani, E., Zolfaghari, A., 2009. Design, optimization and manufacturing of wood–plastic composite pallet. Materials & Design, 30(10): 4183-4191. https://doi.org/10.1016/j.matdes.2009.04.035
  • TS-EN 323, 1999. Ahşap esaslı levhalar-Birim hacim ağırlığının tayini. TSE, Ankara.

PVC esaslı bazı OPK profillerin eğilme davranışının deneysel ve sonlu elemanlar analizi

Yıl 2025, Cilt: 26 Sayı: 4, 602 - 609, 29.12.2025
https://doi.org/10.18182/tjf.1714216

Öz

Ticari olarak üretilen polivinil klorür (PVC) esaslı bazı odun plastik kompozit (OPK) profillerin eğilme özellikleri deneysel ve sayısal yöntemler kullanılarak analiz edilmiştir. İlk olarak, PVC-odun unu kompozitlerinin elastikiyet modülü ASTM D790 standardına göre 3 nokta eğilme testleri kullanılarak küçük numuneler üzerinde belirlenmiştir. Üç farklı OPK profili deneysel olarak test edilmiş ve sonlu elemanlar yöntemi kullanılarak modellenmiştir. Sayısal modellemede izotropik malzeme özellikleri kullanılmıştır. Çalışmanın sonuçları, sayısal modellerin OPK profillerinin eğilme davranışının gerçekçi bir şekilde tahmin edilmesinde kullanılabileceğini göstermektedir. OPK profillerinin eğilme rijitlikleri benzer, ancak direnç özellikleri önemli ölçüde farklı bulunmuştur. Çalışma sonuçları OPK profillerin izotropik malzeme özellikleri kullanılarak modellenebileceğini göstermiştir.

Kaynakça

  • Alharbi, M., Kong, I. Patel, V.I., 2020. Simulation of uniaxial stress–strain response of 3D-printed polylactic acid by nonlinear finite element analysis. Applied Adhesion Science, 8(1): 5 https://doi.org/ 10.1186/s40563-020-00128-1
  • Alves, L. M., Martins, P. A. F., 2009. Understanding invert forming of thin-walled polyvinyl chloride tubes using a die based on a mechanical flow formulation. Materials and Manufacturing Processes, 24 (12): 1398 -1404. doi: 10.1080/10426910902997530
  • Ameen, M., 2001. Boundary Element Analysis: Theory and Programming. CRC Press: Boca Raton, FL, USA.
  • Ashori, A., Matini Behzad, H., Tarmian, A., 2013. Effects of chemical preservative treatments on durability of wood flour/HDPE composites. Composites Part B: Engineering, 47: 308–313. https://doi.org/10.1016/j.compositesb.2012.11.022
  • ASTM D790-17, 2017. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International, West Conshohocken, PA, USA.
  • Ayrilmis, N., Jarusombuti, S., Fueangvivat, V., Bauchongkol, P., 2011. Effect of thermal-treatment of wood fibres on properties of flat-pressed wood plastic composites. Polymer Degradation and Stability, 96: 818–822. https://doi.org/10.1016/j. polymdegradstab. 2011.02.005
  • Bhandari, S., Lopez-Anido, R., 2018. Finite element analysis of thermoplastic polymer extrusion 3D printed material for mechanical property prediction. Additive Manufacturing, 22, 187–196. doi:10.1016/J.ADDMA.2018.05.009
  • Başboğa, H.I., Güntekin, E., 2016. The optimization of wood trusses connected with metal plates using ANSYS. Pro Ligno, 12(4): 12-20.
  • Bhaskar, K., Jayabalakrishnan, D., Vinoth Kumar, M., Sendilvelan, S., Prabhahar, M., 2021. Analysis on mechanical properties of wood plastic composite. Materials Today: Proceedings, 45(7): 5886-5891. https://doi.org/10.1016/j.matpr.2020.08.570.
  • Caminero, M.A., Chacón, J.M., García-Moreno, I., Rodríguez, G.P., 2018. Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Composites Part B: Engineering, 148: 93–103. https://doi.org/10.1016/j.compositesb.2018.04.054
  • Dickson, A.N., Barry, J.N., McDonnell, K.A., Dowling, D.P., 2017. Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Additive Manufacturing, 16, 146–152. https://doi.org/10.1016/j.addma. 2017.06.004.
  • Diouf, P.M., Thiandoume, C., Abdulrahman, S.T., Ndour, O., Jibin, K.P., Maria, H.J., Thomas, S., Tidjani, A., 2022. Mechanical and rheological properties of recycled high-density polyethylene and ronier palm leaf fiber based biocomposites. Journal of Applied Polymer Science, 139(9), 51713. https://doi.org/10.1002/app.51713
  • Duan, G., Chunxia, He., Min, W., Xingxing, Y., Wei, W., Yanping, W., 2023. Effect of silica on thermal and mechanical properties of eucalyptus-PVC wood-polymer composites. BioResources, 18(1):1803-1811. doi: 10.15376/biores.18.1.1803-1811
  • Echeverria, C., Pahlevani, F., Gaikwad, V., Sahajwalla, V., 2017. The effect of microstructure, filler load and surface adhesion of marine bio-fillers, in the performance of hybrid wood-polypropylene particulate bio-composite. Journal of Cleaner Productions, 154:284–294. https://doi.org/10.1016/j.jclepro.2017.04.020
  • Ezzaraa, I., Ayrilmis, N., Abouelmajd, M., Kuzman, M. K., Bahlaoui, A., Arroub, I., Bengourram, J., Lagache, M., Belhouideg, S., 2023. Numerical modeling based on finite element analysis of 3D-printed wood-polylactic acid composites: A Comparison with Experimental Data. Forests, 14(1): 95. https://doi.org/10.3390/f14010095
  • Fei,G., Yuyu,L., Wenhui,H., Xiaolong,H., Rongxian,O., Qingwen, W., 2024. Experimental study and finite element analysis of wood-plastic composite hollow columns subjected to axial compression. Chinese Journal of Wood Science and Technology, 38(3): 40-48. doi:10.12326/j.2096-9694.2024044
  • Feng, L., Wang, D., Yan, J., 2023. Reliability study of wood–plastic composites based on probabilistic finite elements. Polymers, 15: 312. https://doi.org/10.3390/polym15020312
  • Güntekin, E., Uysal, M., 2024. Doğu kayını (Fagus orientalis L.) kontrplak ile güçlendirilmiş yongalevha ve liflevhanın eğilme davranışının deneysel ve nümerik analizi. Mobilya ve Ahşap Malzeme Araştırmaları Dergisi, 7(1): 26-37. doi: 10.33725/mamad.1464366
  • Haque, M.M.U., 2021. Property improvements of wood and wood-plastic composites. In: Wood Polymer Composites.(Ed: Mavinkere Rangappa, S., Parameswaranpillai, J., Kumar, M.H., Siengchin, S.) Composites Science and Technology, Springer, Singapore. https://doi.org/10.1007/978-981-16-1606-8_4
  • Hosseini, S.B., Gaff, M., Smardzewski, J., 2024. Plastic deformation assessment of sawdust-rPET composites under bending load. Composites Part C: Open Access, 15: 100538: 1-14. https://doi.org/10.1016/j.jcomc.2024.100538
  • Ilyas, R.A., Zuhri, M.Y.M., Aisyah, H.A., Asyraf, M.R.M., Hassan, S.A., Zainudin, E.S., Sapuan, S.M., Sharma, S., Bangar, S.P., Jumaidin, R., Nawab, Y., Faudzi, A. A. M., Abral, H., Asrofi, M., Syafri, E., Sari, N.H., 2022. Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications. Polymers, 14(1): 202. https://doi.org/10.3390/polym14010202
  • Jian, B., Mohrmann, S., Li, H., Li, Y., Ashraf, M., Zhou, J., Zheng, X., 2022. A Review on flexural properties of wood-plastic composites. Polymers, 14, 3942. https://doi.org/ 10.3390/polym14193942
  • Li, J., Huo, R., Liu, W., Fang, H., Jiang, L., Zhou, D., 2022. Mechanical properties of PVC-based wood–plastic composites effected by temperature. Frontiers in Materials, 9: 1018902. doi: 10.3389/fmats.2022.1018902
  • Mirowski, J., Oliwa, R., Oleksy, M., Tomaszewska, J., Ryszkowska, J., Budzik, G., 2021. Poly(vinyl chloride) composites with raspberry pomace filler. Polymers, 13(7): 1079. https://doi.org/10.3390/polym13071079
  • Mirski, R., Dukarska, D., Walkiewicz, J., Derkowski, A., 2021. Waste wood particles from primary wood processing as a filler of insulation PUR foams. Materials, 14(17): 4781. https://doi.org/10.3390/ma14174781
  • Mishra, S., Sain, M., 2007 Strength analysis of chair base from wood plastic composites by finite element method. Materials Research Innovations, 11(3): 137-143, doi:10.1179/ 143307507X225623
  • Mo, X., Zhang, X., Fang, L., Zhang, Y., 2022. Research progress of wood-based panels made of thermoplastics as wood adhesives. Polymers, 14(1): 98. https://doi.org/10.3390/ polym14010098
  • Moreno, D.D.P., de Camargo, R.V., dos Santos Luiz, D., Branco, L.T.P., Grillo, C.C., Saron, C., 2021. Composites of recycled polypropylene from cotton swab waste with pyrolyzed rice husk. Journal of Polymers and the Environment, 29: 350–362. https://doi.org/10.1007/s10924-020-01883-9
  • Nukala, S.G., Kong, I., Kakarla, A.B., Patel, V.I., Abuel-Naga, H., 2023. Simulation of wood polymer composites with finite element analysis. Polymers, 15: 1977. https://doi.org/10.3390/ polym15091977
  • Oksman, K., 2000. Mechanical properties of natural fibre mat reinforced thermoplastic. Applied Composite Materials, 7: 403–414. https://doi.org/10.1023/A:1026546426764
  • Özdemir, F., Çota, A., Alma, H., 2018. Odun plastik kompozit malzemelerin termal ve ısı iletkenliği özelikleri üzerine sepiolit mineralinin etkisi. Turkish Journal of Forestry, 19(2): 205-209. doi:10.18182/tjf.415069
  • Rahman, K.S., Islam, M.N., Rahman, M.M., Hannan, M.O., Dungani, R., Abdul Khalil, H.P.S., 2013. Flat-pressed wood plastic composites from sawdust and recycled polyethylene terephthalate (PET): physical and mechanical properties. Springer Plus, 2: 629. https://doi.org/10.1186/2193-1801-2-629
  • Roy, H., Pahlevani, F., Cholake, S., Echeverria, C., Banerjee, A., Sahajwalla, V., 2018. Simulation of marine bio-composite using empirical data combined with finite element technique. Journal of Composites Science, 2(3): 48. https://doi.org/10.3390/jcs2030048
  • Sanvezzo, P.B., Branciforti, M.C., 2021. Recycling of industrial waste based on jute fiber-polypropylene: Manufacture of sustainable fiber-reinforced polymer composites and their characterization before and after accelerated aging. Industrial Crops and Products, 168: 113568 https://doi.org/10.1016/j.indcrop. 2021.113568
  • Soury, E., Behravesh, A.H., Rouhani Esfahani, E., Zolfaghari, A., 2009. Design, optimization and manufacturing of wood–plastic composite pallet. Materials & Design, 30(10): 4183-4191. https://doi.org/10.1016/j.matdes.2009.04.035
  • TS-EN 323, 1999. Ahşap esaslı levhalar-Birim hacim ağırlığının tayini. TSE, Ankara.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ormancılık (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Ergün Güntekin 0000-0002-8423-6664

Gönderilme Tarihi 10 Haziran 2025
Kabul Tarihi 18 Kasım 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 26 Sayı: 4

Kaynak Göster

APA Güntekin, E. (2025). PVC esaslı bazı OPK profillerin eğilme davranışının deneysel ve sonlu elemanlar analizi. Turkish Journal of Forestry, 26(4), 602-609. https://doi.org/10.18182/tjf.1714216
AMA Güntekin E. PVC esaslı bazı OPK profillerin eğilme davranışının deneysel ve sonlu elemanlar analizi. Turkish Journal of Forestry. Aralık 2025;26(4):602-609. doi:10.18182/tjf.1714216
Chicago Güntekin, Ergün. “PVC esaslı bazı OPK profillerin eğilme davranışının deneysel ve sonlu elemanlar analizi”. Turkish Journal of Forestry 26, sy. 4 (Aralık 2025): 602-9. https://doi.org/10.18182/tjf.1714216.
EndNote Güntekin E (01 Aralık 2025) PVC esaslı bazı OPK profillerin eğilme davranışının deneysel ve sonlu elemanlar analizi. Turkish Journal of Forestry 26 4 602–609.
IEEE E. Güntekin, “PVC esaslı bazı OPK profillerin eğilme davranışının deneysel ve sonlu elemanlar analizi”, Turkish Journal of Forestry, c. 26, sy. 4, ss. 602–609, 2025, doi: 10.18182/tjf.1714216.
ISNAD Güntekin, Ergün. “PVC esaslı bazı OPK profillerin eğilme davranışının deneysel ve sonlu elemanlar analizi”. Turkish Journal of Forestry 26/4 (Aralık2025), 602-609. https://doi.org/10.18182/tjf.1714216.
JAMA Güntekin E. PVC esaslı bazı OPK profillerin eğilme davranışının deneysel ve sonlu elemanlar analizi. Turkish Journal of Forestry. 2025;26:602–609.
MLA Güntekin, Ergün. “PVC esaslı bazı OPK profillerin eğilme davranışının deneysel ve sonlu elemanlar analizi”. Turkish Journal of Forestry, c. 26, sy. 4, 2025, ss. 602-9, doi:10.18182/tjf.1714216.
Vancouver Güntekin E. PVC esaslı bazı OPK profillerin eğilme davranışının deneysel ve sonlu elemanlar analizi. Turkish Journal of Forestry. 2025;26(4):602-9.