BibTex RIS Kaynak Göster

QUANTUM INTEGRABLE SYSTEM RELATED TO SO (2,3) GROUP

Yıl 2007, Cilt: 8 Sayı: 1, - 1, 05.08.2016

Kaynakça

  • Olshanetsky M.A. , Perelomov A.M., Quantum Integrable Systems Related to Lie Algebras., Phys. Rep., 94: 313- 404,1983.
  • Kalnins E.G.,Miller Jr .W., The wave equation , O(2,2) and separation of variables on hyperboloids , Proce. Roy. Socit. Edinburg , 79 A, 227-256, 1977 .
  • Dane C. and,Verdiyev Y.A., Integrable systems of group SO(1,2) and Green functions , J.Math.Phys., 37: 39-60, 1996.
  • Verdiyev Y.A., Quantum integrable systems related with symmetric spaces of the groups U(1,2) and Sp(1,2) and Green’s functions on these spaces , J.Math.Phys., 36: 320-333, 1995 .
  • Verdiyev Y.A., Representation theory of the group SO(p,q),U(p,q), p≤q and plane waves, integrable quantum systems, Green functions,Hadronic J. Suppl.,Vol 16: 263-367,2001.
  • Verdiyev Y.A.,Plane waves integrable quantum systems Green functions and groups SO(p,q), p≤q J. Phys. Math. A, Vol.30: 4089-4107, 1997.
  • Vilenkin N.Ya.,Klimyk A.U., Representation of Lie Groups and Special Functions. Vol. I, II, III, Kluwer Academic Publ. London, 1991.
  • Bateman Manuscript, edited by A.Erdelyi , Higher Transcendent Functions , Vol I,II, McGraw-Hill , New York, 1953.
  • Gradsteyn.I.S.,Rhyzik I.M.,Tables of Integrals , Series and Products,Academic, New York, 1969.
Yıl 2007, Cilt: 8 Sayı: 1, - 1, 05.08.2016

Kaynakça

  • Olshanetsky M.A. , Perelomov A.M., Quantum Integrable Systems Related to Lie Algebras., Phys. Rep., 94: 313- 404,1983.
  • Kalnins E.G.,Miller Jr .W., The wave equation , O(2,2) and separation of variables on hyperboloids , Proce. Roy. Socit. Edinburg , 79 A, 227-256, 1977 .
  • Dane C. and,Verdiyev Y.A., Integrable systems of group SO(1,2) and Green functions , J.Math.Phys., 37: 39-60, 1996.
  • Verdiyev Y.A., Quantum integrable systems related with symmetric spaces of the groups U(1,2) and Sp(1,2) and Green’s functions on these spaces , J.Math.Phys., 36: 320-333, 1995 .
  • Verdiyev Y.A., Representation theory of the group SO(p,q),U(p,q), p≤q and plane waves, integrable quantum systems, Green functions,Hadronic J. Suppl.,Vol 16: 263-367,2001.
  • Verdiyev Y.A.,Plane waves integrable quantum systems Green functions and groups SO(p,q), p≤q J. Phys. Math. A, Vol.30: 4089-4107, 1997.
  • Vilenkin N.Ya.,Klimyk A.U., Representation of Lie Groups and Special Functions. Vol. I, II, III, Kluwer Academic Publ. London, 1991.
  • Bateman Manuscript, edited by A.Erdelyi , Higher Transcendent Functions , Vol I,II, McGraw-Hill , New York, 1953.
  • Gradsteyn.I.S.,Rhyzik I.M.,Tables of Integrals , Series and Products,Academic, New York, 1969.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA55UG77HB
Bölüm Makaleler
Yazarlar

Edibe Elçin Bu kişi benim

Cengiz Dane Bu kişi benim

Yayımlanma Tarihi 5 Ağustos 2016
Yayımlandığı Sayı Yıl 2007 Cilt: 8 Sayı: 1

Kaynak Göster

APA Elçin, E., & Dane, C. (2016). QUANTUM INTEGRABLE SYSTEM RELATED TO SO (2,3) GROUP. Trakya Üniversitesi Fen Bilimleri Dergisi, 8(1), 1.
AMA Elçin E, Dane C. QUANTUM INTEGRABLE SYSTEM RELATED TO SO (2,3) GROUP. Trakya Univ J Sci. Ağustos 2016;8(1):1.
Chicago Elçin, Edibe, ve Cengiz Dane. “QUANTUM INTEGRABLE SYSTEM RELATED TO SO (2,3) GROUP”. Trakya Üniversitesi Fen Bilimleri Dergisi 8, sy. 1 (Ağustos 2016): 1.
EndNote Elçin E, Dane C (01 Ağustos 2016) QUANTUM INTEGRABLE SYSTEM RELATED TO SO (2,3) GROUP. Trakya Üniversitesi Fen Bilimleri Dergisi 8 1 1.
IEEE E. Elçin ve C. Dane, “QUANTUM INTEGRABLE SYSTEM RELATED TO SO (2,3) GROUP”, Trakya Univ J Sci, c. 8, sy. 1, s. 1, 2016.
ISNAD Elçin, Edibe - Dane, Cengiz. “QUANTUM INTEGRABLE SYSTEM RELATED TO SO (2,3) GROUP”. Trakya Üniversitesi Fen Bilimleri Dergisi 8/1 (Ağustos 2016), 1.
JAMA Elçin E, Dane C. QUANTUM INTEGRABLE SYSTEM RELATED TO SO (2,3) GROUP. Trakya Univ J Sci. 2016;8:1.
MLA Elçin, Edibe ve Cengiz Dane. “QUANTUM INTEGRABLE SYSTEM RELATED TO SO (2,3) GROUP”. Trakya Üniversitesi Fen Bilimleri Dergisi, c. 8, sy. 1, 2016, s. 1.
Vancouver Elçin E, Dane C. QUANTUM INTEGRABLE SYSTEM RELATED TO SO (2,3) GROUP. Trakya Univ J Sci. 2016;8(1):1.