Development of elbow rehabilitation device with iterative learning control and internet of things
Year 2024,
Volume: 8 Issue: 2, 370 - 379, 30.04.2024
Mert Süleyman Demirsoy
,
Yusuf Hamida El Naser
,
Muhammed Salih Sarıkaya
,
Nur Yasin Peker
,
Mustafa Kutlu
Abstract
In this study, we present a novel approach for rehabilitation devices through the design of an active elbow joint orthosis, inspired by the fundamental principles of robotic exoskeletons. The device not only enables home-based usage but also facilitates the transmission of exercise data from patients to physiotherapists via the Internet of Things (IoT) device. This approach offers the possibility of increased therapy sessions for each patient while allowing physiotherapists access to data for real-time or subsequent analyses, thereby establishing a database. This permits a single physiotherapist to manage multiple patients more effectively. The developed mobile application within this research incorporates a distinct entry interface for both patients and physiotherapists. Maximum force and position values generated during each exercise period are displayed within the application. The device enables active exercise with a single degree of freedom at the elbow joint and is equipped with force sensors to ensure safety against potential high-shear forces. Furthermore, it can be worn on the upper extremity using adjustable Velcro straps to accommodate users with varying arm circumferences. Specifically, this system amalgamates two primary components: a microcontroller operating control algorithms and IoT technology, and a smartphone application containing interfaces for physiotherapists and users undergoing therapy. The control design of the device employs a P-Type Iterative Learning Control (ILC) due to periodic exercise movements, reducing the error norm by approximately 20% during each exercise period (excluding the initial period). The controller consistently diminishes error values with each iteration, ultimately converging to zero. Throughout an exercise lasting around 3 minutes, the average error norm is recorded as 0.229⁰. In essence, this study presents a pioneering approach that sets itself apart from other research by minimizing shear forces and errors through a specialized controller, all while enabling remote, home-based rehabilitation under expert supervision.
References
- Alataş, Ö. D., & Gökçek, K. (2021). Pandemi döneminde ve pandemi öncesi dönemde acil servise başvuran hastaların karşılaştırılması. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi, 8(3), 195-198. https://doi.org/10.47572/muskutd.844037
- Yildiz, M., & Kutlu, M. (2019). Üst Ekstremite İnme Rehabilitasyonu İçin Ev Bazlı Sistem Tasarımı. In 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), 1-4.
https://doi.org/10.1109/EBBT.2019.8741954
- Riener, R., Nef, T., & Colombo, G. (2005). Robot-aided neurorehabilitation of the upper extremities. Medical and Biological Engineering and Computing, 43, 2-10. https://doi.org/10.1007/BF02345116
- Ersin, Ç., & Yaz, M. (2019). Wearable exoskeleton: A review. Electronic Letters on Science and Engineering, 15(1), 1-11.
- Yang, C. J., Niu, B., & Chen, Y. (2005). Adaptive neuro-fuzzy control based development of a wearable exoskeleton leg for human walking power augmentation. In Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 467-472.
https://doi.org/10.1109/AIM.2005.1511026
- Ball, S. J., Brown, I. E., & Scott, S. H. (2007). MEDARM: a rehabilitation robot with 5DOF at the shoulder complex. In 2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 1-6. https://doi.org/10.1109/AIM.2007.4412446
- Vanderniepen, I., Van Ham, R., Van Damme, M., Versluys, R., & Lefeber, D. (2009). Orthopaedic rehabilitation: A powered elbow orthosis using compliant actuation. In 2009 IEEE International Conference on Rehabilitation Robotics, 172-177. https://doi.org/10.1109/ICORR.2009.5209483
- Song, Z., Guo, S., Pang, M., Zhang, S., Xiao, N., Gao, B., & Shi, L. (2014). Implementation of resistance training using an upper-limb exoskeleton rehabilitation device for elbow joint. Journal of Medical and Biological Engineering, 34(2), 188-196.
- Ripel, T., Krejsa, J., Hrbacek, J., & Cizmar, I. (2014). Active elbow orthosis. International Journal of Advanced Robotic Systems, 11(9), 143.
https://doi.org/10.5772/58874
- Crea, S., Cempini, M., Mazzoleni, S., Carrozza, M. C., Posteraro, F., & Vitiello, N. (2017). Phase-II clinical validation of a powered exoskeleton for the treatment of elbow spasticity. Frontiers in Neuroscience, 11, 261. https://doi.org/10.3389/fnins.2017.00261
- Ceccarelli, M., Riabtsev, M., Fort, A., Russo, M., Laribi, M. A., & Urizar, M. (2021). Design and experimental characterization of l-CADEL v2, an assistive device for elbow motion. Sensors, 21(15), 5149.
https://doi.org/10.3390/s21155149
- Wu, Y. C., Shao, Z. D., & Kao, H. K. (2021). Wearable Device for Residential Elbow Joint Rehabilitation with Voice Prompts and Tracking Feedback APP. Applied Sciences, 11(21), 10225.
https://doi.org/10.3390/app112110225
- Said, R. R., Yong, W. Q., Heyat, M. B. B., Ali, L., Qiang, S., Ali, A., ... & Wu, Z. (2022). Design of a smart elbow brace as a home-based rehabilitation device. Computational Intelligence and Neuroscience, 3754931. https://doi.org/10.1155/2022/3754931
- Erin, K., Bayılmış, C., & Boru, B. (2021). İvmeölçer ve Nesnelerin İnterneti Tabanlı Gerçek Zamanlı İnsan Aktivite Tespiti. Academic Platform Journal of Engineering and Science, 9(1), 194-198.
https://doi.org/10.21541/apjes.809777
- Freeman, C. T., Rogers, E., Hughes, A. M., Burridge, J. H., & Meadmore, K. L. (2012). Iterative learning control in health care: Electrical stimulation and robotic-assisted upper-limb stroke rehabilitation. IEEE Control Systems Magazine, 32(1), 18-43. https://doi.org/10.1109/MCS.2011.2173261
- Čolaković, A., & Hadžialić, M. (2018). Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues. Computer Networks, 144, 17-39.
https://doi.org/10.1016/j.comnet.2018.07.017
- Hassan, R., Qamar, F., Hasan, M. K., Aman, A. H. M., & Ahmed, A. S. (2020). Internet of Things and its applications: A comprehensive survey. Symmetry, 12(10), 1674.
https://doi.org/10.3390/sym12101674
- Hamdan, S., Ayyash, M., & Almajali, S. (2020). Edge-computing architectures for internet of things applications: A survey. Sensors, 20(22), 6441.
https://doi.org/10.3390/s20226441
- Rebelo, R. M. L., Pereira, S. C. F., & Queiroz, M. M. (2022). The interplay between the Internet of things and supply chain management: Challenges and opportunities based on a systematic literature review. Benchmarking: An International Journal, 29(2), 683-711. https://doi.org/10.1108/BIJ-02-2021-0085
- Hashim, H. S., Hassan, Z. B., & Drus, S. B. M. (2022). Internet of Things: A Systematic Literature Review. Informatica, 46(8), 135-146.
https://doi.org/10.31449/inf.v46i8.4311
- Demirsoy, M. S., Kutlu, M. Ç., & Mansour, M. (2022). PID kontrollü IoT haberleşme ile android tabanlı egsersiz takibi. Journal of Smart Systems Research, 3(2), 70-80.
Year 2024,
Volume: 8 Issue: 2, 370 - 379, 30.04.2024
Mert Süleyman Demirsoy
,
Yusuf Hamida El Naser
,
Muhammed Salih Sarıkaya
,
Nur Yasin Peker
,
Mustafa Kutlu
References
- Alataş, Ö. D., & Gökçek, K. (2021). Pandemi döneminde ve pandemi öncesi dönemde acil servise başvuran hastaların karşılaştırılması. Muğla Sıtkı Koçman Üniversitesi Tıp Dergisi, 8(3), 195-198. https://doi.org/10.47572/muskutd.844037
- Yildiz, M., & Kutlu, M. (2019). Üst Ekstremite İnme Rehabilitasyonu İçin Ev Bazlı Sistem Tasarımı. In 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), 1-4.
https://doi.org/10.1109/EBBT.2019.8741954
- Riener, R., Nef, T., & Colombo, G. (2005). Robot-aided neurorehabilitation of the upper extremities. Medical and Biological Engineering and Computing, 43, 2-10. https://doi.org/10.1007/BF02345116
- Ersin, Ç., & Yaz, M. (2019). Wearable exoskeleton: A review. Electronic Letters on Science and Engineering, 15(1), 1-11.
- Yang, C. J., Niu, B., & Chen, Y. (2005). Adaptive neuro-fuzzy control based development of a wearable exoskeleton leg for human walking power augmentation. In Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 467-472.
https://doi.org/10.1109/AIM.2005.1511026
- Ball, S. J., Brown, I. E., & Scott, S. H. (2007). MEDARM: a rehabilitation robot with 5DOF at the shoulder complex. In 2007 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 1-6. https://doi.org/10.1109/AIM.2007.4412446
- Vanderniepen, I., Van Ham, R., Van Damme, M., Versluys, R., & Lefeber, D. (2009). Orthopaedic rehabilitation: A powered elbow orthosis using compliant actuation. In 2009 IEEE International Conference on Rehabilitation Robotics, 172-177. https://doi.org/10.1109/ICORR.2009.5209483
- Song, Z., Guo, S., Pang, M., Zhang, S., Xiao, N., Gao, B., & Shi, L. (2014). Implementation of resistance training using an upper-limb exoskeleton rehabilitation device for elbow joint. Journal of Medical and Biological Engineering, 34(2), 188-196.
- Ripel, T., Krejsa, J., Hrbacek, J., & Cizmar, I. (2014). Active elbow orthosis. International Journal of Advanced Robotic Systems, 11(9), 143.
https://doi.org/10.5772/58874
- Crea, S., Cempini, M., Mazzoleni, S., Carrozza, M. C., Posteraro, F., & Vitiello, N. (2017). Phase-II clinical validation of a powered exoskeleton for the treatment of elbow spasticity. Frontiers in Neuroscience, 11, 261. https://doi.org/10.3389/fnins.2017.00261
- Ceccarelli, M., Riabtsev, M., Fort, A., Russo, M., Laribi, M. A., & Urizar, M. (2021). Design and experimental characterization of l-CADEL v2, an assistive device for elbow motion. Sensors, 21(15), 5149.
https://doi.org/10.3390/s21155149
- Wu, Y. C., Shao, Z. D., & Kao, H. K. (2021). Wearable Device for Residential Elbow Joint Rehabilitation with Voice Prompts and Tracking Feedback APP. Applied Sciences, 11(21), 10225.
https://doi.org/10.3390/app112110225
- Said, R. R., Yong, W. Q., Heyat, M. B. B., Ali, L., Qiang, S., Ali, A., ... & Wu, Z. (2022). Design of a smart elbow brace as a home-based rehabilitation device. Computational Intelligence and Neuroscience, 3754931. https://doi.org/10.1155/2022/3754931
- Erin, K., Bayılmış, C., & Boru, B. (2021). İvmeölçer ve Nesnelerin İnterneti Tabanlı Gerçek Zamanlı İnsan Aktivite Tespiti. Academic Platform Journal of Engineering and Science, 9(1), 194-198.
https://doi.org/10.21541/apjes.809777
- Freeman, C. T., Rogers, E., Hughes, A. M., Burridge, J. H., & Meadmore, K. L. (2012). Iterative learning control in health care: Electrical stimulation and robotic-assisted upper-limb stroke rehabilitation. IEEE Control Systems Magazine, 32(1), 18-43. https://doi.org/10.1109/MCS.2011.2173261
- Čolaković, A., & Hadžialić, M. (2018). Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues. Computer Networks, 144, 17-39.
https://doi.org/10.1016/j.comnet.2018.07.017
- Hassan, R., Qamar, F., Hasan, M. K., Aman, A. H. M., & Ahmed, A. S. (2020). Internet of Things and its applications: A comprehensive survey. Symmetry, 12(10), 1674.
https://doi.org/10.3390/sym12101674
- Hamdan, S., Ayyash, M., & Almajali, S. (2020). Edge-computing architectures for internet of things applications: A survey. Sensors, 20(22), 6441.
https://doi.org/10.3390/s20226441
- Rebelo, R. M. L., Pereira, S. C. F., & Queiroz, M. M. (2022). The interplay between the Internet of things and supply chain management: Challenges and opportunities based on a systematic literature review. Benchmarking: An International Journal, 29(2), 683-711. https://doi.org/10.1108/BIJ-02-2021-0085
- Hashim, H. S., Hassan, Z. B., & Drus, S. B. M. (2022). Internet of Things: A Systematic Literature Review. Informatica, 46(8), 135-146.
https://doi.org/10.31449/inf.v46i8.4311
- Demirsoy, M. S., Kutlu, M. Ç., & Mansour, M. (2022). PID kontrollü IoT haberleşme ile android tabanlı egsersiz takibi. Journal of Smart Systems Research, 3(2), 70-80.