Araştırma Makalesi
BibTex RIS Kaynak Göster

Middle School Students' Mathematical Generalization Abilities with the use of Different Representations

Yıl 2017, , 103 - 129, 31.03.2017
https://doi.org/10.16949/turkbilmat.303220

Öz

The purpose of this
research is to examine the forms of thinking and generalization types of
students during the generalization of the patterns presented with different
representations. It is aimed to examine the generalizations used by the
students through the theoretical framework, to determine the forms of thinking
that prevent them from making algebraic generalization and to determine the use
of different representations of the students. For this purpose, case survey
research is used in the research. Participants were selected by purposeful
sampling method. The study was conducted with 92 students studying in the
sixth, seventh and eighth grades. Descriptive and content analysis were used to
analyze the data. Data analysis has shown that students tended to have
arithmetic generalizations rather than algebraic generalizations. Students have
difficulties in making algebraic generalizations using pictorial patterns. They
have transformed visual patterns into number patterns and have not been able to
make effective use of pictorial patterns.

Kaynakça

  • Carraher, D. W., Martinez, M., & Schliemann, A. D. (2008). Early algebra and mathematical generalization. The International Journal on Mathematics Education, 40(1), 3-22.
  • Caspi, S., & Sfard, A. (2012). Spontaneous meta-arithmetic as a first step toward school algebra. International Journal of Educational Research, 51–52, 45–65.
  • Davydov, V. V. (1990). Soviet studies in mathematics education, volume 2. types of generalization in instruction: logical and psychological problems in the structuring of school curricula. Reston Virginia: National Council of Teachers of Mathematics.
  • Dörfler, W. (1991). Forms and means of generalization in mathematics. In A. J. Bishop (Ed.), Mathematical knowledge: Its growth through teaching (pp. 63-85). Dordrecht: Kluwer Academic Publishers.
  • Ferrara, F., & Sinclair, N. (2016). An early algebra approach to pattern generalisation: Actualising the virtual through words, gestures and toilet paper. Educational Studies in Mathematics, 92(1), 1–19.
  • Ferrara, F., & Ferrari, G. (2017). Agency and assemblage in pattern generalisation: A materialist approach to learning. Educ Stud Math, 94(1), 21-36.
  • Jones, L. (1993). Algebra in the primary school. Education, 21(2), 27-31.
  • Frobisher, L., & Threlfall, J. (1999). Teaching and assessing patterns in the primary years. In A. Orton (Ed.), Pattern in the teaching and learning of mathematics (pp. 64-103). London: Cassell.
  • Harel, G., & Tall, D. (1991). The general, the abstract and the generic in advanced mathematics. For the Learning of Mathematics, 11(1), 38–42.
  • Hill, T., Lannin, J., & van-Garderen, D. (2015). Promoting and assessing mathematical generalising. Australian Primary Mathematics Classroom, 20(4), 3-8.
  • Kaput, J. (1999). Teaching and learning a new algebra. In T. Romberg & E. Fennema (Eds.), Mathematics classrooms that promote understanding (pp. 133–155). Hillsdale, NJ: Lawrence Erlbaum.
  • Kılıç, Ç. (2016). Ortaokul öğrencilerinin lineer sayı örüntüsüne bağlı olarak şekil örüntüsü oluşturma stratejilerinin analizi. Eğitimde Kuram ve Uygulama, 12(6), 1205-1230.
  • Kieran, C. (1996). The changing face of school algebra. In C. Alsina, J. Alvarez, B. Hodgson, C. Laborde & A. Pérez (Eds.), 8th ınternational congress on mathematical education: Selected lectures (pp. 271-290). Seville, Spain: S.A.E.M. Thales.
  • Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren. Chicago: The University of Chicago Press.
  • Lannin, J., Ellis, A., Elliott, R., & Zbiek, R. (2011). Developing essential understanding of mathematical reasoning for teaching mathematics in grades pre-K-8. Reston: NCTM.
  • Mason, J. (1996). Expressing generality and roots of algebra. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra: Perspectives for research and teaching (pp. 65–86). Dordrecht, The Netherlands: Kluwer Academic.
  • MacGregor, M., & Stacey, K. (1993). Seeing a pattern and writing a rule. In Hirabayashi, N. Nohda, K. Shigematsu and F. Lin (Eds.), Proceeding of The 17th Conference for Psychology of Mathematics Education (Vol I, pp. 181-188). Tsukuba, Japan.
  • Moss, J., & Beatty, R. (2010). Knowledge building and mathematics: Shifting the responsibility for knowledge advancement and engagement. Canadian Journal of Learning and Technology, 36(1), 22–54.
  • Otte, M. F., Mendonça, T. M., Gonzaga, L., & de Barros, L. (2015). Generalizing is necessary or even unavoidable. PNA, 9(3), 143-164.
  • Özdemir, E., Dikici, R. ve Kültür, M. N. (2015). Öğrencilerin örüntüleri genelleme süreçleri: 7. Sınıf örneği. K. Ü. Kastamonu Eğitim Dergisi, 23(2), 523-548.
  • Radford, L. (2008). Iconicity and contraction: A Semiotic investigation of forms of algebraic generalizations of patters in different contexts. ZDM Mathematics Education, 40, 83-96.
  • Radford, L. (2010). Elementary forms of algebraic thinking in young students. In M. F. Pinto & T. F. Kawasaki (Eds.), Proceedings of the 34th conference of the international group for the psychology of mathematics education (Vol. IV, pp. 73–80). Belo Horizonte: PME.
  • Rico, L. (1996). The role of representation systems in the learning of numerical structures. In L. Puig, & A. Gutierrez (Eds.), Proceedings of the 20th Conference of the International Group for the Psychology of Mathematics Education (Vol. I, pp. 87–102). Valencia: University of Valencia.
  • Rivera, F. D. (2011). Toward a visually-oriented school mathematics curriculum. New York: Springer.
  • Rubinshtein, S. L. (1994). Thinking and ways of investigating it. Journal of Russian and East European Psychology, 32(5), 63-93.
  • Stacey, K. (1989). Finding and using patterns in linear generalising problems. Educational Studies in Mathematics, 20, 147-164.
  • Tanışlı, D. ve Özdaş, A. (2009). İlköğretim beşinci sınıf öğrencilerinin örüntüleri genellemede kullandıkları stratejiler. Kuram ve Uygulamada Eğitim Bilimleri, 9(3), 1453-1497.
  • Tanışlı, D. ve Yavuzsoy-Köse, N. (2011). Lineer şekil örüntülerine ilişkin genelleme stratejileri: Görsel ve sayısal ipuçlarının etkisi. Eğitim ve Bilim, 36(160), 184-198.
  • Venenciano, L., & Heck, R. (2016). Proposing and testing a model to explain traits of algebra preparedness. Educational Studies Mathematics, 92, 21–35.
  • Warren, E. (2000). Visualisation and the development of early understanding in algebra. In T. Nakahara & M. Koyama (Eds.), Proceedings of the 24th conference of the International Group for the Psychology of Mathematics Education (Vol. IV, pp. 273-280). Hiroshima, Japan.
  • Wilkie, K. J. (2016). Students’ use of variables and multiple representations in generalizing functional relationships prior to secondary school. Educational Studies in Mathematics, 93, 333–361.
  • Yakut-Çakır, M. Ve Akyüz, G. (2015). 9. sınıf öğrencilerinin örüntü genelleme problemlerini çözme stratejilerinin belirlenmesi. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 9(2), 205-229.
  • Yaman, H. (2010). İlköğretim öğrencilerinin matematiksel örüntülerdeki ilişkileri algılayışları üzerine bir inceleme (Doktora tezi). Hacettepe Üniversitesi, Sosyal Bilimler Enstitüsü, Ankara.
  • Yıldırım, A. ve Şimşek, H. (2013). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayıncılık.
  • Yılmaz, R. ve Argün, Z. (2013). Matematiksel genelleme sürecinde görselleştirme ve önemi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 28(2), 564-576.

Ortaokul Öğrencilerinin Farklı Temsil Biçimlerini Kullanarak Matematiksel Genelleme Yapma Becerileri

Yıl 2017, , 103 - 129, 31.03.2017
https://doi.org/10.16949/turkbilmat.303220

Öz

Bu araştırmada farklı temsil biçimleriyle
sunulan örüntüleri genellemede öğrencilerin düşünme şekillerini ve genelleme
yapma türlerini incelemek amaçlanmaktadır. Öğrencilerin kullandıkları genelleme
türlerinin kuramsal çerçeve bağlamında incelenmesi, cebirsel genelleme yapmaya
engel olan düşünme şekillerinin belirlenmesi ve öğrencilerin farklı temsil
biçimlerini genelleme yapma yönünde kullanma şekillerinin saptanması
hedeflenmektedir. Bu bağlamda araştırmada örnek olay tarama modeli
kullanılmıştır. Katılımcılar amaçlı örnekleme yöntemi ile seçilmiştir. Çalışma
altıncı, yedinci ve sekizinci sınıfta okuyan 92 öğrenciyle
gerçekleştirilmiştir. Elde edilen veriye betimsel ve içerik analizi
uygulanmıştır. Veri analizi öğrencilerin cebirsel genelleme yerine aritmetik
genelleme eğilimlerinin olduğunu göstermiştir. Öğrenciler şekil örüntülerini
kullanarak cebirsel genelleme yapmada güçlük çekmişlerdir. Şekil örüntülerini
sayı örüntüsüne dönüştürmüşler ve şekil örüntüsünden etkili şekilde
yararlanamamışlardır.

Kaynakça

  • Carraher, D. W., Martinez, M., & Schliemann, A. D. (2008). Early algebra and mathematical generalization. The International Journal on Mathematics Education, 40(1), 3-22.
  • Caspi, S., & Sfard, A. (2012). Spontaneous meta-arithmetic as a first step toward school algebra. International Journal of Educational Research, 51–52, 45–65.
  • Davydov, V. V. (1990). Soviet studies in mathematics education, volume 2. types of generalization in instruction: logical and psychological problems in the structuring of school curricula. Reston Virginia: National Council of Teachers of Mathematics.
  • Dörfler, W. (1991). Forms and means of generalization in mathematics. In A. J. Bishop (Ed.), Mathematical knowledge: Its growth through teaching (pp. 63-85). Dordrecht: Kluwer Academic Publishers.
  • Ferrara, F., & Sinclair, N. (2016). An early algebra approach to pattern generalisation: Actualising the virtual through words, gestures and toilet paper. Educational Studies in Mathematics, 92(1), 1–19.
  • Ferrara, F., & Ferrari, G. (2017). Agency and assemblage in pattern generalisation: A materialist approach to learning. Educ Stud Math, 94(1), 21-36.
  • Jones, L. (1993). Algebra in the primary school. Education, 21(2), 27-31.
  • Frobisher, L., & Threlfall, J. (1999). Teaching and assessing patterns in the primary years. In A. Orton (Ed.), Pattern in the teaching and learning of mathematics (pp. 64-103). London: Cassell.
  • Harel, G., & Tall, D. (1991). The general, the abstract and the generic in advanced mathematics. For the Learning of Mathematics, 11(1), 38–42.
  • Hill, T., Lannin, J., & van-Garderen, D. (2015). Promoting and assessing mathematical generalising. Australian Primary Mathematics Classroom, 20(4), 3-8.
  • Kaput, J. (1999). Teaching and learning a new algebra. In T. Romberg & E. Fennema (Eds.), Mathematics classrooms that promote understanding (pp. 133–155). Hillsdale, NJ: Lawrence Erlbaum.
  • Kılıç, Ç. (2016). Ortaokul öğrencilerinin lineer sayı örüntüsüne bağlı olarak şekil örüntüsü oluşturma stratejilerinin analizi. Eğitimde Kuram ve Uygulama, 12(6), 1205-1230.
  • Kieran, C. (1996). The changing face of school algebra. In C. Alsina, J. Alvarez, B. Hodgson, C. Laborde & A. Pérez (Eds.), 8th ınternational congress on mathematical education: Selected lectures (pp. 271-290). Seville, Spain: S.A.E.M. Thales.
  • Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren. Chicago: The University of Chicago Press.
  • Lannin, J., Ellis, A., Elliott, R., & Zbiek, R. (2011). Developing essential understanding of mathematical reasoning for teaching mathematics in grades pre-K-8. Reston: NCTM.
  • Mason, J. (1996). Expressing generality and roots of algebra. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra: Perspectives for research and teaching (pp. 65–86). Dordrecht, The Netherlands: Kluwer Academic.
  • MacGregor, M., & Stacey, K. (1993). Seeing a pattern and writing a rule. In Hirabayashi, N. Nohda, K. Shigematsu and F. Lin (Eds.), Proceeding of The 17th Conference for Psychology of Mathematics Education (Vol I, pp. 181-188). Tsukuba, Japan.
  • Moss, J., & Beatty, R. (2010). Knowledge building and mathematics: Shifting the responsibility for knowledge advancement and engagement. Canadian Journal of Learning and Technology, 36(1), 22–54.
  • Otte, M. F., Mendonça, T. M., Gonzaga, L., & de Barros, L. (2015). Generalizing is necessary or even unavoidable. PNA, 9(3), 143-164.
  • Özdemir, E., Dikici, R. ve Kültür, M. N. (2015). Öğrencilerin örüntüleri genelleme süreçleri: 7. Sınıf örneği. K. Ü. Kastamonu Eğitim Dergisi, 23(2), 523-548.
  • Radford, L. (2008). Iconicity and contraction: A Semiotic investigation of forms of algebraic generalizations of patters in different contexts. ZDM Mathematics Education, 40, 83-96.
  • Radford, L. (2010). Elementary forms of algebraic thinking in young students. In M. F. Pinto & T. F. Kawasaki (Eds.), Proceedings of the 34th conference of the international group for the psychology of mathematics education (Vol. IV, pp. 73–80). Belo Horizonte: PME.
  • Rico, L. (1996). The role of representation systems in the learning of numerical structures. In L. Puig, & A. Gutierrez (Eds.), Proceedings of the 20th Conference of the International Group for the Psychology of Mathematics Education (Vol. I, pp. 87–102). Valencia: University of Valencia.
  • Rivera, F. D. (2011). Toward a visually-oriented school mathematics curriculum. New York: Springer.
  • Rubinshtein, S. L. (1994). Thinking and ways of investigating it. Journal of Russian and East European Psychology, 32(5), 63-93.
  • Stacey, K. (1989). Finding and using patterns in linear generalising problems. Educational Studies in Mathematics, 20, 147-164.
  • Tanışlı, D. ve Özdaş, A. (2009). İlköğretim beşinci sınıf öğrencilerinin örüntüleri genellemede kullandıkları stratejiler. Kuram ve Uygulamada Eğitim Bilimleri, 9(3), 1453-1497.
  • Tanışlı, D. ve Yavuzsoy-Köse, N. (2011). Lineer şekil örüntülerine ilişkin genelleme stratejileri: Görsel ve sayısal ipuçlarının etkisi. Eğitim ve Bilim, 36(160), 184-198.
  • Venenciano, L., & Heck, R. (2016). Proposing and testing a model to explain traits of algebra preparedness. Educational Studies Mathematics, 92, 21–35.
  • Warren, E. (2000). Visualisation and the development of early understanding in algebra. In T. Nakahara & M. Koyama (Eds.), Proceedings of the 24th conference of the International Group for the Psychology of Mathematics Education (Vol. IV, pp. 273-280). Hiroshima, Japan.
  • Wilkie, K. J. (2016). Students’ use of variables and multiple representations in generalizing functional relationships prior to secondary school. Educational Studies in Mathematics, 93, 333–361.
  • Yakut-Çakır, M. Ve Akyüz, G. (2015). 9. sınıf öğrencilerinin örüntü genelleme problemlerini çözme stratejilerinin belirlenmesi. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 9(2), 205-229.
  • Yaman, H. (2010). İlköğretim öğrencilerinin matematiksel örüntülerdeki ilişkileri algılayışları üzerine bir inceleme (Doktora tezi). Hacettepe Üniversitesi, Sosyal Bilimler Enstitüsü, Ankara.
  • Yıldırım, A. ve Şimşek, H. (2013). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayıncılık.
  • Yılmaz, R. ve Argün, Z. (2013). Matematiksel genelleme sürecinde görselleştirme ve önemi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 28(2), 564-576.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Bölüm Araştırma Makaleleri
Yazarlar

Sibel Yeşildere-imre

Hatice Akkoç

Burcu Nur Baştürk-şahin

Yayımlanma Tarihi 31 Mart 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Yeşildere-imre, S., Akkoç, H., & Baştürk-şahin, B. N. (2017). Middle School Students’ Mathematical Generalization Abilities with the use of Different Representations. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 8(1), 103-129. https://doi.org/10.16949/turkbilmat.303220
AMA Yeşildere-imre S, Akkoç H, Baştürk-şahin BN. Middle School Students’ Mathematical Generalization Abilities with the use of Different Representations. Turkish Journal of Computer and Mathematics Education (TURCOMAT). Nisan 2017;8(1):103-129. doi:10.16949/turkbilmat.303220
Chicago Yeşildere-imre, Sibel, Hatice Akkoç, ve Burcu Nur Baştürk-şahin. “Middle School Students’ Mathematical Generalization Abilities With the Use of Different Representations”. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 8, sy. 1 (Nisan 2017): 103-29. https://doi.org/10.16949/turkbilmat.303220.
EndNote Yeşildere-imre S, Akkoç H, Baştürk-şahin BN (01 Nisan 2017) Middle School Students’ Mathematical Generalization Abilities with the use of Different Representations. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 8 1 103–129.
IEEE S. Yeşildere-imre, H. Akkoç, ve B. N. Baştürk-şahin, “Middle School Students’ Mathematical Generalization Abilities with the use of Different Representations”, Turkish Journal of Computer and Mathematics Education (TURCOMAT), c. 8, sy. 1, ss. 103–129, 2017, doi: 10.16949/turkbilmat.303220.
ISNAD Yeşildere-imre, Sibel vd. “Middle School Students’ Mathematical Generalization Abilities With the Use of Different Representations”. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 8/1 (Nisan 2017), 103-129. https://doi.org/10.16949/turkbilmat.303220.
JAMA Yeşildere-imre S, Akkoç H, Baştürk-şahin BN. Middle School Students’ Mathematical Generalization Abilities with the use of Different Representations. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 2017;8:103–129.
MLA Yeşildere-imre, Sibel vd. “Middle School Students’ Mathematical Generalization Abilities With the Use of Different Representations”. Turkish Journal of Computer and Mathematics Education (TURCOMAT), c. 8, sy. 1, 2017, ss. 103-29, doi:10.16949/turkbilmat.303220.
Vancouver Yeşildere-imre S, Akkoç H, Baştürk-şahin BN. Middle School Students’ Mathematical Generalization Abilities with the use of Different Representations. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 2017;8(1):103-29.