Araştırma Makalesi
BibTex RIS Kaynak Göster

TPACK Analysis of Preservice Teachers Under Different Instruction Methods and Class Levels

Yıl 2016, Cilt: 7 Sayı: 1, 89 - 111, 05.04.2016
https://doi.org/10.16949/turcomat.75768

Öz

The importance of the use of technology in mathematics education has been demonstrated by many studies. Effective use of technology has been found to support the conceptual understanding of students. However, it is also found that, having only technological knowledge is not sufficient for using technology effectively in teaching mathematics; technological knowledge must be supported by pedagogical and content knowledge as well. It is stated that a teacher who effectively integrates these three types of knowledge has technological pedagogical content knowledge (TPACK). In order for teachers to acquire this knowledge, it is important for them to take courses that support TPACK during their pre-service training. However, the type of instruction that they receive during such a course may have an impact on whether they actually acquire TPACK or not. In this study, we investigate a total of 80 pre-service teachers who took a class called “Exploring Geometry with Dynamic Geometry Applications” with different types of instruction over the course of 5 semesters. The participants involved a mixed group of junior, senior, and graduate students which allowed us to analyze the effect of class level and the type of instruction in the student’s ability to acquire TPACK. To analyze the students’ TPACK level, we performed document analysis using the theoretical framework developed by Bowers and Stephens after reinterpreting it based on the literature and the data collected during this study. It was found that the majority of the graduate students achieved Technological Content Knowledge (TCK). Additionally, it was observed that the type of instruction as well as students’ class level is important in developing TPACK. The obtained results allow us to make conclusions about how the contents and the instruction method of a course should be designed such that it better promotes TPACK achievement.

Kaynakça

  • Aktümen, M., ve Kaçar, A. (2003). İlköğretim 8. sınıflarda harfli ifadelerle işlemlerin öğretiminde bilgisayar destekli öğretimin rolü ve bilgisayar destekli öğretim üzerine öğrenci görüşlerinin değerlendirilmesi. Kastamonu Eğitim Dergisi, 11(2), 339-358.
  • Akyüz, D. (2014). An Investigation into Sociomathematical Norms in a Technology and Inquiry Based Classroom for Teaching Circle Properties. Egitim ve Bilim, 39(175), 58-72.
  • Balgalmis, E. (2013). An Investigation of preservice elementary mathematics teachers' techno-pedagogical content knowledge within the context of their teaching practices (Doctoral dissertation), Middle East Technical University, Turkey.
  • Baki, A. (2001). Bilişim teknolojisi ışığı altında matematik eğitiminin değerlendirilmesi. Milli Eğitim Dergisi, 149, 26-31.
  • Baki, A. (2004). Problem solving experiences of student mathematics teachers through Cabri: a case study. Teaching Mathematics and Its Applications, 23(4), 172-180.
  • Bowers, J. S. (2011). Using technology to explore mathematical relationships: A framework for orienting mathematics courses for prospective teachers. Journal of Mathematics Teacher Education, 14(4), 285-304.
  • Driscoll, M. J., DiMatteo, R. W., Nikula, J., & Egan, M. (2007). Fostering geometric thinking: A guide for teachers, grades 5-10. Portsmouth, NH: Heinemann.
  • Güven, B., ve Karataş, İ. (2003). Dinamik geometri yazılımı cabri ile geometri öğrenme: Öğrenci görüşleri. The Turkish Online Journal of Educational Technology, 2(2), 67-78.
  • Healy, L., & Hoyles, C. (2002). Software tools for geometrical problem solving: Potentials and pitfalls. International Journal of Computers for Mathematical Learning, 6(3), 235-256.
  • Hixon, E., & So, H. J. (2009). Technology's role in field experiences for preservice teacher training. Journal of Educational Technology & Society, 12(4), 294-304.
  • Hollebrands, K. F. (2007). The role of a dynamic software program for geometry in the strategies high school mathematics students employ. Journal for Research in Mathematics Education, 38(2), 164-192.
  • Johnston-Wilder, S., & Mason, J. (Eds.). (2005). Developing thinking in geometry. Sage.
  • Kaput, J. J., & Thompson, P. W. (1994). Technology in mathematics education research: The first 25 years in the JRME. Journal for research in mathematics education, 25(6), 676-684.
  • Kim, C., & Baylor, A. L. (2008). A virtual change agent: Motivating pre-service teachers to integrate technology in their future classrooms. Journal of Educational Technology & Society, 11(2), 309-321.
  • Kinuthia, W., Brantley-Dias, L., & Junor Clarke, P. A. (2010). Development of pedagogical technology integration content knowledge in preparing mathematics preservice teachers: The role of instructional case analyses and reflection. Journal of Technology and Teacher Education, 18(4), 645-669.
  • Koehler, M. J., & Mishra, P. (2005). What happens when teachers design educational technology? The development of technological pedagogical content knowledge. Journal of educational computing research, 32(2), 131-152.
  • Mishra, P., & Koehler, M. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. The Teachers College Record, 108(6), 1017-1054.
  • Mouza, C., & Karchmer-Klein, R. (2013). Promoting and assessing pre-service teachers' technological pedagogical content knowledge (TPACK) in the context of case development. Journal of Educational Computing Research, 48(2), 127-152.
  • Mouza, C., & Wong, W. (2009). Studying classroom practice: Case development for professional learning in technology integration. Journal of Technology and Teacher Education, 17(2), 175-202.
  • Mudzimiri, R. (2012). A study of the development of Technological Pedagogical Content Knowledge (TPACK) in pre-service secondary mathematics teachers. (Doctoral dissertation). Retrieved from ProQuest Dissertations and Theses. (Publication No. 3523442).
  • National Council for Accreditation of Teacher Education (2008). Professional Standards for the Accreditation of Teacher Preparation Institutions. National Council for Accreditation of Teacher Education: Washington, DC, USA.
  • Niess, M. L. (2011). Investigating TPACK: Knowledge growth in teaching with technology. Journal of Educational Computing Research, 44(3), 299-317.
  • Ozgun-Koca, S. A., Meagher, M., & Edwards, M. T. (2010). Preservice Teachers' Emerging TPACK in a Technology-Rich Methods Class. Mathematics Educator, 19(2), 10-20.
  • Özmantar, M. F., Akkoç, H., Bingolbali, E., Demir, S., ve Ergene, B. (2010). Pre-service mathematics teachers’ use of multiple representations in technology-rich environments. Eurasia Journal of Mathematics, Science & Technology Education, 6(1), 19-36.
  • Peressini, D.D. & Knuth, E.J. (2005). The role of technology in representing mathematical problem situations and concepts. In W. J. Masalaski & P. C. Elliott (Eds.), Technology-supported mathematics learning environments (pp. 277-290). Reston, VA: National Council of Teachers of Mathematics.
  • Preiner, J. (2008). 8). Introducing Dynamic Mathematics Software to Mathematics Teachers: the Case of GeoGebra. (Doctoral dissertation). Faculty of Natural Sciences, University of Salzburg, Austria.
  • Thompson, D., & Kersaint, G. (2002). Editorial: Continuing the dialogue on technology and mathematics teacher education. Contemporary Issues in Technology and Teacher Education, 2(2), 136-143.
  • Valanides, N., & Angeli, C. (2008). Learning and teaching about scientific models with a computer-modeling tool. Computers in Human Behavior, 24(2), 220-233.
  • Whiteley, W. (2000). Dynamic geometry programs and the practice of geometry. Ninth International Congress on Mathematical Education (ICME9), 31 July-7 August, Tokyo. Retrieved from http://www.math.yorku.ca/Who/Faculty/Whiteley/Dynamic.pdf
  • Yıldırım, A., & Şimşek, H. (2005). Qualitative research methods in social sciences. Ankara: Seçkin Publishing.
  • Zbiek, R. M. (2005). Using Technology to make the power of many points with prospective mathematics teachers. In W. J. Masalaski & P. C. Elliott (Eds.), Technology-supported mathematics learning environments (pp. 295-306). Reston, VA: National Council of Teachers of Mathematics.
  • Zbiek, R. M., Heid, M. K., Blume, G. W., & Dick, T. (2007). Research on technology in mathematics education: A perspective of constructs. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1169-1207). Charlotte, NC: Information Age.

Farklı Öğretim Yöntemleri ve Sınıf Seviyesine Göre Öğretmen Adaylarının TPAB Analizi

Yıl 2016, Cilt: 7 Sayı: 1, 89 - 111, 05.04.2016
https://doi.org/10.16949/turcomat.75768

Öz

Matematik eğitiminde teknoloji kullanımının önemi birçok çalışma tarafından ortaya konmaktadır. Etkili bir teknoloji kullanımın öğrencilerin matematiği kavramsal olarak anlamasında yardımcı olduğu tespit edilmiştir. Ancak teknolojiyi etkili bir şekilde kullanmak için teknolojik bilginin tek başına yeterli olmadığı, teknolojik bilginin pedagojik ve alan bilgisi ile birleştirildiği taktirde gerçek bir fayda sağlayacağı öne sürülmüştür. Bu üç bilgi türünü etkin bir şekilde birleştiren bir öğretmenin Teknolojik Pedagojik Alan Bilgisine (TPAB) sahip olduğu söylenebilir. Öğretmenlerin güçlü bir TPAB’a sahip olabilmeleri için öğrencilikleri döneminde bu bilgi türünü destekleyen dersler almaları önemlidir. Ancak teknoloji ile matematik eğitimini birleştiren bir ders alan her öğrencinin (öğretmen adayının) TPAB’a sahip olduğunu söylemek mümkün müdür? Bu çalışmada “Geometriyi Dinamik Geometri Uygulamaları ile Keşfetme” adındaki ders kapsamında 5 farklı dönemde ve farklı öğretim yöntemleri ile alan toplam 80 öğretmen adayının TPAB düzeyine ulaşıp ulaşmadığı incelenmektedir. Öğrencilerin sınıf seviyesinin ve takip edilen öğretim yönteminin TPAB’e olan etkisi araştırılmaktadır. Bu amaçla Bowers ve Stephens (2011) tarafından önerilen öğretmen adayları için matematik derslerini şekillendirme teorik çerçevesi uyarlanarak kullanılmıştır. Buna göre birçok öğrencinin TPAB seviyesine ulaşamadığı daha çok Teknolojik Alan Bilgisi (TAB) düzeyinde kaldığı gözlemlenmiştir. Ayrıca izlenilen öğretim yönteminin ve öğrencilerin sınıf düzeyinin de TPAB üzerinde etkili olduğu görülmüştür. Elde edilen sonuçlar teknolojik pedagojik alan bilgisini geliştirmeye yönelik bir ders içeriğinin nasıl olması gerektiğine dair çıkarımlar yapmaya olanak tanımıştır.

Kaynakça

  • Aktümen, M., ve Kaçar, A. (2003). İlköğretim 8. sınıflarda harfli ifadelerle işlemlerin öğretiminde bilgisayar destekli öğretimin rolü ve bilgisayar destekli öğretim üzerine öğrenci görüşlerinin değerlendirilmesi. Kastamonu Eğitim Dergisi, 11(2), 339-358.
  • Akyüz, D. (2014). An Investigation into Sociomathematical Norms in a Technology and Inquiry Based Classroom for Teaching Circle Properties. Egitim ve Bilim, 39(175), 58-72.
  • Balgalmis, E. (2013). An Investigation of preservice elementary mathematics teachers' techno-pedagogical content knowledge within the context of their teaching practices (Doctoral dissertation), Middle East Technical University, Turkey.
  • Baki, A. (2001). Bilişim teknolojisi ışığı altında matematik eğitiminin değerlendirilmesi. Milli Eğitim Dergisi, 149, 26-31.
  • Baki, A. (2004). Problem solving experiences of student mathematics teachers through Cabri: a case study. Teaching Mathematics and Its Applications, 23(4), 172-180.
  • Bowers, J. S. (2011). Using technology to explore mathematical relationships: A framework for orienting mathematics courses for prospective teachers. Journal of Mathematics Teacher Education, 14(4), 285-304.
  • Driscoll, M. J., DiMatteo, R. W., Nikula, J., & Egan, M. (2007). Fostering geometric thinking: A guide for teachers, grades 5-10. Portsmouth, NH: Heinemann.
  • Güven, B., ve Karataş, İ. (2003). Dinamik geometri yazılımı cabri ile geometri öğrenme: Öğrenci görüşleri. The Turkish Online Journal of Educational Technology, 2(2), 67-78.
  • Healy, L., & Hoyles, C. (2002). Software tools for geometrical problem solving: Potentials and pitfalls. International Journal of Computers for Mathematical Learning, 6(3), 235-256.
  • Hixon, E., & So, H. J. (2009). Technology's role in field experiences for preservice teacher training. Journal of Educational Technology & Society, 12(4), 294-304.
  • Hollebrands, K. F. (2007). The role of a dynamic software program for geometry in the strategies high school mathematics students employ. Journal for Research in Mathematics Education, 38(2), 164-192.
  • Johnston-Wilder, S., & Mason, J. (Eds.). (2005). Developing thinking in geometry. Sage.
  • Kaput, J. J., & Thompson, P. W. (1994). Technology in mathematics education research: The first 25 years in the JRME. Journal for research in mathematics education, 25(6), 676-684.
  • Kim, C., & Baylor, A. L. (2008). A virtual change agent: Motivating pre-service teachers to integrate technology in their future classrooms. Journal of Educational Technology & Society, 11(2), 309-321.
  • Kinuthia, W., Brantley-Dias, L., & Junor Clarke, P. A. (2010). Development of pedagogical technology integration content knowledge in preparing mathematics preservice teachers: The role of instructional case analyses and reflection. Journal of Technology and Teacher Education, 18(4), 645-669.
  • Koehler, M. J., & Mishra, P. (2005). What happens when teachers design educational technology? The development of technological pedagogical content knowledge. Journal of educational computing research, 32(2), 131-152.
  • Mishra, P., & Koehler, M. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. The Teachers College Record, 108(6), 1017-1054.
  • Mouza, C., & Karchmer-Klein, R. (2013). Promoting and assessing pre-service teachers' technological pedagogical content knowledge (TPACK) in the context of case development. Journal of Educational Computing Research, 48(2), 127-152.
  • Mouza, C., & Wong, W. (2009). Studying classroom practice: Case development for professional learning in technology integration. Journal of Technology and Teacher Education, 17(2), 175-202.
  • Mudzimiri, R. (2012). A study of the development of Technological Pedagogical Content Knowledge (TPACK) in pre-service secondary mathematics teachers. (Doctoral dissertation). Retrieved from ProQuest Dissertations and Theses. (Publication No. 3523442).
  • National Council for Accreditation of Teacher Education (2008). Professional Standards for the Accreditation of Teacher Preparation Institutions. National Council for Accreditation of Teacher Education: Washington, DC, USA.
  • Niess, M. L. (2011). Investigating TPACK: Knowledge growth in teaching with technology. Journal of Educational Computing Research, 44(3), 299-317.
  • Ozgun-Koca, S. A., Meagher, M., & Edwards, M. T. (2010). Preservice Teachers' Emerging TPACK in a Technology-Rich Methods Class. Mathematics Educator, 19(2), 10-20.
  • Özmantar, M. F., Akkoç, H., Bingolbali, E., Demir, S., ve Ergene, B. (2010). Pre-service mathematics teachers’ use of multiple representations in technology-rich environments. Eurasia Journal of Mathematics, Science & Technology Education, 6(1), 19-36.
  • Peressini, D.D. & Knuth, E.J. (2005). The role of technology in representing mathematical problem situations and concepts. In W. J. Masalaski & P. C. Elliott (Eds.), Technology-supported mathematics learning environments (pp. 277-290). Reston, VA: National Council of Teachers of Mathematics.
  • Preiner, J. (2008). 8). Introducing Dynamic Mathematics Software to Mathematics Teachers: the Case of GeoGebra. (Doctoral dissertation). Faculty of Natural Sciences, University of Salzburg, Austria.
  • Thompson, D., & Kersaint, G. (2002). Editorial: Continuing the dialogue on technology and mathematics teacher education. Contemporary Issues in Technology and Teacher Education, 2(2), 136-143.
  • Valanides, N., & Angeli, C. (2008). Learning and teaching about scientific models with a computer-modeling tool. Computers in Human Behavior, 24(2), 220-233.
  • Whiteley, W. (2000). Dynamic geometry programs and the practice of geometry. Ninth International Congress on Mathematical Education (ICME9), 31 July-7 August, Tokyo. Retrieved from http://www.math.yorku.ca/Who/Faculty/Whiteley/Dynamic.pdf
  • Yıldırım, A., & Şimşek, H. (2005). Qualitative research methods in social sciences. Ankara: Seçkin Publishing.
  • Zbiek, R. M. (2005). Using Technology to make the power of many points with prospective mathematics teachers. In W. J. Masalaski & P. C. Elliott (Eds.), Technology-supported mathematics learning environments (pp. 295-306). Reston, VA: National Council of Teachers of Mathematics.
  • Zbiek, R. M., Heid, M. K., Blume, G. W., & Dick, T. (2007). Research on technology in mathematics education: A perspective of constructs. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1169-1207). Charlotte, NC: Information Age.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Alan Eğitimleri
Bölüm Araştırma Makaleleri
Yazarlar

Didem Akyüz

Yayımlanma Tarihi 5 Nisan 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 7 Sayı: 1

Kaynak Göster

APA Akyüz, D. (2016). Farklı Öğretim Yöntemleri ve Sınıf Seviyesine Göre Öğretmen Adaylarının TPAB Analizi. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 7(1), 89-111. https://doi.org/10.16949/turcomat.75768
AMA Akyüz D. Farklı Öğretim Yöntemleri ve Sınıf Seviyesine Göre Öğretmen Adaylarının TPAB Analizi. Turkish Journal of Computer and Mathematics Education (TURCOMAT). Nisan 2016;7(1):89-111. doi:10.16949/turcomat.75768
Chicago Akyüz, Didem. “Farklı Öğretim Yöntemleri Ve Sınıf Seviyesine Göre Öğretmen Adaylarının TPAB Analizi”. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 7, sy. 1 (Nisan 2016): 89-111. https://doi.org/10.16949/turcomat.75768.
EndNote Akyüz D (01 Nisan 2016) Farklı Öğretim Yöntemleri ve Sınıf Seviyesine Göre Öğretmen Adaylarının TPAB Analizi. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 7 1 89–111.
IEEE D. Akyüz, “Farklı Öğretim Yöntemleri ve Sınıf Seviyesine Göre Öğretmen Adaylarının TPAB Analizi”, Turkish Journal of Computer and Mathematics Education (TURCOMAT), c. 7, sy. 1, ss. 89–111, 2016, doi: 10.16949/turcomat.75768.
ISNAD Akyüz, Didem. “Farklı Öğretim Yöntemleri Ve Sınıf Seviyesine Göre Öğretmen Adaylarının TPAB Analizi”. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 7/1 (Nisan 2016), 89-111. https://doi.org/10.16949/turcomat.75768.
JAMA Akyüz D. Farklı Öğretim Yöntemleri ve Sınıf Seviyesine Göre Öğretmen Adaylarının TPAB Analizi. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 2016;7:89–111.
MLA Akyüz, Didem. “Farklı Öğretim Yöntemleri Ve Sınıf Seviyesine Göre Öğretmen Adaylarının TPAB Analizi”. Turkish Journal of Computer and Mathematics Education (TURCOMAT), c. 7, sy. 1, 2016, ss. 89-111, doi:10.16949/turcomat.75768.
Vancouver Akyüz D. Farklı Öğretim Yöntemleri ve Sınıf Seviyesine Göre Öğretmen Adaylarının TPAB Analizi. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 2016;7(1):89-111.