Yıl 2019,
Cilt: 1 Sayı: 1, - , 11.12.2019
Melek Koç Keşir
Münevver Sökmen
Proje Numarası
1649B031600549
Kaynakça
-
1. Chen, X., Burda, C. 2008. “The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials” J. Am. Chem. Soc., 130, 5018–5019. DOI: 10.1021/ja711023z
-
2. Zaleska, A. 2008. “Doped-TiO2: A review” Recent Patents on Engineering 2, 157-164.
-
3. Martins, A. C., Cazetta, A. L., Pezoti, O., Souza, J. R.B., Zhang, T., Pilau, E. J., Asefa, T., Almeida V. C. 2017. “Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline”, Ceram. Intern. 43, 4411–4418. http://dx.doi.org/10.1016/j.ceramint.2016.12.088
-
4. Leary, R., Westwood A. 2011. “Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis”, Carbon 49, 741–772.
-
5. Dong, F., Guo, S., Wang, H., Li X., Wu, Z. 2011. “Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by a green synthetic approach”, J. Phys. Chem. C 115, 13285–13292. doi.org/10.1021/jp111916q
-
6. Rahman, M. N. A., Rahim, N. A. A., Kamarudin, W. F. W., Irwan, Z., Amin, A. R. M., Muhammud, A., Muda, S. M., Akhir, N. E. F. M. 2018. “Solar photocatalytic degradation of food dye (Tartrazine) using zinc oxide catalyst” Int. J. Eng. Technol. 7, 222-226.
-
7. Zazouli, M. A., Ghanbari, F., Yousefi, M., Madihi-Bidgolie, S. 2017. “Photocatalytic degradation of food dye by Fe3O4-TiO2 nanoparticles in presence of peroxymonosulfate: The effect of UV sources” J. Environ. Chem. Eng., 5, 2459-2468.
-
8. Ranade, M.R., Navrotsky, A., Zhang, H.Z., Banfield, J.F., Elder, S.H., Zaban, A., Borse, P.H., Kulkarni, S.K., Doran, G.S., Whitfield H.J. 2002. “Energetics of nanocrystalline TiO2” PNAS 99, Suppl. 2, 6476-6481.
-
9. Zhang, H., Banfield, J.F. 2002. “Kinetics of crystallization and crystal growth of nanocrystalline anatase in nanometer-sized amorphous titania” J. Chem. Mater. 14, 4145-4154.
-
10. Koç Keşir, M., Dilber, G., Sökmen, M., Durmuş, M. 2019. “Use of new quaternized water soluble zinc phthalocyanin derivatives for effective dye sensitization of TiO2”. J. Sol-Gel Sci. Technol. https://doi.org/10.1007/s10971-019-05109-w
-
11. Sökmen, M., Koc Kesir, M., Alomar, S. Y. 2017. “Phthalocyanine-TiO2 nanocomposites for photocatalytic applications: A review” Am. J. Nanosci. 3, 63-80.
Production of propolis/TiO2 (P-TiO2) nano composites for degradation of food dyes
Yıl 2019,
Cilt: 1 Sayı: 1, - , 11.12.2019
Melek Koç Keşir
Münevver Sökmen
Öz
Aim
of this study is to produce highly active hybrid propolis-TiO2
nanocomposites using sol-gel method and to use it remediation of food industry
waste. Propolis solution was prepared in ethanol and added to sol-gel mixture
at increasing volume (0.25,
0.50, 0.75, 1.00 mL) to prepare propolis-TiO2 (P-TiO2)
hybrid catalyst. Neat TiO2 was also prepared by the same sol-gel
technique and its action was compared to propolis doped ones. Catalysts were
calcinated at 300 oC to obtain desired anatase form.
After
production the catalysts were characterized by X-ray diffraction (XRD),
scanning electron microscopy (SEM) and FTIR. Sunset Yellow (SY), Allura red
(AR) and Tartrazine (TT) were used as model compounds ([C]0=10 mgL-1,
catalyst mass=1 gL-1) . Concentration of dyes were monitored by
UV-vis spectrometry. P-TiO2 catalyst prepared with 1.00 mL propolis solution
was extremely effective for removal of all dyes studies for both 254 nm and 365
nm light exposure. LED light exposure provided lower removal rate (approx..
25%) but it was still significant for dye removal.
Destekleyen Kurum
TÜBİTAK
Proje Numarası
1649B031600549
Teşekkür
Thanks to TÜBİTAK for financial support.
Kaynakça
-
1. Chen, X., Burda, C. 2008. “The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials” J. Am. Chem. Soc., 130, 5018–5019. DOI: 10.1021/ja711023z
-
2. Zaleska, A. 2008. “Doped-TiO2: A review” Recent Patents on Engineering 2, 157-164.
-
3. Martins, A. C., Cazetta, A. L., Pezoti, O., Souza, J. R.B., Zhang, T., Pilau, E. J., Asefa, T., Almeida V. C. 2017. “Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline”, Ceram. Intern. 43, 4411–4418. http://dx.doi.org/10.1016/j.ceramint.2016.12.088
-
4. Leary, R., Westwood A. 2011. “Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis”, Carbon 49, 741–772.
-
5. Dong, F., Guo, S., Wang, H., Li X., Wu, Z. 2011. “Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by a green synthetic approach”, J. Phys. Chem. C 115, 13285–13292. doi.org/10.1021/jp111916q
-
6. Rahman, M. N. A., Rahim, N. A. A., Kamarudin, W. F. W., Irwan, Z., Amin, A. R. M., Muhammud, A., Muda, S. M., Akhir, N. E. F. M. 2018. “Solar photocatalytic degradation of food dye (Tartrazine) using zinc oxide catalyst” Int. J. Eng. Technol. 7, 222-226.
-
7. Zazouli, M. A., Ghanbari, F., Yousefi, M., Madihi-Bidgolie, S. 2017. “Photocatalytic degradation of food dye by Fe3O4-TiO2 nanoparticles in presence of peroxymonosulfate: The effect of UV sources” J. Environ. Chem. Eng., 5, 2459-2468.
-
8. Ranade, M.R., Navrotsky, A., Zhang, H.Z., Banfield, J.F., Elder, S.H., Zaban, A., Borse, P.H., Kulkarni, S.K., Doran, G.S., Whitfield H.J. 2002. “Energetics of nanocrystalline TiO2” PNAS 99, Suppl. 2, 6476-6481.
-
9. Zhang, H., Banfield, J.F. 2002. “Kinetics of crystallization and crystal growth of nanocrystalline anatase in nanometer-sized amorphous titania” J. Chem. Mater. 14, 4145-4154.
-
10. Koç Keşir, M., Dilber, G., Sökmen, M., Durmuş, M. 2019. “Use of new quaternized water soluble zinc phthalocyanin derivatives for effective dye sensitization of TiO2”. J. Sol-Gel Sci. Technol. https://doi.org/10.1007/s10971-019-05109-w
-
11. Sökmen, M., Koc Kesir, M., Alomar, S. Y. 2017. “Phthalocyanine-TiO2 nanocomposites for photocatalytic applications: A review” Am. J. Nanosci. 3, 63-80.