Araştırma Makalesi
BibTex RIS Kaynak Göster

Electroanalytical characterization of chloroquinoline substituted redox-active phthalocyanines

Yıl 2023, Cilt: 5 Sayı: 1, 25 - 31, 30.06.2023
https://doi.org/10.51435/turkjac.1307391

Öz

In the first part of this study, the synthesis and characterization of organosoluble 5-chloroquinolin-8-yloxy substituted iron(II) (2) and oxo-titanium (IV) phthalocyanines (3) are reported for the first time. These compounds have been characterized by elemental analysis, Fourier transform infrared, electronic spectroscopy, and mass spectra. Electrochemical behaviors of metal-free and cobalt phthalocyanines and further new types of iron and oxo-titanium phthalocyanines were investigated using electroanalytical methods, such as cyclic (CV) and square wave voltammetry (SWV). According to the electrochemical results, phthalocyanines by and large showed one-electron metal- and/or ligand-based reversible or quasi-reversible reduction and oxidation processes.
All in all, this study's results inevitably create a useful way to use them in possible future studies, which will particularly attempt to use the compound investigated in potential areas of use.

Destekleyen Kurum

KARADENİZ TEKNİK ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA FONU

Proje Numarası

FHD-2018-7631

Teşekkür

This study was supported by the Karadeniz Technical University Research Fund, Project No: FHD-2018-7631 (Trabzon-Turkey).

Kaynakça

  • A. Suzuki, H. Okumura, Y. Yamasaki, T. Oku, Fabrication and characterization of perovskite type solar cells using phthalocyanine complexes, Appl Surf Sci, 488, 2019, 586-596 (https://doi.org/10.1016/j.apsusc.2019.05.305)
  • J. Xu, W. Yang, R. Chen, The photovoltaic performance of highly asymmetric phthalocyanine-sensitized brookite-based solar cells, Optik, 200, 2020, 163413. (https://doi.org/10.1016/j.ijleo.2019.163413)
  • B. Yıldız, E. Güzel, D. Akyüz, B.S. Arslan, A. Koca, M.K. Şener, Unsymmetrically pyrazole-3-carboxylic acid substituted phthalocyanine-based photoanodes for use in water splitting photoelectrochemical and dye-sensitized solar cells, Sol Energy, 191, 2019, 654-662. (https://doi.org/10.1016/j.solener.2019.09.043)
  • S. Kong, X. Wang, L. Bai, Y. Song, F. Meng, Multi-arm ionic liquid crystals formed by pyridine-mesophase and copper phthalocyanine, J Mol Liq, 288, 2019, 111012. (https://doi.org/10.1016/j.molliq.2019.111012)
  • J.A. Jiménez-Tejada, A. Romero, J. González, N.B. Chaure, A.N. Cammidge, I. Chambrier, A.K. Ray, M.J. Deen, Evolutionary Computation for Parameter Extraction of Organic Thin-Film Transistors Using Newly Synthesized Liquid Crystalline Nickel Phthalocyanine, Micromachines, 10, 2019, 683. ( https://doi.org/10.3390/mi10100683)
  • E.M. Bauer, T. De Caro, P. Tagliatesta, M. Carbone, Unraveling The Real pigment composition of tattoo inks: the case of bi-components phthalocyanine based greens, Dyes Pigments, 167, 2019, 225-235. ( http://dx.doi.org/10.1016/j.dyepig.2019.04.018)
  • Y. Zhao, J. W. Ying, Q. Sun, M. R. Ke, B. Y. Zheng, J. D. Huang, A novel silicon(IV) phthalocyanine-oligopeptide conjugate as a highly efficient photosensitizer for photodynamic antimicrobial therapy, Dyes Pigments, 172, 2020, 107834. (https://doi.org/10.1016/j.dyepig.2019.107834)
  • Q. Li, Z. Sun, Q. Liang, M. Zhou, D. Sun, Novel tetrasubstituted zinc phthalocyanine-attapulgite composites for efficient catalytic oxidation of styrene with tert-butyl hydroperoxide as oxidant, Solid State Sci, 97, 2019, 106010. (https://doi.org/10.1016/j.solidstatesciences.2019.106010)
  • R. Bahluli, S. Keshipour, Microcrystalline cellulose modified with Fe(II)- and Ni(II)-phthalocyanines: Syntheses, characterizations, and catalytic applications, Polyhedron, 169, 2019, 176-182. ( https://doi.org/10.1016/j.poly.2019.05.010)
  • H.S. Majumdar, A. Bandyopadhyay, A.J. Pal, Data-storage devices based on layer-by-layer self-assembled films of a phthalocyanine derivative, Org Electron, 4, 2003, 39. (https://doi:10.1016/S1566-1199(03)00007-7)
  • M.P. Malathesh, N.Y.P. Kumara, B.S. Jilani, K.R.V. Reddy, Synthesis and Characterization of Tetra-Ganciclovir Cobalt (II) Phthalocyanine for Electroanalytical Applications of AA/DA/UA, Heliyon, 5, 2019, e01946 (https://doi:10.1016/j.heliyon.2019.e01946)
  • L.F. de Holanda, F.W.P. Ribeiro, C.P. Sousa, P.N. da S. Casciano, A.N. Correia, Multi-walled carbon nanotubes–cobalt phthalocyanine modified electrode for electroanalytical determination of acetaminophen, J Electroanal Chem, 772, 2016, 9-16. (https://doi.org/10.1016/j.jelechem.2016.04.021)
  • L.F. de Lima, C.C. Maciel, A.L. Ferreira, J.C. de Almeida, M. Ferreira, 2020. Nickel (II) phthalocyanine-tetrasulfonic-Au nanoparticles nanocomposite film for tartrazine electrochemical sensing, Mater Lett, 262, 127186. (https://doi.org/10.1016/j.matlet.2019.127186)
  • E.O. Moiseeva, Y.B. Platonova, D.V. Konev, S.A. Trashin, L.G. Tomilova, Electrochemical and spectroelectrochemical properties of tetra-tert-butylphthalocyanine indium(III), Mendeleev Commun, 29, 2019, 212-214. (https://doi.org/10.1016/j.mencom.2019.03.033)
  • F. Demir, H.Y. Yenilmez, A. Koca, Z.A. Bayır, Metallo-phthalocyanines containing thiazole moieties: Synthesis, characterization, electrochemical and spectroelectrochemical properties and sensor applications, J Electroanal Chem, 832, 2019, 254-265. (https://doi.org/10.1016/j.jelechem.2018.11.003)
  • S.G. Feridun, E.B. Orman, Ü. Salan, A.R. Özkaya, M. Bulut, Synthesis, characterization, and electrochemical and in-situ spectroelectrochemical properties of novel peripherally and non-peripherally 7-oxy-3-(3,4-dimethoxyphenyl) coumarin substituted phthalocyanines, Dyes Pigments, 160, 2019, 315-327 (https://doi.org/10.1016/j.dyepig.2018.08.017)
  • T. Nyokong, Electronic spectral and electrochemical behaviour of near infrared absorbing metallophthalocyanines". In: Structure and Bonding: Functional Phthalocyanine Molecular Materials, Editors: D.M.P Mingos, 2010, Germany, Springer.
  • A. Nas, H. Kantekin, A. Koca, Electrochemical and Spectroelectrochemical Analysis of 4-(4-(5-Phenyl-1,3,4-oxadiazole-2-yl)phenoxy)-Substituted Cobalt(II), Lead(II) and Metal-Free Phthalocyanines, Electroanal, 27, 2015, 1602-1609. (https://doi.org/10.1002/elan.201400700)
  • A. Nas, Z. Biyiklioglu, S. Fandaklı, G. Sarkı, H. Yalazan, H. Kantekin, Tetra(3-(1,5-diphenyl-4,5-dihydro-1H-pyrazol-3-yl) phenoxy) substituted cobalt, iron and manganese phthalocyanines: Synthesis and electrochemical analysis, Inorg Chim Acta, 466, 2017, 86-92. (https://doi.org/10.1016/j.ica.2017.05.050)
  • Ç.C. Koçak, A. Nas, H. Kantekin, Z. Dursun, Simultaneous determination of theophylline and caffeine on novel [Tetra-(5-chloroquinolin-8-yloxy) phthalocyanato] manganese(III)-Carbon nanotubes composite electrode, Talanta. 184, 2018, 452-460. (https://doi.org/10.1016/j.talanta.2018.03.029)
  • B.S. Jilani, M.P. Malathesh, C.D. Mruthyunjayachari, K.R.V. Reddy, Cobalt (II) tetra methyl-quinoline oxy bridged phthalocyanine carbon nano particles modified glassy carbon electrode for sensing nitrite: A voltammetric study, Mater Chem Phys, 239, 2020, 121920. (https://doi.org/10.1016/j.matchemphys.2019.121920)
  • A. Nas, Ü. Demirbaş, M. Pişkin, M. Durmuş, H. Kantekin, The photophysical and photochemical properties of new unmetallated and metallated phthalocyanines bearing four 5-chloroquinolin-8-yloxy substituents on peripheral sites, J Lumin, 145, 2014, 635-642. (https://doi.org/10.1016/j.jlumin.2013.07.056)
  • Perrin DD, Armarego WLF, Purification of laboratory chemicals, Oxford, 1989, New York, Pergamon.
  • J.G. Young, W. Onyebuagu, Synthesis and characterization of di-disubstituted phthalocyanines, J Org Chem, 55, 1990, 2155-2159. (https://doi.org/10.1021/jo00294a032)
  • D. Liang , W. Peng , Y. Wang, Solvent‐Stabilized Y‐Type Oxotitanium Phthalocyanine Photoconductive Nanoparticles: Preparation and Application in Single‐Layered Photoreceptors, Adv Mater, 24, 2012, 5249-5253 (https://doi.org/10.1002/adma.201201720)
  • H. Zhu, H. Song, W. Zhao, Z. Peng, D. Liu, B. Di, L. Xing, H. Chen, Z. Huang, Y. Wang, K. Wu, Precursor Structures for Polymorphic Titanyl Phthalocyanine Crystal Phases on Au(111): A High-Resolution STM Study, J Phys Chem C, 123, 2019, 17390-17396. (https://doi.org/10.1021/acs.jpcc.9b04451)
  • İ. Yalçın, H. Yanık, H.T. Akçay, İ. Değirmencioğlu, M. Durmuş, Photophysical and photochemical study on the tetra 4-isopropylbenzyloxy substituted phthalocyanines, J Lumin, 192, 2017, 739-744 (https://doi.org/10.1016/j.jlumin.2017.07.062)
  • İ. Ömeroğlu, Z. Bıyıklıoğlu, Synthesis and electrochemistry of phthalocyanines bearing [(3,4-dimethoxybenzyl)oxy] groups, Turk J Chem, 39, 2015, 347-358. (https://doi.org/10.3906/kim-1408-71)
  • D. Akyuz, T. Keleş, Z. Bıyıklıoğlu, A. Koca, Metallophthalocyanines Bearing Polymerizable {[5-({(1E)-[4-(Diethylamino)phenyl]methylene}amino)-1-naphthy1]oxy} Groups as Electrochemical Pesticide Sensor Electroanal, 29, 2017, 2913-2924. (https://doi.org/10.1002/elan.201700366)
  • A. Aktaş, İ. Acar, Z. Bıyıklıoğlu, E.T. Saka, H. Kantekin, Synthesis, electrochemistry of metal-free, copper, titanium phthalocyanines and investigation of catalytic activity of cobalt, iron phthalocyanines on benzyl alcohol oxidation bearing 4-{2-[3-trifluoromethyl)phenoxy]ethoxy} groups, Synthetic Metals, 198, 2014, 212-220 (https://doi.org/10.1016/j.synthmet.2014.10.022)
  • Ö. Koyun. S. Gördük, B. Keskin, A. Çetinkaya, A. Koca, U. Avcıata, Microwave-assisted synthesis, electrochemistry and spectroelectrochemistry of phthalocyanines bearing tetra terminal-alkynyl functionalities and click approach, Polyhedron, 113, 2016, 35-49. (https://doi.org/10.1016/j.poly.2016.03.019)
  • Ü. Demirbaş, D. Akyüz, A. Mermer, H.T. Akçay, N. Demirbaş, A. Koca, H. Kantekin, The electrochemical and spectroelectrochemical properties of metal free and metallophthalocyanines containing triazole/piperazine units, Spectrochim Acta Part:A Mol Biomol Spect, 153, 2016, 478-487. (https://doi.org/10.1016/j.saa.2015.08.050)
Yıl 2023, Cilt: 5 Sayı: 1, 25 - 31, 30.06.2023
https://doi.org/10.51435/turkjac.1307391

Öz

Proje Numarası

FHD-2018-7631

Kaynakça

  • A. Suzuki, H. Okumura, Y. Yamasaki, T. Oku, Fabrication and characterization of perovskite type solar cells using phthalocyanine complexes, Appl Surf Sci, 488, 2019, 586-596 (https://doi.org/10.1016/j.apsusc.2019.05.305)
  • J. Xu, W. Yang, R. Chen, The photovoltaic performance of highly asymmetric phthalocyanine-sensitized brookite-based solar cells, Optik, 200, 2020, 163413. (https://doi.org/10.1016/j.ijleo.2019.163413)
  • B. Yıldız, E. Güzel, D. Akyüz, B.S. Arslan, A. Koca, M.K. Şener, Unsymmetrically pyrazole-3-carboxylic acid substituted phthalocyanine-based photoanodes for use in water splitting photoelectrochemical and dye-sensitized solar cells, Sol Energy, 191, 2019, 654-662. (https://doi.org/10.1016/j.solener.2019.09.043)
  • S. Kong, X. Wang, L. Bai, Y. Song, F. Meng, Multi-arm ionic liquid crystals formed by pyridine-mesophase and copper phthalocyanine, J Mol Liq, 288, 2019, 111012. (https://doi.org/10.1016/j.molliq.2019.111012)
  • J.A. Jiménez-Tejada, A. Romero, J. González, N.B. Chaure, A.N. Cammidge, I. Chambrier, A.K. Ray, M.J. Deen, Evolutionary Computation for Parameter Extraction of Organic Thin-Film Transistors Using Newly Synthesized Liquid Crystalline Nickel Phthalocyanine, Micromachines, 10, 2019, 683. ( https://doi.org/10.3390/mi10100683)
  • E.M. Bauer, T. De Caro, P. Tagliatesta, M. Carbone, Unraveling The Real pigment composition of tattoo inks: the case of bi-components phthalocyanine based greens, Dyes Pigments, 167, 2019, 225-235. ( http://dx.doi.org/10.1016/j.dyepig.2019.04.018)
  • Y. Zhao, J. W. Ying, Q. Sun, M. R. Ke, B. Y. Zheng, J. D. Huang, A novel silicon(IV) phthalocyanine-oligopeptide conjugate as a highly efficient photosensitizer for photodynamic antimicrobial therapy, Dyes Pigments, 172, 2020, 107834. (https://doi.org/10.1016/j.dyepig.2019.107834)
  • Q. Li, Z. Sun, Q. Liang, M. Zhou, D. Sun, Novel tetrasubstituted zinc phthalocyanine-attapulgite composites for efficient catalytic oxidation of styrene with tert-butyl hydroperoxide as oxidant, Solid State Sci, 97, 2019, 106010. (https://doi.org/10.1016/j.solidstatesciences.2019.106010)
  • R. Bahluli, S. Keshipour, Microcrystalline cellulose modified with Fe(II)- and Ni(II)-phthalocyanines: Syntheses, characterizations, and catalytic applications, Polyhedron, 169, 2019, 176-182. ( https://doi.org/10.1016/j.poly.2019.05.010)
  • H.S. Majumdar, A. Bandyopadhyay, A.J. Pal, Data-storage devices based on layer-by-layer self-assembled films of a phthalocyanine derivative, Org Electron, 4, 2003, 39. (https://doi:10.1016/S1566-1199(03)00007-7)
  • M.P. Malathesh, N.Y.P. Kumara, B.S. Jilani, K.R.V. Reddy, Synthesis and Characterization of Tetra-Ganciclovir Cobalt (II) Phthalocyanine for Electroanalytical Applications of AA/DA/UA, Heliyon, 5, 2019, e01946 (https://doi:10.1016/j.heliyon.2019.e01946)
  • L.F. de Holanda, F.W.P. Ribeiro, C.P. Sousa, P.N. da S. Casciano, A.N. Correia, Multi-walled carbon nanotubes–cobalt phthalocyanine modified electrode for electroanalytical determination of acetaminophen, J Electroanal Chem, 772, 2016, 9-16. (https://doi.org/10.1016/j.jelechem.2016.04.021)
  • L.F. de Lima, C.C. Maciel, A.L. Ferreira, J.C. de Almeida, M. Ferreira, 2020. Nickel (II) phthalocyanine-tetrasulfonic-Au nanoparticles nanocomposite film for tartrazine electrochemical sensing, Mater Lett, 262, 127186. (https://doi.org/10.1016/j.matlet.2019.127186)
  • E.O. Moiseeva, Y.B. Platonova, D.V. Konev, S.A. Trashin, L.G. Tomilova, Electrochemical and spectroelectrochemical properties of tetra-tert-butylphthalocyanine indium(III), Mendeleev Commun, 29, 2019, 212-214. (https://doi.org/10.1016/j.mencom.2019.03.033)
  • F. Demir, H.Y. Yenilmez, A. Koca, Z.A. Bayır, Metallo-phthalocyanines containing thiazole moieties: Synthesis, characterization, electrochemical and spectroelectrochemical properties and sensor applications, J Electroanal Chem, 832, 2019, 254-265. (https://doi.org/10.1016/j.jelechem.2018.11.003)
  • S.G. Feridun, E.B. Orman, Ü. Salan, A.R. Özkaya, M. Bulut, Synthesis, characterization, and electrochemical and in-situ spectroelectrochemical properties of novel peripherally and non-peripherally 7-oxy-3-(3,4-dimethoxyphenyl) coumarin substituted phthalocyanines, Dyes Pigments, 160, 2019, 315-327 (https://doi.org/10.1016/j.dyepig.2018.08.017)
  • T. Nyokong, Electronic spectral and electrochemical behaviour of near infrared absorbing metallophthalocyanines". In: Structure and Bonding: Functional Phthalocyanine Molecular Materials, Editors: D.M.P Mingos, 2010, Germany, Springer.
  • A. Nas, H. Kantekin, A. Koca, Electrochemical and Spectroelectrochemical Analysis of 4-(4-(5-Phenyl-1,3,4-oxadiazole-2-yl)phenoxy)-Substituted Cobalt(II), Lead(II) and Metal-Free Phthalocyanines, Electroanal, 27, 2015, 1602-1609. (https://doi.org/10.1002/elan.201400700)
  • A. Nas, Z. Biyiklioglu, S. Fandaklı, G. Sarkı, H. Yalazan, H. Kantekin, Tetra(3-(1,5-diphenyl-4,5-dihydro-1H-pyrazol-3-yl) phenoxy) substituted cobalt, iron and manganese phthalocyanines: Synthesis and electrochemical analysis, Inorg Chim Acta, 466, 2017, 86-92. (https://doi.org/10.1016/j.ica.2017.05.050)
  • Ç.C. Koçak, A. Nas, H. Kantekin, Z. Dursun, Simultaneous determination of theophylline and caffeine on novel [Tetra-(5-chloroquinolin-8-yloxy) phthalocyanato] manganese(III)-Carbon nanotubes composite electrode, Talanta. 184, 2018, 452-460. (https://doi.org/10.1016/j.talanta.2018.03.029)
  • B.S. Jilani, M.P. Malathesh, C.D. Mruthyunjayachari, K.R.V. Reddy, Cobalt (II) tetra methyl-quinoline oxy bridged phthalocyanine carbon nano particles modified glassy carbon electrode for sensing nitrite: A voltammetric study, Mater Chem Phys, 239, 2020, 121920. (https://doi.org/10.1016/j.matchemphys.2019.121920)
  • A. Nas, Ü. Demirbaş, M. Pişkin, M. Durmuş, H. Kantekin, The photophysical and photochemical properties of new unmetallated and metallated phthalocyanines bearing four 5-chloroquinolin-8-yloxy substituents on peripheral sites, J Lumin, 145, 2014, 635-642. (https://doi.org/10.1016/j.jlumin.2013.07.056)
  • Perrin DD, Armarego WLF, Purification of laboratory chemicals, Oxford, 1989, New York, Pergamon.
  • J.G. Young, W. Onyebuagu, Synthesis and characterization of di-disubstituted phthalocyanines, J Org Chem, 55, 1990, 2155-2159. (https://doi.org/10.1021/jo00294a032)
  • D. Liang , W. Peng , Y. Wang, Solvent‐Stabilized Y‐Type Oxotitanium Phthalocyanine Photoconductive Nanoparticles: Preparation and Application in Single‐Layered Photoreceptors, Adv Mater, 24, 2012, 5249-5253 (https://doi.org/10.1002/adma.201201720)
  • H. Zhu, H. Song, W. Zhao, Z. Peng, D. Liu, B. Di, L. Xing, H. Chen, Z. Huang, Y. Wang, K. Wu, Precursor Structures for Polymorphic Titanyl Phthalocyanine Crystal Phases on Au(111): A High-Resolution STM Study, J Phys Chem C, 123, 2019, 17390-17396. (https://doi.org/10.1021/acs.jpcc.9b04451)
  • İ. Yalçın, H. Yanık, H.T. Akçay, İ. Değirmencioğlu, M. Durmuş, Photophysical and photochemical study on the tetra 4-isopropylbenzyloxy substituted phthalocyanines, J Lumin, 192, 2017, 739-744 (https://doi.org/10.1016/j.jlumin.2017.07.062)
  • İ. Ömeroğlu, Z. Bıyıklıoğlu, Synthesis and electrochemistry of phthalocyanines bearing [(3,4-dimethoxybenzyl)oxy] groups, Turk J Chem, 39, 2015, 347-358. (https://doi.org/10.3906/kim-1408-71)
  • D. Akyuz, T. Keleş, Z. Bıyıklıoğlu, A. Koca, Metallophthalocyanines Bearing Polymerizable {[5-({(1E)-[4-(Diethylamino)phenyl]methylene}amino)-1-naphthy1]oxy} Groups as Electrochemical Pesticide Sensor Electroanal, 29, 2017, 2913-2924. (https://doi.org/10.1002/elan.201700366)
  • A. Aktaş, İ. Acar, Z. Bıyıklıoğlu, E.T. Saka, H. Kantekin, Synthesis, electrochemistry of metal-free, copper, titanium phthalocyanines and investigation of catalytic activity of cobalt, iron phthalocyanines on benzyl alcohol oxidation bearing 4-{2-[3-trifluoromethyl)phenoxy]ethoxy} groups, Synthetic Metals, 198, 2014, 212-220 (https://doi.org/10.1016/j.synthmet.2014.10.022)
  • Ö. Koyun. S. Gördük, B. Keskin, A. Çetinkaya, A. Koca, U. Avcıata, Microwave-assisted synthesis, electrochemistry and spectroelectrochemistry of phthalocyanines bearing tetra terminal-alkynyl functionalities and click approach, Polyhedron, 113, 2016, 35-49. (https://doi.org/10.1016/j.poly.2016.03.019)
  • Ü. Demirbaş, D. Akyüz, A. Mermer, H.T. Akçay, N. Demirbaş, A. Koca, H. Kantekin, The electrochemical and spectroelectrochemical properties of metal free and metallophthalocyanines containing triazole/piperazine units, Spectrochim Acta Part:A Mol Biomol Spect, 153, 2016, 478-487. (https://doi.org/10.1016/j.saa.2015.08.050)
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Analitik Kimya
Bölüm Research Articles
Yazarlar

Asiye Nas 0000-0003-0627-0645

Gülsev Dilber 0000-0001-7114-4421

Zekeriya Bıyıklıoğlu 0000-0001-5138-214X

Proje Numarası FHD-2018-7631
Yayımlanma Tarihi 30 Haziran 2023
Gönderilme Tarihi 30 Mayıs 2023
Kabul Tarihi 9 Haziran 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 5 Sayı: 1

Kaynak Göster

APA Nas, A., Dilber, G., & Bıyıklıoğlu, Z. (2023). Electroanalytical characterization of chloroquinoline substituted redox-active phthalocyanines. Turkish Journal of Analytical Chemistry, 5(1), 25-31. https://doi.org/10.51435/turkjac.1307391
AMA Nas A, Dilber G, Bıyıklıoğlu Z. Electroanalytical characterization of chloroquinoline substituted redox-active phthalocyanines. TurkJAC. Haziran 2023;5(1):25-31. doi:10.51435/turkjac.1307391
Chicago Nas, Asiye, Gülsev Dilber, ve Zekeriya Bıyıklıoğlu. “Electroanalytical Characterization of Chloroquinoline Substituted Redox-Active Phthalocyanines”. Turkish Journal of Analytical Chemistry 5, sy. 1 (Haziran 2023): 25-31. https://doi.org/10.51435/turkjac.1307391.
EndNote Nas A, Dilber G, Bıyıklıoğlu Z (01 Haziran 2023) Electroanalytical characterization of chloroquinoline substituted redox-active phthalocyanines. Turkish Journal of Analytical Chemistry 5 1 25–31.
IEEE A. Nas, G. Dilber, ve Z. Bıyıklıoğlu, “Electroanalytical characterization of chloroquinoline substituted redox-active phthalocyanines”, TurkJAC, c. 5, sy. 1, ss. 25–31, 2023, doi: 10.51435/turkjac.1307391.
ISNAD Nas, Asiye vd. “Electroanalytical Characterization of Chloroquinoline Substituted Redox-Active Phthalocyanines”. Turkish Journal of Analytical Chemistry 5/1 (Haziran 2023), 25-31. https://doi.org/10.51435/turkjac.1307391.
JAMA Nas A, Dilber G, Bıyıklıoğlu Z. Electroanalytical characterization of chloroquinoline substituted redox-active phthalocyanines. TurkJAC. 2023;5:25–31.
MLA Nas, Asiye vd. “Electroanalytical Characterization of Chloroquinoline Substituted Redox-Active Phthalocyanines”. Turkish Journal of Analytical Chemistry, c. 5, sy. 1, 2023, ss. 25-31, doi:10.51435/turkjac.1307391.
Vancouver Nas A, Dilber G, Bıyıklıoğlu Z. Electroanalytical characterization of chloroquinoline substituted redox-active phthalocyanines. TurkJAC. 2023;5(1):25-31.



6th International Environmental Chemistry Congress (EnviroChem)

https://www.envirochem.org.tr/