Araştırma Makalesi
BibTex RIS Kaynak Göster

GIDA AMBALAJI İÇİN GERİ DÖNÜŞTÜRÜLMÜŞ ATIK KAĞITTAN ÜRETİLEN POLİMER KAPLI KAĞITLARIN YAĞ BARİYERi VE MEKANiK PERFORMANSLARININ KARŞILAŞTIRMALI DEĞERLENDİRMESİ

Yıl 2025, Cilt: 9 Sayı: 2, 296 - 312, 27.10.2025
https://doi.org/10.32328/turkjforsci.1721302

Öz

Bu çalışma, geri dönüştürülmüş atık kağıttan üretilen ambalaj kağıtlarının özellikle fast food ambalajlarında kullanımına yönelik olarak yağ direnci ve mekanik performans açısından değerlendirilmesini amaçlamaktadır. Kağıt yapısı ile uyumlu ve yağ bariyer özellikleri ile bilinen beş farklı polimer, laboratuvar tipi bir yüzey kaplama cihazı (size press) ile kağıt yüzeyine uygulanmıştır. Yağ direnci TAPPI T559 kit testi yöntemi ile, mekanik dayanım ise standart çekme dayanımı ve kısa span sıkıştırma testi (SCT) ile ölçülmüştür. Polimer D ve E grupları, 12 saat sonunda yalnızca 4 mm’lik geçirim ile mükemmel yağ bariyeri özellikleri göstermiş ve aynı zamanda yüksek SCT performansı (2.275 kN/m’ye kadar) korumuştur. Buna karşın, polimer A ve B yağ direnci açısından daha düşük performans sergilemiş olsa da, polimer A olağanüstü çekme dayanımı (2355 Nm/kg) ile dikkat çekmiş ve yüksek mekanik dayanım gerektiren uygulamalar için uygun bir seçenek olduğunu göstermiştir. Elde edilen bulgular, polimer D ve E'nin uzun süreli bariyer uygulamaları için ideal olduğunu, polimer A’nın ise mekanik dayanımın ön planda olduğu uygulamalar için daha uygun olduğunu ortaya koymaktadır. Çalışma, sürdürülebilir ve yüksek performanslı kağıt ambalaj malzemelerinin geliştirilmesine katkı sağlayacak biyobazlı ve çevre dostu polimer formülasyonlarına yönelik daha ileri araştırmalara duyulan ihtiyacı vurgulamaktadır.

Kaynakça

  • Basak, S., Dangate, M. S., and Samy, S. (2024). Oil- and water-resistant paper coatings: A review. Progress in Organic Coatings, 186, 107938. Doi:10.1016/j.porgcoat.2023.107938
  • Billmers, R. L., Mackewicz, V. L., and Trksak, R. M. (2004). U.S. Patent No. 6,790, 270. Washington, DC: U.S. Patent and Trademark Office.
  • Chi, K., Wang, H., and Catchmark, J. M. (2020). Sustainable starch-based barrier coatings for packaging applications. Food Hydrocolloids, 103, 105696.
  • Cui, H. C., Li, D. C., and Li, J. L. (2011). Theoretical research on fluorocarbon surfactant of fluorocarbon-based magnetic fluid. Advanced Materials Research, 211, 82-86.
  • Giatti, R. (1996). New fluorochemicals for greaseproof papers. Paper Technol, 37(9), 49-54.
  • Giatti, R. (1997). Greaseproof alternative offers eco-advantage. Pulp Paper Europe, 2(2), 25-27.
  • Glenn, G., Shogren, R., Jin, X., Orts, W., Hart‐Cooper, W., and Olson, L. (2021). Per‐and polyfluoroalkyl substances and their alternatives in paper food packaging. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2596-2625.
  • Hossain, R., Tajvidi, M., Bousfield, D., and Gardner, D. J. (2022). Recyclable grease-proof cellulose nanocomposites with enhanced water resistance for food serving applications. Cellulose, 29(10), 5623-5643.
  • Hubbe, M. A., and Pruszynski, P. (2020). Greaseproof paper products: A review emphasizing ecofriendly approaches. BioResources, 15(1), 1978-2004.
  • Jung, H., Kwon, J., Jung, H., Cho, K., Yu, S., Lee, S., Jeon, M., and Im, S. (2022). Short-chain fluorocarbon-based polymeric coating with excellent nonwetting ability against chemical warfare agents. RSC Advances, 12, 7773-7779. Doi:10.1039/d1ra08326k.
  • Kissa, E. (2001). Fluorinated Surfactants and Repellents. Revised and Expanded, Marcel Dekker, New York, NY.
  • Kjellgren, H., and Engstrom, G. (2005). The relationship between energy requirement and barrier properties in the production of greaseproof paper. TAPPI J, 4(8), 7-11.
  • Ladd, E. (2012). The Design and Synthesis of Dendrimers for Applications in the Pulp and Paper Industry. McGill University, Canada.
  • Larsson, P., Lindström, T., Carlsson, L., and Fellers, C. (2018). Fiber length and bonding effects on tensile strength and toughness of kraft paper. Journal of Materials Science, 53, 3006-3015. Doi: 10.1007/s10853-017-1683-4.
  • Lee, W., Kim, H., and Park, J. (2015). Mechanical properties of paper: Influence of porosity. Journal of Industrial Materials, 19(2), 345-356.
  • Li, C., Fu, Y., Wang, B., Zhang, W., Bai, Y., Zhang, L., and Qi, L. (2020). Effect of pore structure on mechanical and tribological properties of paper-based friction materials. Tribology International, 148, 106307. Doi:10.1016/j.triboint.2020.106307.
  • Mazega, A., Tarrés, Q., Aguado, R., Pelach, M., Mutjé, P., Ferreira, P., and Delgado-Aguilar, M. (2022). Improving the barrier properties of paper to moisture, air, and grease with nanocellulose-based coating suspensions. Nanomaterials, 12. https://doi.org/10.3390/nano12203675.
  • Rudi, H., Ghorbannazhad, P., and Hubbe, M. (2018). Optimizing the mechanical properties of papers reinforced with refining and layer-by-layer treated recycled fibers using response surface methodology. Carbohydrate Polymers, 200, 391-399. Doi:10.1016/j.carbpol.2018.08.006.
  • Schaider, L. A., Balan, S. A., Blum, A., Andrews, D. Q., Strynar, M. J., Dickinson, M. E., Lunderberg, D. M., Lang, J. R., and Peaslee, G. F. (2017). Fluorinated compounds in US fast food packaging. Environ. Sci. Technol. Lett, 4(3), 105-111. Doi: 10.1021/acs.estlett.6b00435.
  • Sharif, R., Mohsin, M., Qutab, H. G., Saleem, F., Bano, S., Nasir, R., and Wahlah, A. (2023). Durable water and oil repellents along with green chemistries: an overview. Chemical Papers, 77(7), 3547-3560.
  • Sharma, R., Verma, S., and Gupta, N. (2019). Optimization of paper properties through chemical treatments. Industrial Pulp Research, 10(6), 788-793.
  • Szymanski, A., and Ingielewicz, H. (1995). Possibilities for energy savings in the production of greaseproof papers. Przeglad Papeiriniczy, 51(3), 114-118.
  • Tanaka, A., Khakalo, A., Hauru, L., Korpela, A., and Orelma, H. (2018). Conversion of paper to film by ionic liquids: Manufacturing process and properties. Cellulose, 25, 6107-6119. Doi:10.1007/s10570-018-1944-7.
  • TAPPI T 441 (2021). Water absorptiveness of sized (non-bibulous) paper, board, and paperboard (Cobb test). Technical Association of the Pulp and Paper Industry, Atlanta, GA. https://www.tappi.org
  • TAPPI T 559 cm-12 (2022). Grease resistance test for paper and paperboard. Technical Association of the Pulp and Paper Industry, Atlanta, GA.
  • Tayeb, H. A., Tajvidi, M., and Bousfield, D. (2020). Based oil barrier packaging using lignin-containing cellulose nanofibrils. Molecules, 25(6), 1344.
  • Uddin, M., Likhon, M., Rahman, M., and Jahan, M. (2024). Effect of fibre-quality parameters on pulp properties by using multiple linear regression and artificial neural network. International Wood Products Journal, 15(2-4), 91-99.
  • Wang, S., Pei, L., Wei, J., Xie, J., Ji, X., Wang, Y., Jia, P., and Jiao, Y. (2024). Preparation of environmentally friendly oil- and water-resistant paper using holo-lignocellulosic nanofibril (lcnf)-based composite coating. Polymers, 16. Doi:10.3390/polym16081078.
  • Wang, Z. Y., Cousins, I. T., Scheringer, M., and Hungerbuhler, K. (2013). Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors. Environ. Int, 60, 242-248. Doi: 10.1016/j.envint.2013.08.021.
  • Wei, L., Demir, T., Grant, A., Tsukruk, V., Brown, P., and Luzinov, I. (2018). Attainment of water and oil repellency for engineering thermoplastics without long-chain perfluoroalkyls: Perfluoropolyether-based triblock polyester additives. Langmuir: The ACS Journal of Surfaces and Colloids, 34(43), 12934-12946. Doi: 10.1021/acs.langmuir.8b02628.
  • Yamaguchi, H., and Yaguchi, T. (1996). Fiber beating with enzyme pretreatment. In: 50th Appita Annual General Conference Proceedings. APPITA, 1, 91-96.

COMPARATIVE EVALUATION OF OIL BARRIER AND STRENGTH PERFORMANCE OF POLYMER-COATED PAPERS FROM RECYCLED WASTEPAPER FOR FOOD PACKAGING

Yıl 2025, Cilt: 9 Sayı: 2, 296 - 312, 27.10.2025
https://doi.org/10.32328/turkjforsci.1721302

Öz

This study investigates packaging papers produced from recycled wastepaper in terms of oil resistance and mechanical performance, especially for fast food applications. Five different polymers known for their compatibility with paper substrates and oil barrier properties were applied to the paper surface using a laboratory-scale size press. Oil resistance was evaluated using the TAPPI T559 kit test method, and mechanical strength was measured through standard tensile strength and SCT (short-span compression test) methods. Polymers D and E exhibited excellent oil barrier properties, with minimal permeation (4 mm) after 12 hours, while also maintaining strong SCT performance (up to 2.275 kN/m). In contrast, although polymers A and B were less effective in oil resistance, polymer A demonstrated outstanding tensile strength (2355 Nm/kg), making it a suitable option for applications requiring high mechanical strength. The findings suggest that polymers D and E are ideal for long-term barrier applications, whereas polymer A is more suitable where mechanical durability is prioritized. The study emphasizes the need for further research on polymer formulations, particularly bio-based and eco-friendly alternatives, to support the development of sustainable and high-performance paper-based packaging materials.

Destekleyen Kurum

KMKPaper R&D Center and TUBİTAK 2244 Program

Teşekkür

This study was conducted by the R&D Center of Kahramanmaraş Paper Factory. The author would like to thank the R&D center staff for their contributions. The author worked on this project as a scholar under the TÜBİTAK 2244 program, supported by grant number 118C060.

Kaynakça

  • Basak, S., Dangate, M. S., and Samy, S. (2024). Oil- and water-resistant paper coatings: A review. Progress in Organic Coatings, 186, 107938. Doi:10.1016/j.porgcoat.2023.107938
  • Billmers, R. L., Mackewicz, V. L., and Trksak, R. M. (2004). U.S. Patent No. 6,790, 270. Washington, DC: U.S. Patent and Trademark Office.
  • Chi, K., Wang, H., and Catchmark, J. M. (2020). Sustainable starch-based barrier coatings for packaging applications. Food Hydrocolloids, 103, 105696.
  • Cui, H. C., Li, D. C., and Li, J. L. (2011). Theoretical research on fluorocarbon surfactant of fluorocarbon-based magnetic fluid. Advanced Materials Research, 211, 82-86.
  • Giatti, R. (1996). New fluorochemicals for greaseproof papers. Paper Technol, 37(9), 49-54.
  • Giatti, R. (1997). Greaseproof alternative offers eco-advantage. Pulp Paper Europe, 2(2), 25-27.
  • Glenn, G., Shogren, R., Jin, X., Orts, W., Hart‐Cooper, W., and Olson, L. (2021). Per‐and polyfluoroalkyl substances and their alternatives in paper food packaging. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2596-2625.
  • Hossain, R., Tajvidi, M., Bousfield, D., and Gardner, D. J. (2022). Recyclable grease-proof cellulose nanocomposites with enhanced water resistance for food serving applications. Cellulose, 29(10), 5623-5643.
  • Hubbe, M. A., and Pruszynski, P. (2020). Greaseproof paper products: A review emphasizing ecofriendly approaches. BioResources, 15(1), 1978-2004.
  • Jung, H., Kwon, J., Jung, H., Cho, K., Yu, S., Lee, S., Jeon, M., and Im, S. (2022). Short-chain fluorocarbon-based polymeric coating with excellent nonwetting ability against chemical warfare agents. RSC Advances, 12, 7773-7779. Doi:10.1039/d1ra08326k.
  • Kissa, E. (2001). Fluorinated Surfactants and Repellents. Revised and Expanded, Marcel Dekker, New York, NY.
  • Kjellgren, H., and Engstrom, G. (2005). The relationship between energy requirement and barrier properties in the production of greaseproof paper. TAPPI J, 4(8), 7-11.
  • Ladd, E. (2012). The Design and Synthesis of Dendrimers for Applications in the Pulp and Paper Industry. McGill University, Canada.
  • Larsson, P., Lindström, T., Carlsson, L., and Fellers, C. (2018). Fiber length and bonding effects on tensile strength and toughness of kraft paper. Journal of Materials Science, 53, 3006-3015. Doi: 10.1007/s10853-017-1683-4.
  • Lee, W., Kim, H., and Park, J. (2015). Mechanical properties of paper: Influence of porosity. Journal of Industrial Materials, 19(2), 345-356.
  • Li, C., Fu, Y., Wang, B., Zhang, W., Bai, Y., Zhang, L., and Qi, L. (2020). Effect of pore structure on mechanical and tribological properties of paper-based friction materials. Tribology International, 148, 106307. Doi:10.1016/j.triboint.2020.106307.
  • Mazega, A., Tarrés, Q., Aguado, R., Pelach, M., Mutjé, P., Ferreira, P., and Delgado-Aguilar, M. (2022). Improving the barrier properties of paper to moisture, air, and grease with nanocellulose-based coating suspensions. Nanomaterials, 12. https://doi.org/10.3390/nano12203675.
  • Rudi, H., Ghorbannazhad, P., and Hubbe, M. (2018). Optimizing the mechanical properties of papers reinforced with refining and layer-by-layer treated recycled fibers using response surface methodology. Carbohydrate Polymers, 200, 391-399. Doi:10.1016/j.carbpol.2018.08.006.
  • Schaider, L. A., Balan, S. A., Blum, A., Andrews, D. Q., Strynar, M. J., Dickinson, M. E., Lunderberg, D. M., Lang, J. R., and Peaslee, G. F. (2017). Fluorinated compounds in US fast food packaging. Environ. Sci. Technol. Lett, 4(3), 105-111. Doi: 10.1021/acs.estlett.6b00435.
  • Sharif, R., Mohsin, M., Qutab, H. G., Saleem, F., Bano, S., Nasir, R., and Wahlah, A. (2023). Durable water and oil repellents along with green chemistries: an overview. Chemical Papers, 77(7), 3547-3560.
  • Sharma, R., Verma, S., and Gupta, N. (2019). Optimization of paper properties through chemical treatments. Industrial Pulp Research, 10(6), 788-793.
  • Szymanski, A., and Ingielewicz, H. (1995). Possibilities for energy savings in the production of greaseproof papers. Przeglad Papeiriniczy, 51(3), 114-118.
  • Tanaka, A., Khakalo, A., Hauru, L., Korpela, A., and Orelma, H. (2018). Conversion of paper to film by ionic liquids: Manufacturing process and properties. Cellulose, 25, 6107-6119. Doi:10.1007/s10570-018-1944-7.
  • TAPPI T 441 (2021). Water absorptiveness of sized (non-bibulous) paper, board, and paperboard (Cobb test). Technical Association of the Pulp and Paper Industry, Atlanta, GA. https://www.tappi.org
  • TAPPI T 559 cm-12 (2022). Grease resistance test for paper and paperboard. Technical Association of the Pulp and Paper Industry, Atlanta, GA.
  • Tayeb, H. A., Tajvidi, M., and Bousfield, D. (2020). Based oil barrier packaging using lignin-containing cellulose nanofibrils. Molecules, 25(6), 1344.
  • Uddin, M., Likhon, M., Rahman, M., and Jahan, M. (2024). Effect of fibre-quality parameters on pulp properties by using multiple linear regression and artificial neural network. International Wood Products Journal, 15(2-4), 91-99.
  • Wang, S., Pei, L., Wei, J., Xie, J., Ji, X., Wang, Y., Jia, P., and Jiao, Y. (2024). Preparation of environmentally friendly oil- and water-resistant paper using holo-lignocellulosic nanofibril (lcnf)-based composite coating. Polymers, 16. Doi:10.3390/polym16081078.
  • Wang, Z. Y., Cousins, I. T., Scheringer, M., and Hungerbuhler, K. (2013). Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors. Environ. Int, 60, 242-248. Doi: 10.1016/j.envint.2013.08.021.
  • Wei, L., Demir, T., Grant, A., Tsukruk, V., Brown, P., and Luzinov, I. (2018). Attainment of water and oil repellency for engineering thermoplastics without long-chain perfluoroalkyls: Perfluoropolyether-based triblock polyester additives. Langmuir: The ACS Journal of Surfaces and Colloids, 34(43), 12934-12946. Doi: 10.1021/acs.langmuir.8b02628.
  • Yamaguchi, H., and Yaguchi, T. (1996). Fiber beating with enzyme pretreatment. In: 50th Appita Annual General Conference Proceedings. APPITA, 1, 91-96.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kereste, Hamur ve Kağıt, Kompozit ve Hibrit Malzemeler
Bölüm Araştırma Makalesi
Yazarlar

Tamer Sözbir 0000-0001-9035-8214

Yayımlanma Tarihi 27 Ekim 2025
Gönderilme Tarihi 17 Haziran 2025
Kabul Tarihi 1 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 2

Kaynak Göster

APA Sözbir, T. (2025). COMPARATIVE EVALUATION OF OIL BARRIER AND STRENGTH PERFORMANCE OF POLYMER-COATED PAPERS FROM RECYCLED WASTEPAPER FOR FOOD PACKAGING. Turkish Journal of Forest Science, 9(2), 296-312. https://doi.org/10.32328/turkjforsci.1721302
AMA Sözbir T. COMPARATIVE EVALUATION OF OIL BARRIER AND STRENGTH PERFORMANCE OF POLYMER-COATED PAPERS FROM RECYCLED WASTEPAPER FOR FOOD PACKAGING. Turk J For Sci. Ekim 2025;9(2):296-312. doi:10.32328/turkjforsci.1721302
Chicago Sözbir, Tamer. “COMPARATIVE EVALUATION OF OIL BARRIER AND STRENGTH PERFORMANCE OF POLYMER-COATED PAPERS FROM RECYCLED WASTEPAPER FOR FOOD PACKAGING”. Turkish Journal of Forest Science 9, sy. 2 (Ekim 2025): 296-312. https://doi.org/10.32328/turkjforsci.1721302.
EndNote Sözbir T (01 Ekim 2025) COMPARATIVE EVALUATION OF OIL BARRIER AND STRENGTH PERFORMANCE OF POLYMER-COATED PAPERS FROM RECYCLED WASTEPAPER FOR FOOD PACKAGING. Turkish Journal of Forest Science 9 2 296–312.
IEEE T. Sözbir, “COMPARATIVE EVALUATION OF OIL BARRIER AND STRENGTH PERFORMANCE OF POLYMER-COATED PAPERS FROM RECYCLED WASTEPAPER FOR FOOD PACKAGING”, Turk J For Sci, c. 9, sy. 2, ss. 296–312, 2025, doi: 10.32328/turkjforsci.1721302.
ISNAD Sözbir, Tamer. “COMPARATIVE EVALUATION OF OIL BARRIER AND STRENGTH PERFORMANCE OF POLYMER-COATED PAPERS FROM RECYCLED WASTEPAPER FOR FOOD PACKAGING”. Turkish Journal of Forest Science 9/2 (Ekim2025), 296-312. https://doi.org/10.32328/turkjforsci.1721302.
JAMA Sözbir T. COMPARATIVE EVALUATION OF OIL BARRIER AND STRENGTH PERFORMANCE OF POLYMER-COATED PAPERS FROM RECYCLED WASTEPAPER FOR FOOD PACKAGING. Turk J For Sci. 2025;9:296–312.
MLA Sözbir, Tamer. “COMPARATIVE EVALUATION OF OIL BARRIER AND STRENGTH PERFORMANCE OF POLYMER-COATED PAPERS FROM RECYCLED WASTEPAPER FOR FOOD PACKAGING”. Turkish Journal of Forest Science, c. 9, sy. 2, 2025, ss. 296-12, doi:10.32328/turkjforsci.1721302.
Vancouver Sözbir T. COMPARATIVE EVALUATION OF OIL BARRIER AND STRENGTH PERFORMANCE OF POLYMER-COATED PAPERS FROM RECYCLED WASTEPAPER FOR FOOD PACKAGING. Turk J For Sci. 2025;9(2):296-312.