Araştırma Makalesi
BibTex RIS Kaynak Göster

Yeni Bir Phormidium Türü (Cyanobacteria, Oscillatoriales), Tuz Gölü (Türkiye)

Yıl 2025, Cilt: 6 Sayı: 1, 20 - 29, 15.06.2025
https://doi.org/10.53803/turvehab.1679198

Öz

Tuz Gölü’nden (Orta Anadolu, Türkiye), yoğun tuz ortamına uyum sağlamış bazı ilginç Cyanobacteria (Oscillatoriales) örnekleri toplandı. Detaylı inceleme sonucunda örneklerin Phormidium cinsine ait olduğu, ancak trikom yapısı ve hücre boyutları bakımından bazı farklara sahip olduğu belirlendi. Cinse ait benzer türlerle yapılan karşılaştırılma sonucunda, bu farkların tür düzeyinde öneme sahip olduğu tespit edildi. Morfolojik ve ekolojik verilere dayanarak bilim dünyası için yeni bir tür olduğuna karar verilen Tuz Gölü örnekleri Phormidium obaliae olarak adlandırıldı. Yeni türün örnekleri, mevsimsel akarsuların Tuz Gölüne karıştığı yoğun tuzlu su bulunan bölgelerde yetişir. Phormidium obaliae, P. coricum ve P. retzi ile yakından ilişkilir. Ancak farklı olarak P. obaliae’de apical hücreler kümbet-şekillidir (trunkat değil), kılıflar ise ince ve renksizdir (kalın ve koyu yeşilden kahveye doğru değil). Burada yeni türün tanımı, benzer taksonlarla karşılaştırılması, bilgilendirici fotoğrafları ve bazı ekolojik tercihlerine yer verilmiştir.

Kaynakça

  • Anagnostidis, K. & Komárek, J. (1988). Modern approach to the classification system of the Cyanophytes 3: Oscillatoriales. Algological Studies 50: 327-472.
  • Asadi, A., Khavari-Nejad, R., Soltani, N., Najafi, F. & Molaie-Rad, A. (2011). Physiological and antimicrobial characterizations of some cyanobacteria isolated from the rice fields in Iran. Journal of Agricultural Technology 7(3): 649-663.
  • Atıcı, T. (2020). Production and collection of microalgae isolated from freshwater reserves in Central Anatolia, Turkey. Türler ve Habitatlar 1(1): 37-44.
  • Atıcı, T. (2022). Tuz Gölü Özel Çevre Koruma Bölgesi Göllerinde Alg Çeşitliliği ve Potansiyel Siyanobakteri Toksisitesi. Türler ve Habitatlar 3(2): 94-109.
  • Atıcı, T., Obalı, O., Akköz, C. & Elmacı, A. (2001). Isolation and Identification of Halophytic Algae from Salty Soil around Salt Lake of Turkey. Pakistan Journal of Biological Sciences 4(3): 298-300.
  • Castenholz, R.W. (2001). [General Characteristics of the Cyanobacteria] In: Boone, R.D., Castenholz, R.W. & Garrity, G.M. (Eds.). Bergey's Manual of Systematic Bacteriology. Volume One: The Archaea and the Deeply Branching and Phototrophic Bacteria. Springer, pp. 474-487.
  • Dadheech, P.K., Mahmoud, H., Kotut, K. & Krienitz, L. (2014). Desertifilum fontinale sp. nov. (Oscillatoriales, Cyanobacteria) from a warm spring in East Africa, based on conventional and molecular studies. Fottea 14: 129-140.
  • Des Marais, D.J. (2023). Biogeochemistry of Hypersaline Microbial Mats Illustrates the Dynamics of Modern Microbial Ecosystems and the Early Evolution of the Biosphere. Biological Bulletin 204(2):160-167. DOI: https://doi.org/10.2307/1543552.
  • Douglas, S.E. (1994). [Chloroplast origins and evolution]. In: Bryant, D.A. (Ed.). The Molecular Biology of Cyanobacteria. Advances in Photosynthesis. Vol 1, Springer, Dordrecht, pp. 91-118.
  • Gerrath, J.F. & Denny, P. (1980). Freshwater algae of Sierra Leone III. Cyanophyta, Chrysophyta, Xantophyta, Chloromonadophyta, Cryptophyta, Dinophyta. Nova Hedwigia 33: 445-463.
  • Guiry, M. & Guiry, G.M. (2022). AlgaeBase. World-wide electronic publication. National University of Ireland, Galway. https://www.algaebase.org [22.03.2025]
  • Humm, H.J. & Wick, S.R. (1980). Introduction and guide to the Marine Blue-Green Algae. John Wiley and Sons, Brisbane.
  • Javor, B. (1989). Hypersaline Environments. Springer-Verlag, Berlin.
  • Khayatan, B., Meeks, J.C. & Risser, D.D. (2015). Evidence that a modified type IV pilus‐like system powers gliding motility and polysaccharide secretion in filamentous cyanobacteria. Molecular Microbiology 98(6): 1021-1036. DOI: https://doi.org/10.1111/mmi.13205.
  • Koch, M., Noonan, A.J.C., Qiu, Y., Dofher, K., Kieft, B., Mottahedeh, S., Shastri, M. & Hallam, S.J. (2022). The survivor strain: isolation and characterization of Phormidium yuhuli AB48, a filamentous phototactic cyanobacterium with biotechnological potential. Front Bioeng Biotechnol 10: 932695. DOI: https://doi.org/10.3389/fbioe.2022.932695.
  • Komárek, J. (2010). Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia 639: 245-259. DOI: https://doi.org/10.1007/s10750-009-0031-3.
  • Komárek, J. & Anagnostidis, K. (1998). Cyanoprokaryota 1. Chroococcales]. In: Ettl, H., Gärtner, G., Heynig, H. & Mollenhauer, D. (Eds). Süsswasserflora von Mitteleuropa 19/1. Gustav Fischer, Jena-Stuttgart-Lübeck-Ulm.
  • Komárek, J., Kaštovský, J., Mareš, J. & Johansen, J.R. (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera), using a polyphyletic approach. Preslia 86: 295-335.
  • Lamprinou, V., Skaraki, K., Kotoulas, G., Anagnostidis, K., Economou-Amilli, A. & Pantazidou, A. (2013). A new species of Phormidium (Cyanobacteria, Oscillatoriales) from three Greek Caves: morphological and molecular analysis. Fundam Appl Limnol 182(2): 109-116. DOI: https://doi.org/10.1127/1863-9135/2013/0323.
  • Nies, F., Wörner, S., Wunsch, N., Armant, O., Sharma, V., Hesselschwerdt, A., Falk, F., Weber, N., Weiß, J., Trautmann, A., Posten, C., Prakash, T. & Lamparter, T. (2017). Characterization of Phormidium lacuna strains from the North Sea and the Mediterranean Sea for biotechnological applications. Process Biochemistry 59(B): 194-206. DOI: https://doi.org/10.1016/j.procbio.2017.05.015.
  • Pisciotta, J.M., Zou, Y. & Baskakov, I.V. (2010). Light-dependent electrogenic activity of cyanobacteria. PloS One 5(5): e10821. DOI: https://doi.org/10.1371/journal.pone.0010821.
  • Round, F.E. (1984). The Ecology of Algae. Cambridge University Press, Cambridge.
  • Schuergers, N., Mullineaux, C. W., & Wilde, A. (2017). Cyanobacteria in motion. Curr Opin Plant Biol 37: 109-115. DOI: https://doi.org/10.1016/j.pbi.2017.03.018.
  • Shelknanloymilan, L., Atıcı, T. & Obalı, O. (2012). Removal of nitrogen and phosphate by using Chlorella vulgaris on synthetic and organic materials wastewater. Biological Diversity and Conservation 5(2): 89-94.
  • Shi, T. & Falkowski, P.G. (2008). Genome evolution in cyanobacteria: the stable core and the variable shell. Proc Natl Acad Sci 105: 2510-2515. DOI: https://doi.org/10.1073/ pnas.0711165105
  • Stanier, R.Y., Adelberg, E.A. & Ingraham, J. (1976). The Microbial World. The Blue-Green Bacteria. 13th Ed., Prentice-Hall, Englewood Cliffs, New Jersey.
  • Stainer, R.Y. & Cohen-Bazire, C.G. (1977). Phototrophic Prokaryotes: The Cyanobacteria. Ann Rev Microbiol 31: 225-274.
  • Walsby, A.E. (1987). [Mechanisms of buoyancy regulation by planktonic cyanobacteria with gas vesicles]. In: Fay, P. & Van Baalen, C. (Eds.). The Cyanobacteria: A Comprehensive Review. Elsevier, Amsterdam, pp. 376-392.
  • Walsby, A.E., Yacobi, Y. & Zohary, T. (2003). Annual changes in the mixed depth and critical depth for photosynthesis by Aphanizomenon ovalisporum that allow growth of the cyanobacterium in Lake Kinneret. Israel Journal of Plankton 25 (6): 608-613.
  • Whitton, B.A. (2012). The Ecology of Cyanobacteria II: Their Diversity in Time and Space. Springer, Dordrecht.
  • Whitton, B.A. & Potts, M. (2000). Introduction to Cyanobacteria, The Ecology of Cyanobacteria, Their Diversity in Time and Space. Kluwer Academic, Hingham.
  • Wilde, A. & Mullineaux, C.W. (2015). Motility in cyanobacteria: polysaccharide tracks and Type IV pilus motors. Molecular Microbiology 98(6): 998-1001. DOI: https://doi.org/ 10.1111/mmi.13242.

A new species of Phormidium (Cyanobacteria, Oscillatoriales), Lake Tuz (Türkiye)

Yıl 2025, Cilt: 6 Sayı: 1, 20 - 29, 15.06.2025
https://doi.org/10.53803/turvehab.1679198

Öz

Some interesting Cyanobacteria (Oscillatoriales) samples adapted to the high salt environment were collected from shore of Lake Tuz (Central Anatolia, Türkiye). After detailed examination, it was determined that the samples belonged to the Phormidium genus, but had some differences in trichome structure and cell size. As a result of comparison with similar species of the genus, it was determined that these differences were of species-level importance. Based on morphological and ecological data, the Lake Tuz samples, which were decided to be a new species for the scientific world, were named Phormidium obaliae. The samples of the new species grow in regions with high saltwater, where seasonal streams flow into Lake Tuz. Phormidium obaliae is closely related to P. coricum and P. retzi. However, in P. obaliae, the apical cells are dome-shaped (not truncated), and the sheaths are thin and colorless (not thick and dark green to brown). The description of the new species, its comparison with similar taxa, informative photographs, and some of its ecological preferences are given in this study.

Teşekkür

Bu makalede düzenleme ve anahtar oluşturma çalışmalarına destek veren Prof. Dr. Ergin HAMZAOĞLU'na teşekkür ederim.

Kaynakça

  • Anagnostidis, K. & Komárek, J. (1988). Modern approach to the classification system of the Cyanophytes 3: Oscillatoriales. Algological Studies 50: 327-472.
  • Asadi, A., Khavari-Nejad, R., Soltani, N., Najafi, F. & Molaie-Rad, A. (2011). Physiological and antimicrobial characterizations of some cyanobacteria isolated from the rice fields in Iran. Journal of Agricultural Technology 7(3): 649-663.
  • Atıcı, T. (2020). Production and collection of microalgae isolated from freshwater reserves in Central Anatolia, Turkey. Türler ve Habitatlar 1(1): 37-44.
  • Atıcı, T. (2022). Tuz Gölü Özel Çevre Koruma Bölgesi Göllerinde Alg Çeşitliliği ve Potansiyel Siyanobakteri Toksisitesi. Türler ve Habitatlar 3(2): 94-109.
  • Atıcı, T., Obalı, O., Akköz, C. & Elmacı, A. (2001). Isolation and Identification of Halophytic Algae from Salty Soil around Salt Lake of Turkey. Pakistan Journal of Biological Sciences 4(3): 298-300.
  • Castenholz, R.W. (2001). [General Characteristics of the Cyanobacteria] In: Boone, R.D., Castenholz, R.W. & Garrity, G.M. (Eds.). Bergey's Manual of Systematic Bacteriology. Volume One: The Archaea and the Deeply Branching and Phototrophic Bacteria. Springer, pp. 474-487.
  • Dadheech, P.K., Mahmoud, H., Kotut, K. & Krienitz, L. (2014). Desertifilum fontinale sp. nov. (Oscillatoriales, Cyanobacteria) from a warm spring in East Africa, based on conventional and molecular studies. Fottea 14: 129-140.
  • Des Marais, D.J. (2023). Biogeochemistry of Hypersaline Microbial Mats Illustrates the Dynamics of Modern Microbial Ecosystems and the Early Evolution of the Biosphere. Biological Bulletin 204(2):160-167. DOI: https://doi.org/10.2307/1543552.
  • Douglas, S.E. (1994). [Chloroplast origins and evolution]. In: Bryant, D.A. (Ed.). The Molecular Biology of Cyanobacteria. Advances in Photosynthesis. Vol 1, Springer, Dordrecht, pp. 91-118.
  • Gerrath, J.F. & Denny, P. (1980). Freshwater algae of Sierra Leone III. Cyanophyta, Chrysophyta, Xantophyta, Chloromonadophyta, Cryptophyta, Dinophyta. Nova Hedwigia 33: 445-463.
  • Guiry, M. & Guiry, G.M. (2022). AlgaeBase. World-wide electronic publication. National University of Ireland, Galway. https://www.algaebase.org [22.03.2025]
  • Humm, H.J. & Wick, S.R. (1980). Introduction and guide to the Marine Blue-Green Algae. John Wiley and Sons, Brisbane.
  • Javor, B. (1989). Hypersaline Environments. Springer-Verlag, Berlin.
  • Khayatan, B., Meeks, J.C. & Risser, D.D. (2015). Evidence that a modified type IV pilus‐like system powers gliding motility and polysaccharide secretion in filamentous cyanobacteria. Molecular Microbiology 98(6): 1021-1036. DOI: https://doi.org/10.1111/mmi.13205.
  • Koch, M., Noonan, A.J.C., Qiu, Y., Dofher, K., Kieft, B., Mottahedeh, S., Shastri, M. & Hallam, S.J. (2022). The survivor strain: isolation and characterization of Phormidium yuhuli AB48, a filamentous phototactic cyanobacterium with biotechnological potential. Front Bioeng Biotechnol 10: 932695. DOI: https://doi.org/10.3389/fbioe.2022.932695.
  • Komárek, J. (2010). Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia 639: 245-259. DOI: https://doi.org/10.1007/s10750-009-0031-3.
  • Komárek, J. & Anagnostidis, K. (1998). Cyanoprokaryota 1. Chroococcales]. In: Ettl, H., Gärtner, G., Heynig, H. & Mollenhauer, D. (Eds). Süsswasserflora von Mitteleuropa 19/1. Gustav Fischer, Jena-Stuttgart-Lübeck-Ulm.
  • Komárek, J., Kaštovský, J., Mareš, J. & Johansen, J.R. (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera), using a polyphyletic approach. Preslia 86: 295-335.
  • Lamprinou, V., Skaraki, K., Kotoulas, G., Anagnostidis, K., Economou-Amilli, A. & Pantazidou, A. (2013). A new species of Phormidium (Cyanobacteria, Oscillatoriales) from three Greek Caves: morphological and molecular analysis. Fundam Appl Limnol 182(2): 109-116. DOI: https://doi.org/10.1127/1863-9135/2013/0323.
  • Nies, F., Wörner, S., Wunsch, N., Armant, O., Sharma, V., Hesselschwerdt, A., Falk, F., Weber, N., Weiß, J., Trautmann, A., Posten, C., Prakash, T. & Lamparter, T. (2017). Characterization of Phormidium lacuna strains from the North Sea and the Mediterranean Sea for biotechnological applications. Process Biochemistry 59(B): 194-206. DOI: https://doi.org/10.1016/j.procbio.2017.05.015.
  • Pisciotta, J.M., Zou, Y. & Baskakov, I.V. (2010). Light-dependent electrogenic activity of cyanobacteria. PloS One 5(5): e10821. DOI: https://doi.org/10.1371/journal.pone.0010821.
  • Round, F.E. (1984). The Ecology of Algae. Cambridge University Press, Cambridge.
  • Schuergers, N., Mullineaux, C. W., & Wilde, A. (2017). Cyanobacteria in motion. Curr Opin Plant Biol 37: 109-115. DOI: https://doi.org/10.1016/j.pbi.2017.03.018.
  • Shelknanloymilan, L., Atıcı, T. & Obalı, O. (2012). Removal of nitrogen and phosphate by using Chlorella vulgaris on synthetic and organic materials wastewater. Biological Diversity and Conservation 5(2): 89-94.
  • Shi, T. & Falkowski, P.G. (2008). Genome evolution in cyanobacteria: the stable core and the variable shell. Proc Natl Acad Sci 105: 2510-2515. DOI: https://doi.org/10.1073/ pnas.0711165105
  • Stanier, R.Y., Adelberg, E.A. & Ingraham, J. (1976). The Microbial World. The Blue-Green Bacteria. 13th Ed., Prentice-Hall, Englewood Cliffs, New Jersey.
  • Stainer, R.Y. & Cohen-Bazire, C.G. (1977). Phototrophic Prokaryotes: The Cyanobacteria. Ann Rev Microbiol 31: 225-274.
  • Walsby, A.E. (1987). [Mechanisms of buoyancy regulation by planktonic cyanobacteria with gas vesicles]. In: Fay, P. & Van Baalen, C. (Eds.). The Cyanobacteria: A Comprehensive Review. Elsevier, Amsterdam, pp. 376-392.
  • Walsby, A.E., Yacobi, Y. & Zohary, T. (2003). Annual changes in the mixed depth and critical depth for photosynthesis by Aphanizomenon ovalisporum that allow growth of the cyanobacterium in Lake Kinneret. Israel Journal of Plankton 25 (6): 608-613.
  • Whitton, B.A. (2012). The Ecology of Cyanobacteria II: Their Diversity in Time and Space. Springer, Dordrecht.
  • Whitton, B.A. & Potts, M. (2000). Introduction to Cyanobacteria, The Ecology of Cyanobacteria, Their Diversity in Time and Space. Kluwer Academic, Hingham.
  • Wilde, A. & Mullineaux, C.W. (2015). Motility in cyanobacteria: polysaccharide tracks and Type IV pilus motors. Molecular Microbiology 98(6): 998-1001. DOI: https://doi.org/ 10.1111/mmi.13242.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Algoloji
Bölüm Araştırma Makaleleri
Yazarlar

Tahir Atıcı 0000-0002-3396-3407

Erken Görünüm Tarihi 20 Mayıs 2025
Yayımlanma Tarihi 15 Haziran 2025
Gönderilme Tarihi 18 Nisan 2025
Kabul Tarihi 7 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 1

Kaynak Göster

APA Atıcı, T. (2025). A new species of Phormidium (Cyanobacteria, Oscillatoriales), Lake Tuz (Türkiye). Türler ve Habitatlar, 6(1), 20-29. https://doi.org/10.53803/turvehab.1679198
AMA Atıcı T. A new species of Phormidium (Cyanobacteria, Oscillatoriales), Lake Tuz (Türkiye). turvehab. Haziran 2025;6(1):20-29. doi:10.53803/turvehab.1679198
Chicago Atıcı, Tahir. “A new species of Phormidium (Cyanobacteria, Oscillatoriales), Lake Tuz (Türkiye)”. Türler ve Habitatlar 6, sy. 1 (Haziran 2025): 20-29. https://doi.org/10.53803/turvehab.1679198.
EndNote Atıcı T (01 Haziran 2025) A new species of Phormidium (Cyanobacteria, Oscillatoriales), Lake Tuz (Türkiye). Türler ve Habitatlar 6 1 20–29.
IEEE T. Atıcı, “A new species of Phormidium (Cyanobacteria, Oscillatoriales), Lake Tuz (Türkiye)”, turvehab, c. 6, sy. 1, ss. 20–29, 2025, doi: 10.53803/turvehab.1679198.
ISNAD Atıcı, Tahir. “A new species of Phormidium (Cyanobacteria, Oscillatoriales), Lake Tuz (Türkiye)”. Türler ve Habitatlar 6/1 (Haziran2025), 20-29. https://doi.org/10.53803/turvehab.1679198.
JAMA Atıcı T. A new species of Phormidium (Cyanobacteria, Oscillatoriales), Lake Tuz (Türkiye). turvehab. 2025;6:20–29.
MLA Atıcı, Tahir. “A new species of Phormidium (Cyanobacteria, Oscillatoriales), Lake Tuz (Türkiye)”. Türler ve Habitatlar, c. 6, sy. 1, 2025, ss. 20-29, doi:10.53803/turvehab.1679198.
Vancouver Atıcı T. A new species of Phormidium (Cyanobacteria, Oscillatoriales), Lake Tuz (Türkiye). turvehab. 2025;6(1):20-9.