Araştırma Makalesi
BibTex RIS Kaynak Göster

Öğrencilerin Programlama Derslerinde Üretken Yapay Zekâ Araçlarını Kabulü: Genişletilmiş Teknoloji Kabul Modeli ile Türkiye'den Bulgular

Yıl 2025, Cilt: 8 Sayı: 4, 543 - 556, 24.12.2025

Öz

Bu çalışma, üretken yapay zekâ (YZ) araçlarının, özellikle bilişim alanlarında öğrenim gören üniversite öğrencileri tarafından programlama derslerinde benimsenme niyetini etkileyen faktörleri incelemektedir. Teknoloji Kabul Modeli (TKM), Öz Yeterlik (ÖY), Algılanan Güven (AG), Algılanan Risk (AR) ve Bağımlılık Endişesi (BE) ile genişletilmiştir. Veriler, Türkiye’deki 305 lisans öğrencisinden çevrim içi anket yoluyla toplanmış ve Yapısal Eşitlik Modellemesi ile analiz edilmiştir. Bulgular, Algılanan Fayda (AF) ve Algılanan Kullanım Kolaylığı’nın (AKK), kullanma niyetini anlamlı biçimde yordadığını göstermektedir. AG’nin hem AF hem de AKK üzerinde pozitif etkisi bulunurken, ÖY’nin de AKK üzerinde anlamlı etkisi gözlenmiştir. Ayrıca, ÖY ile BE arasında pozitif bir ilişki tespit edilmiştir (β = 0.506). Bu sonuç, teknolojik yetkinliği yüksek öğrencilerin, potansiyel bağımlılık risklerine daha duyarlı olabileceğini göstermektedir. Çalışma, YZ araçlarının eğitimde kabulüne dair literatüre özgün katkılar sunmaktadır.

Kaynakça

  • Amin, S., Hellström, J., & Hintze, A. (2024). Can ChatGPT code the technical part of a bachelor’s thesis in informatics? Qeios. [https://doi.org/10.32388/AAAJ8N](https://doi.org/10.32388/AAAJ8N)
  • Arpacı, I. (2016). Understanding and predicting students’ intention to use mobile cloud storage services. Computers in Human Behavior, 58, 150–157. [https://doi.org/10.1016/j.chb.2015.12.067](https://doi.org/10.1016/j.chb.2015.12.067)
  • Aruğaslan, E. (2025). Doktora öğrencilerinin yapay zekâ kullanımı üzerine nitel bir çalışma. Üniversite Araştırmaları Dergisi (Journal of University Research), 8(1), 36–53. [https://doi.org/10.32329/uad.1557111](https://doi.org/10.32329/uad.1557111)
  • Asan, O., Bayrak, A. E., & Choudhury, A. (2020). Artificial intelligence and human trust in healthcare: Focus on clinicians. Journal of Medical Internet Research, 22(6), e15154. [https://doi.org/10.2196/15154](https://doi.org/10.2196/15154)
  • Bahi, A., Gharib, J., & Gahi, Y. (2024). Integrating generative AI for advancing agile software development and mitigating project management challenges. International Journal of Advanced Computer Science and Applications, 15(3). [https://doi.org/10.14569/IJACSA.2024.0150306](https://doi.org/10.14569/IJACSA.2024.0150306)
  • Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Prentice Hall.
  • Biswas, S. (2023). Role of ChatGPT in computer programming. Mesopotamian Journal of Computer Science, 2023, 9–15. [https://doi.org/10.58496/MJCSC/2023/002](https://doi.org/10.58496/MJCSC/2023/002)
  • Budu, K. W. A., Mu, Y., & Mireku, K. K. (2018). Investigating the effect of behavioral intention on e-learning systems usage: Empirical study on tertiary education institutions in Ghana. Mediterranean Journal of Social Sciences, 9(3), 201–216. [https://doi.org/10.2478/mjss-2018-0062](https://doi.org/10.2478/mjss-2018-0062)
  • Cao, Y., Aziz, A. A., & Arshad, W. N. R. M. (2023). University students’ perspectives on artificial intelligence: A survey of attitudes and awareness among interior architecture students. IJERI: International Journal of Educational Research and Innovation, (20), 1–21. [https://doi.org/10.46661/ijeri.8429](https://doi.org/10.46661/ijeri.8429)
  • Chavez, J. V., Cuilan, J. T., Mannan, S. S., Ibrahim, N. U., Carolino, A. A., Radjuni, A., Albani, S. E., & Garil, B. A. (2024). Discourse analysis on the ethical dilemmas on the use of AI in academic settings from ICT, science, and language instructors. Forum for Linguistic Studies, 6(5), 349–363. [https://doi.org/10.30564/fls.v6i5.6765](https://doi.org/10.30564/fls.v6i5.6765)
  • Chen, D., Liu, W., & Liu, X. (2024). What drives college students to use AI for L2 learning? Modeling the roles of self-efficacy, anxiety, and attitude based on an extended technology acceptance model. Acta Psychologica, 249, 104442. [https://doi.org/10.1016/j.actpsy.2024.104442](https://doi.org/10.1016/j.actpsy.2024.104442)
  • Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19(2), 189–211. [https://doi.org/10.2307/249688](https://doi.org/10.2307/249688)
  • Çelik, K., & Özköse, H. (2023). Investigation of factors affecting mobile banking intention to use: Extended technology acceptance model. İşletme Araştırmaları Dergisi, 15(2), 1517–1530. [https://isarder.org/index.php/isarder/article/view/1954](https://isarder.org/index.php/isarder/article/view/1954)
  • Dahri, N. A., Yahaya, N., Al-Rahmi, W. M., Aldraiweesh, A., Alturki, U., Almutairy, S., Shutaleva, A., & Soomro, R. B. (2024). Extended TAM based acceptance of AI-Powered ChatGPT for supporting metacognitive self-regulated learning in education: A mixed-methods study. Heliyon, 10(8), e29317. [https://doi.org/10.1016/j.heliyon.2024.e29317](https://doi.org/10.1016/j.heliyon.2024.e29317)
  • Damyanov, I., Tsankov, N., & Nedyalkov, I. (2024). Applications of generative artificial intelligence in the software industry. TEM Journal, 13(4), 2724–2733. [https://doi.org/10.18421/TEM134-10](https://doi.org/10.18421/TEM134-10)
  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. [https://doi.org/10.2307/249008](https://doi.org/10.2307/249008)
  • Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003. [https://doi.org/10.1287/mnsc.35.8.982](https://doi.org/10.1287/mnsc.35.8.982)
  • Digital Education Council. (2024, August 7). Key results from DEC Global AI Student Survey 2024. Digital Education Council. [https://www.digitaleducationcouncil.com/post/what-students-want-key-results-from-dec-global-ai-student-survey-2024](https://www.digitaleducationcouncil.com/post/what-students-want-key-results-from-dec-global-ai-student-survey-2024)
  • Ebert, C., Arockiasamy, J., Hettich, L., & Weyrich, M. (2024). Hints for generative AI software development. IEEE Software, 41(5), 24–33. [https://doi.org/10.1109/MS.2024.3410641](https://doi.org/10.1109/MS.2024.3410641)
  • Estrada-Araoz, E. G., Mamani-Roque, M., Quispe-Aquise, J., Manrique-Jaramillo, Y. V., & Cruz-Laricano, E. O. (2025). Academic self-efficacy and dependence on artificial intelligence in a sample of university students. Sapienza: International Journal of Interdisciplinary Studies, 6(1), e25008. [https://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/916](https://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/916)
  • Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: A perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451–474. [https://doi.org/10.1016/S1071-5819(03)00111-3](https://doi.org/10.1016/S1071-5819(03)00111-3)
  • Finnie-Ansley, J., Denny, P., Becker, B. A., Luxton-Reilly, A., & Prather, J. (2022). The robots are coming: Exploring the implications of OpenAI Codex on introductory programming. In Proceedings of the 24th Australasian Computing Education Conference (ACE ’22) (ss. 10–19). ACM. [https://doi.org/10.1145/3511861.3511863](https://doi.org/10.1145/3511861.3511863)
  • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. [https://doi.org/10.1177/002224378101800104](https://doi.org/10.1177/002224378101800104)
  • Fussell, S. G., & Truong, D. (2022). Using virtual reality for dynamic learning: An extended technology acceptance model. Virtual Reality, 26(1), 249–267. [https://doi.org/10.1007/s10055-021-00554-x](https://doi.org/10.1007/s10055-021-00554-x)
  • Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. MIS Quarterly, 27(1), 51–90. [https://doi.org/10.2307/30036519](https://doi.org/10.2307/30036519)
  • Grand View Research. (n.d.). Artificial intelligence market size, share & trends analysis report by solution, by technology (deep learning, machine learning, NLP, machine vision, generative AI), by function, by end-use, by region, and segment forecasts, 2025–2030. Grand View Research, Inc. Erişim: 5 Eylül 2025, [https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-market](https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-market)
  • Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Pearson Prentice Hall.
  • Hendler, J. (2023). Understanding the limits of AI coding. Science, 379(6632), 548. [https://doi.org/10.1126/science.adg4246](https://doi.org/10.1126/science.adg4246)
  • HolonIQ. (2020, August 6). Global education technology market to reach $404B by 2025. [https://www.holoniq.com/notes/global-education-technology-market-to-reach-404b-by-2025](https://www.holoniq.com/notes/global-education-technology-market-to-reach-404b-by-2025)
  • HolonIQ. (2021, February 23). Sizing the global EdTech market. [https://www.holoniq.com/notes/sizing-the-global-edtech-market](https://www.holoniq.com/notes/sizing-the-global-edtech-market)
  • Jacoby, J., & Kaplan, L. B. (1972). The components of perceived risk. In M. Venkatesan (Ed.), Proceedings of the Third Annual Conference of the Association for Consumer Research (pp. 382–393). Association for Consumer Research.
  • Kanont, K., Pingmuang, P., Simasathien, T., Wisnuwong, S., Wiwatsiripong, B., Poonpirome, K., … Khlaisang, J. (2024). Generative-AI, a learning assistant? Factors influencing higher-ed students’ technology acceptance. The Electronic Journal of e-Learning, 22(6), 18–33. [https://doi.org/10.34190/ejel.22.6.3196](https://doi.org/10.34190/ejel.22.6.3196)
  • Kazemitabaar, M., Ye, R., Wang, X., Henley, A. Z., Denny, P., Craig, M., & Grossman, T. (2024). CodeAid: Evaluating a classroom deployment of an LLM-based programming assistant that balances student and educator needs. In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems (CHI ’24) (pp. 1–20). ACM. [https://doi.org/10.1145/3613904.3642773](https://doi.org/10.1145/3613904.3642773)
  • Kelly, S., Kaye, S. A., & Oviedo-Trespalacios, O. (2023). What factors contribute to the acceptance of artificial intelligence? A systematic review. Telematics and Informatics, 77, 101925. [https://doi.org/10.1016/j.tele.2022.101925](https://doi.org/10.1016/j.tele.2022.101925)
  • Kimmel, B., Geisert, A. L., Yaro, L., Gipson, B., Hotchkiss, R. T., Osae-Asante, S. K., Vaught, H., Wininger, G., & Yamaguchi, C. (2024, May). Enhancing programming error messages in real time with generative AI. In Extended Abstracts of the 2024 CHI Conference on Human Factors in Computing Systems (CHI EA ’24) (Article 608, 1–7). ACM. [https://doi.org/10.1145/3613905.3647967](https://doi.org/10.1145/3613905.3647967)
  • Kline, R. B. (2015). Principles and practice of structural equation modeling (4th ed.). Guilford Press.
  • Krishna, K., Murthy, P., & Sarangi, S. (2024). Exploring the synergy between generative AI and software engineering: Automating code optimization and bug fixing. World Journal of Advanced Engineering Technology and Sciences, 13(1), 682–691. [https://doi.org/10.30574/wjaets.2024.13.1.0464](https://doi.org/10.30574/wjaets.2024.13.1.0464)
  • Lee, M. C. (2009). Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electronic Commerce Research and Applications, 8(3), 130–141. [https://doi.org/10.1016/j.elerap.2008.11.006](https://doi.org/10.1016/j.elerap.2008.11.006)
  • Libert, K., Mosconi, E., & Cadieux, N. (2020). Human–machine interaction and human resource management perspective for collaborative robotics implementation and adoption. In Proceedings of the 53rd Hawaii International Conference on System Sciences (HICSS) (pp. 1–10). [https://doi.org/10.24251/HICSS.2020.066](https://doi.org/10.24251/HICSS.2020.066)
  • Martins, C., Oliveira, T., & Popovič, A. (2014). Understanding the internet banking adoption: A unified theory of acceptance and use of technology and perceived risk application. International Journal of Information Management, 34(1), 1–12. [https://doi.org/10.1016/j.ijinfomgt.2013.06.002](https://doi.org/10.1016/j.ijinfomgt.2013.06.002)
  • McKnight, D. H., Carter, M., Thatcher, J. B., & Clay, P. F. (2011). Trust in a specific technology: An investigation of its components and measures. ACM Transactions on Management Information Systems, 2(2), 1–25. [https://doi.org/10.1145/1985347.1985353](https://doi.org/10.1145/1985347.1985353)
  • McKnight, D. H., Choudhury, V., & Kacmar, C. (2002). Developing and validating trust measures for e-commerce: An integrative typology. Information Systems Research, 13(3), 334–359. [https://doi.org/10.1287/isre.13.3.334.81](https://doi.org/10.1287/isre.13.3.334.81)
  • Meng, N., Mat Deli, M., & Abdul Rauf, U. A. (2024). Predicting Mainland Chinese students in Malaysia’s AI-based chatbot satisfaction and academic performance: Mediating moderating analysis. Research Square (Version 1). [https://doi.org/10.21203/rs.3.rs-5322062/v1](https://doi.org/10.21203/rs.3.rs-5322062/v1)
  • Morales-García, W. C., Sairitupa-Sanchez, L. Z., Morales-García, S. B., & Morales-García, M. (2024). Development and validation of a scale for dependence on artificial intelligence in university students. Frontiers in Education, 9, 1323898. [https://doi.org/10.3389/feduc.2024.1323898](https://doi.org/10.3389/feduc.2024.1323898)
  • Morales-García, W. C., Sairitupa-Sanchez, L. Z., Flores-Paredes, A., Pascual-Mariño, J., & Morales-García, M. (2025). Influence of self-efficacy in the use of artificial intelligence (AI) and anxiety toward AI use on AI dependence among Peruvian university students. Data and Metadata, 4, 210. [https://doi.org/10.56294/dm2025210](https://doi.org/10.56294/dm2025210)
  • Pan, Z., Xie, Z., Liu, T., & Xia, T. (2024). Exploring the key factors influencing college students’ willingness to use AI coding assistant tools: An expanded technology acceptance model. Systems, 12(5), 176. [https://doi.org/10.3390/systems12050176](https://doi.org/10.3390/systems12050176)
  • Passi, S., & Vorvoreanu, M. (2022, June 21). Overreliance on AI: Literature review. Microsoft Research. [https://www.microsoft.com/en-us/research/publication/overreliance-on-ai-literature-review/](https://www.microsoft.com/en-us/research/publication/overreliance-on-ai-literature-review/)
  • Petrovska, O., Clift, L., Moller, F., & Pearsall, R. (2024). Incorporating generative AI into software development education. In Proceedings of the ACM Conference on Global Computing Education (CompEd ’24) (pp. 37–40). ACM. [https://doi.org/10.1145/3633053.3633057](https://doi.org/10.1145/3633053.3633057)
  • Polyportis, A., & Pachos-Fokialis, N. (2024). Understanding students’ adoption of the ChatGPT chatbot in higher education: The role of anthropomorphism, trust, design novelty and institutional policy. Behaviour & Information Technology, 44(2), 315–336. [https://doi.org/10.1080/0144929X.2024.2317364](https://doi.org/10.1080/0144929X.2024.2317364)
  • Yang, Q. (2024). Systematic evaluation of AI-generated Python code: A comparative study across progressive programming tasks. Research Square (Version 1). [https://doi.org/10.21203/rs.3.rs-4955982/v1](https://doi.org/10.21203/rs.3.rs-4955982/v1)
  • Rahman, M. M., & Watanobe, Y. (2023). ChatGPT for education and research: Opportunities, threats, and strategies. Applied Sciences, 13(9), 5783. [https://doi.org/10.3390/app13095783](https://doi.org/10.3390/app13095783)
  • Ratta, R., Sodhi, J., & Saxena, U. (2025). The relevance of trust in the implementation of AI-driven clinical decision support systems by healthcare professionals: An extended UTAUT model. Electronic Journal of Knowledge Management, 23(1), 47–66. [https://doi.org/10.34190/ejkm.23.1.3499](https://doi.org/10.34190/ejkm.23.1.3499)
  • Salloum, S. A., Al-Emran, M., Shaalan, K., & Tarhini, A. (2019). Factors affecting the e-learning acceptance: A case study from UAE. Education and Information Technologies, 24(1), 509–530. [https://doi.org/10.1007/s10639-018-9786-3](https://doi.org/10.1007/s10639-018-9786-3)
  • Sbaffi, L., & Rowley, J. (2017). Trust and credibility in web-based health information: A review and agenda for future research. Journal of Medical Internet Research, 19(6), e218. [https://doi.org/10.2196/jmir.7579](https://doi.org/10.2196/jmir.7579)
  • Scherer, R., Siddiq, F., & Tondeur, J. (2019). The Technology Acceptance Model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Computers & Education, 128, 13–35. [https://doi.org/10.1016/j.compedu.2018.09.009](https://doi.org/10.1016/j.compedu.2018.09.009)
  • Seo, K., Tang, J., Roll, I, Fels, S., & Yoon, D. (2021). The impact of artificial intelligence on learner–instructor interaction in online learning. International Journal of Educational Technology in Higher Education, 18(1), 54. [https://doi.org/10.1186/s41239-021-00292-9](https://doi.org/10.1186/s41239-021-00292-9)
  • Shata, A., & Hartley, K. (2025). Artificial intelligence and communication technologies in academia: Faculty perceptions and the adoption of generative AI. International Journal of Educational Technology in Higher Education, 22, 14. [https://doi.org/10.1186/s41239-025-00511-7](https://doi.org/10.1186/s41239-025-00511-7)
  • Silva, C. A. G. d., Ramos, F. N., de Moraes, R. V., & Santos, E. L. d. (2024). ChatGPT: Challenges and benefits in software programming for higher education. Sustainability, 16(3), 1245. [https://doi.org/10.3390/su16031245](https://doi.org/10.3390/su16031245)
  • Stack Overflow. (2023, June 13). Stack Overflow Developer Survey 2023. [https://survey.stackoverflow.co/2023/](https://survey.stackoverflow.co/2023/) (Erişim: 15 Temmuz 2025)
  • Su, Y., Zhu, Z., Chen, J., Jin, Y., Wang, T., Lin, C.-L., & Xu, D. (2021). Factors influencing entrepreneurial intention of university students in China: Integrating the perceived university support and theory of planned behavior. Sustainability, 13(8), 4519. [https://doi.org/10.3390/su13084519](https://doi.org/10.3390/su13084519)
  • Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204. [https://doi.org/10.1287/mnsc.46.2.186.11926](https://doi.org/10.1287/mnsc.46.2.186.11926)
  • Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. [https://doi.org/10.2307/30036540](https://doi.org/10.2307/30036540)
  • Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157–178. [https://doi.org/10.2307/41410412](https://doi.org/10.2307/41410412)
  • Wamba-Taguimdje, S., Wamba, S. F., & Twinomurinzi, H. (2024). Why Should Users Take the Risk of Sustainable Use of Generative Artificial Intelligence Chatbots: An Exploration of ChatGPT’s Use. Journal of Global Information Management (JGIM), 32(1), 1–32. [https://doi.org/10.4018/JGIM.365600](https://doi.org/10.4018/JGIM.365600)
  • Wu, D., Zhang, S., Ma, Z., Yue, X.-G., & Dong, R. K. (2024). Unlocking potential: Key factors shaping undergraduate self-directed learning in AI-enhanced educational environments. Systems, 12(9), 332. [https://doi.org/10.3390/systems12090332](https://doi.org/10.3390/systems12090332)
  • Xiong, Y., Shi, Y., Pu, Q., & Liu, N. (2023). More trust or more risk? User acceptance of artificial intelligence virtual assistant. Human Factors and Ergonomics in Manufacturing & Service Industries, 34(3), 190–205. [https://doi.org/10.1002/hfm.21020](https://doi.org/10.1002/hfm.21020)
  • Yao, N., & Wang, Q. (2024). Factors influencing pre-service special education teachers’ intention toward AI in education: Digital literacy, teacher self-efficacy, perceived ease of use, and perceived usefulness. Heliyon, 10(14), e34894. [https://doi.org/10.1016/j.heliyon.2024.e34894](https://doi.org/10.1016/j.heliyon.2024.e34894)
  • Zaman, S. (2025). Assessing students’ behavioral intentions towards AI-based learning tools. Journal of Asian Development Studies, 14(1), 656–672. [https://doi.org/10.62345/jads.2025.14.1.50](https://doi.org/10.62345/jads.2025.14.1.50)
  • Zeng, E., Liu, R., & Feng, Y. (2025). Analysis of user intention to use AI-assisted customized fashion design software in the dimension of interaction design—An empirical study in China based on an extended TAM model. Research Square (Version 1). [https://doi.org/10.21203/rs.3.rs-6149700/v1](https://doi.org/10.21203/rs.3.rs-6149700/v1)
  • Zhang, B., Liang, P., Zhou, X., Ahmad, A., & Waseem, M. (2023). Practices and challenges of using GitHub Copilot: An empirical study. arXiv. [https://doi.org/10.48550/arXiv.2303.08733](https://doi.org/10.48550/arXiv.2303.08733)
  • Zobeidi, T., Homayoon, S., Yazdanpanah, M., Komendantova, N., & Warner, L. (2023). Employing the TAM in predicting the use of online learning during and beyond the COVID-19 pandemic. Frontiers in Psychology, 14, 1104653. [https://doi.org/10.3389/fpsyg.2023.1104653](https://doi.org/10.3389/fpsyg.2023.1104653)

Student Acceptance of Generative AI Tools in Programming Courses: Findings from Türkiye Through an Extended Technology Acceptance Model

Yıl 2025, Cilt: 8 Sayı: 4, 543 - 556, 24.12.2025

Öz

This study examines the cognitive and affective factors influencing university students’ intention to adopt generative artificial intelligence (AI) tools in programming courses, particularly among those studying in computing-related fields. The Technology Acceptance Model (TAM) is extended with psychological constructs including Self-Efficacy (SE), Perceived Trust (PT), Perceived Risk (PR), and Dependence Worry (DW). Data were collected from 305 undergraduate students in Türkiye via an online survey and analyzed using Structural Equation Modeling (SEM). Findings indicate that Perceived Usefulness (PU) and Perceived Ease of Use (PEOU) significantly predict students’ behavioral intention to use generative AI tools. PT positively affects both PU and PEOU, while SE significantly influences PEOU. Notably, SE also has a positive and significant relationship with DW (β = 0.506), suggesting that students with higher technological competence may be more aware of potential overdependence risks. This study contributes to the literature by highlighting the psychological dynamics underlying AI tool acceptance in educational contexts.

Kaynakça

  • Amin, S., Hellström, J., & Hintze, A. (2024). Can ChatGPT code the technical part of a bachelor’s thesis in informatics? Qeios. [https://doi.org/10.32388/AAAJ8N](https://doi.org/10.32388/AAAJ8N)
  • Arpacı, I. (2016). Understanding and predicting students’ intention to use mobile cloud storage services. Computers in Human Behavior, 58, 150–157. [https://doi.org/10.1016/j.chb.2015.12.067](https://doi.org/10.1016/j.chb.2015.12.067)
  • Aruğaslan, E. (2025). Doktora öğrencilerinin yapay zekâ kullanımı üzerine nitel bir çalışma. Üniversite Araştırmaları Dergisi (Journal of University Research), 8(1), 36–53. [https://doi.org/10.32329/uad.1557111](https://doi.org/10.32329/uad.1557111)
  • Asan, O., Bayrak, A. E., & Choudhury, A. (2020). Artificial intelligence and human trust in healthcare: Focus on clinicians. Journal of Medical Internet Research, 22(6), e15154. [https://doi.org/10.2196/15154](https://doi.org/10.2196/15154)
  • Bahi, A., Gharib, J., & Gahi, Y. (2024). Integrating generative AI for advancing agile software development and mitigating project management challenges. International Journal of Advanced Computer Science and Applications, 15(3). [https://doi.org/10.14569/IJACSA.2024.0150306](https://doi.org/10.14569/IJACSA.2024.0150306)
  • Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Prentice Hall.
  • Biswas, S. (2023). Role of ChatGPT in computer programming. Mesopotamian Journal of Computer Science, 2023, 9–15. [https://doi.org/10.58496/MJCSC/2023/002](https://doi.org/10.58496/MJCSC/2023/002)
  • Budu, K. W. A., Mu, Y., & Mireku, K. K. (2018). Investigating the effect of behavioral intention on e-learning systems usage: Empirical study on tertiary education institutions in Ghana. Mediterranean Journal of Social Sciences, 9(3), 201–216. [https://doi.org/10.2478/mjss-2018-0062](https://doi.org/10.2478/mjss-2018-0062)
  • Cao, Y., Aziz, A. A., & Arshad, W. N. R. M. (2023). University students’ perspectives on artificial intelligence: A survey of attitudes and awareness among interior architecture students. IJERI: International Journal of Educational Research and Innovation, (20), 1–21. [https://doi.org/10.46661/ijeri.8429](https://doi.org/10.46661/ijeri.8429)
  • Chavez, J. V., Cuilan, J. T., Mannan, S. S., Ibrahim, N. U., Carolino, A. A., Radjuni, A., Albani, S. E., & Garil, B. A. (2024). Discourse analysis on the ethical dilemmas on the use of AI in academic settings from ICT, science, and language instructors. Forum for Linguistic Studies, 6(5), 349–363. [https://doi.org/10.30564/fls.v6i5.6765](https://doi.org/10.30564/fls.v6i5.6765)
  • Chen, D., Liu, W., & Liu, X. (2024). What drives college students to use AI for L2 learning? Modeling the roles of self-efficacy, anxiety, and attitude based on an extended technology acceptance model. Acta Psychologica, 249, 104442. [https://doi.org/10.1016/j.actpsy.2024.104442](https://doi.org/10.1016/j.actpsy.2024.104442)
  • Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19(2), 189–211. [https://doi.org/10.2307/249688](https://doi.org/10.2307/249688)
  • Çelik, K., & Özköse, H. (2023). Investigation of factors affecting mobile banking intention to use: Extended technology acceptance model. İşletme Araştırmaları Dergisi, 15(2), 1517–1530. [https://isarder.org/index.php/isarder/article/view/1954](https://isarder.org/index.php/isarder/article/view/1954)
  • Dahri, N. A., Yahaya, N., Al-Rahmi, W. M., Aldraiweesh, A., Alturki, U., Almutairy, S., Shutaleva, A., & Soomro, R. B. (2024). Extended TAM based acceptance of AI-Powered ChatGPT for supporting metacognitive self-regulated learning in education: A mixed-methods study. Heliyon, 10(8), e29317. [https://doi.org/10.1016/j.heliyon.2024.e29317](https://doi.org/10.1016/j.heliyon.2024.e29317)
  • Damyanov, I., Tsankov, N., & Nedyalkov, I. (2024). Applications of generative artificial intelligence in the software industry. TEM Journal, 13(4), 2724–2733. [https://doi.org/10.18421/TEM134-10](https://doi.org/10.18421/TEM134-10)
  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. [https://doi.org/10.2307/249008](https://doi.org/10.2307/249008)
  • Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003. [https://doi.org/10.1287/mnsc.35.8.982](https://doi.org/10.1287/mnsc.35.8.982)
  • Digital Education Council. (2024, August 7). Key results from DEC Global AI Student Survey 2024. Digital Education Council. [https://www.digitaleducationcouncil.com/post/what-students-want-key-results-from-dec-global-ai-student-survey-2024](https://www.digitaleducationcouncil.com/post/what-students-want-key-results-from-dec-global-ai-student-survey-2024)
  • Ebert, C., Arockiasamy, J., Hettich, L., & Weyrich, M. (2024). Hints for generative AI software development. IEEE Software, 41(5), 24–33. [https://doi.org/10.1109/MS.2024.3410641](https://doi.org/10.1109/MS.2024.3410641)
  • Estrada-Araoz, E. G., Mamani-Roque, M., Quispe-Aquise, J., Manrique-Jaramillo, Y. V., & Cruz-Laricano, E. O. (2025). Academic self-efficacy and dependence on artificial intelligence in a sample of university students. Sapienza: International Journal of Interdisciplinary Studies, 6(1), e25008. [https://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/916](https://journals.sapienzaeditorial.com/index.php/SIJIS/article/view/916)
  • Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: A perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451–474. [https://doi.org/10.1016/S1071-5819(03)00111-3](https://doi.org/10.1016/S1071-5819(03)00111-3)
  • Finnie-Ansley, J., Denny, P., Becker, B. A., Luxton-Reilly, A., & Prather, J. (2022). The robots are coming: Exploring the implications of OpenAI Codex on introductory programming. In Proceedings of the 24th Australasian Computing Education Conference (ACE ’22) (ss. 10–19). ACM. [https://doi.org/10.1145/3511861.3511863](https://doi.org/10.1145/3511861.3511863)
  • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. [https://doi.org/10.1177/002224378101800104](https://doi.org/10.1177/002224378101800104)
  • Fussell, S. G., & Truong, D. (2022). Using virtual reality for dynamic learning: An extended technology acceptance model. Virtual Reality, 26(1), 249–267. [https://doi.org/10.1007/s10055-021-00554-x](https://doi.org/10.1007/s10055-021-00554-x)
  • Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. MIS Quarterly, 27(1), 51–90. [https://doi.org/10.2307/30036519](https://doi.org/10.2307/30036519)
  • Grand View Research. (n.d.). Artificial intelligence market size, share & trends analysis report by solution, by technology (deep learning, machine learning, NLP, machine vision, generative AI), by function, by end-use, by region, and segment forecasts, 2025–2030. Grand View Research, Inc. Erişim: 5 Eylül 2025, [https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-market](https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-market)
  • Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Pearson Prentice Hall.
  • Hendler, J. (2023). Understanding the limits of AI coding. Science, 379(6632), 548. [https://doi.org/10.1126/science.adg4246](https://doi.org/10.1126/science.adg4246)
  • HolonIQ. (2020, August 6). Global education technology market to reach $404B by 2025. [https://www.holoniq.com/notes/global-education-technology-market-to-reach-404b-by-2025](https://www.holoniq.com/notes/global-education-technology-market-to-reach-404b-by-2025)
  • HolonIQ. (2021, February 23). Sizing the global EdTech market. [https://www.holoniq.com/notes/sizing-the-global-edtech-market](https://www.holoniq.com/notes/sizing-the-global-edtech-market)
  • Jacoby, J., & Kaplan, L. B. (1972). The components of perceived risk. In M. Venkatesan (Ed.), Proceedings of the Third Annual Conference of the Association for Consumer Research (pp. 382–393). Association for Consumer Research.
  • Kanont, K., Pingmuang, P., Simasathien, T., Wisnuwong, S., Wiwatsiripong, B., Poonpirome, K., … Khlaisang, J. (2024). Generative-AI, a learning assistant? Factors influencing higher-ed students’ technology acceptance. The Electronic Journal of e-Learning, 22(6), 18–33. [https://doi.org/10.34190/ejel.22.6.3196](https://doi.org/10.34190/ejel.22.6.3196)
  • Kazemitabaar, M., Ye, R., Wang, X., Henley, A. Z., Denny, P., Craig, M., & Grossman, T. (2024). CodeAid: Evaluating a classroom deployment of an LLM-based programming assistant that balances student and educator needs. In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems (CHI ’24) (pp. 1–20). ACM. [https://doi.org/10.1145/3613904.3642773](https://doi.org/10.1145/3613904.3642773)
  • Kelly, S., Kaye, S. A., & Oviedo-Trespalacios, O. (2023). What factors contribute to the acceptance of artificial intelligence? A systematic review. Telematics and Informatics, 77, 101925. [https://doi.org/10.1016/j.tele.2022.101925](https://doi.org/10.1016/j.tele.2022.101925)
  • Kimmel, B., Geisert, A. L., Yaro, L., Gipson, B., Hotchkiss, R. T., Osae-Asante, S. K., Vaught, H., Wininger, G., & Yamaguchi, C. (2024, May). Enhancing programming error messages in real time with generative AI. In Extended Abstracts of the 2024 CHI Conference on Human Factors in Computing Systems (CHI EA ’24) (Article 608, 1–7). ACM. [https://doi.org/10.1145/3613905.3647967](https://doi.org/10.1145/3613905.3647967)
  • Kline, R. B. (2015). Principles and practice of structural equation modeling (4th ed.). Guilford Press.
  • Krishna, K., Murthy, P., & Sarangi, S. (2024). Exploring the synergy between generative AI and software engineering: Automating code optimization and bug fixing. World Journal of Advanced Engineering Technology and Sciences, 13(1), 682–691. [https://doi.org/10.30574/wjaets.2024.13.1.0464](https://doi.org/10.30574/wjaets.2024.13.1.0464)
  • Lee, M. C. (2009). Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electronic Commerce Research and Applications, 8(3), 130–141. [https://doi.org/10.1016/j.elerap.2008.11.006](https://doi.org/10.1016/j.elerap.2008.11.006)
  • Libert, K., Mosconi, E., & Cadieux, N. (2020). Human–machine interaction and human resource management perspective for collaborative robotics implementation and adoption. In Proceedings of the 53rd Hawaii International Conference on System Sciences (HICSS) (pp. 1–10). [https://doi.org/10.24251/HICSS.2020.066](https://doi.org/10.24251/HICSS.2020.066)
  • Martins, C., Oliveira, T., & Popovič, A. (2014). Understanding the internet banking adoption: A unified theory of acceptance and use of technology and perceived risk application. International Journal of Information Management, 34(1), 1–12. [https://doi.org/10.1016/j.ijinfomgt.2013.06.002](https://doi.org/10.1016/j.ijinfomgt.2013.06.002)
  • McKnight, D. H., Carter, M., Thatcher, J. B., & Clay, P. F. (2011). Trust in a specific technology: An investigation of its components and measures. ACM Transactions on Management Information Systems, 2(2), 1–25. [https://doi.org/10.1145/1985347.1985353](https://doi.org/10.1145/1985347.1985353)
  • McKnight, D. H., Choudhury, V., & Kacmar, C. (2002). Developing and validating trust measures for e-commerce: An integrative typology. Information Systems Research, 13(3), 334–359. [https://doi.org/10.1287/isre.13.3.334.81](https://doi.org/10.1287/isre.13.3.334.81)
  • Meng, N., Mat Deli, M., & Abdul Rauf, U. A. (2024). Predicting Mainland Chinese students in Malaysia’s AI-based chatbot satisfaction and academic performance: Mediating moderating analysis. Research Square (Version 1). [https://doi.org/10.21203/rs.3.rs-5322062/v1](https://doi.org/10.21203/rs.3.rs-5322062/v1)
  • Morales-García, W. C., Sairitupa-Sanchez, L. Z., Morales-García, S. B., & Morales-García, M. (2024). Development and validation of a scale for dependence on artificial intelligence in university students. Frontiers in Education, 9, 1323898. [https://doi.org/10.3389/feduc.2024.1323898](https://doi.org/10.3389/feduc.2024.1323898)
  • Morales-García, W. C., Sairitupa-Sanchez, L. Z., Flores-Paredes, A., Pascual-Mariño, J., & Morales-García, M. (2025). Influence of self-efficacy in the use of artificial intelligence (AI) and anxiety toward AI use on AI dependence among Peruvian university students. Data and Metadata, 4, 210. [https://doi.org/10.56294/dm2025210](https://doi.org/10.56294/dm2025210)
  • Pan, Z., Xie, Z., Liu, T., & Xia, T. (2024). Exploring the key factors influencing college students’ willingness to use AI coding assistant tools: An expanded technology acceptance model. Systems, 12(5), 176. [https://doi.org/10.3390/systems12050176](https://doi.org/10.3390/systems12050176)
  • Passi, S., & Vorvoreanu, M. (2022, June 21). Overreliance on AI: Literature review. Microsoft Research. [https://www.microsoft.com/en-us/research/publication/overreliance-on-ai-literature-review/](https://www.microsoft.com/en-us/research/publication/overreliance-on-ai-literature-review/)
  • Petrovska, O., Clift, L., Moller, F., & Pearsall, R. (2024). Incorporating generative AI into software development education. In Proceedings of the ACM Conference on Global Computing Education (CompEd ’24) (pp. 37–40). ACM. [https://doi.org/10.1145/3633053.3633057](https://doi.org/10.1145/3633053.3633057)
  • Polyportis, A., & Pachos-Fokialis, N. (2024). Understanding students’ adoption of the ChatGPT chatbot in higher education: The role of anthropomorphism, trust, design novelty and institutional policy. Behaviour & Information Technology, 44(2), 315–336. [https://doi.org/10.1080/0144929X.2024.2317364](https://doi.org/10.1080/0144929X.2024.2317364)
  • Yang, Q. (2024). Systematic evaluation of AI-generated Python code: A comparative study across progressive programming tasks. Research Square (Version 1). [https://doi.org/10.21203/rs.3.rs-4955982/v1](https://doi.org/10.21203/rs.3.rs-4955982/v1)
  • Rahman, M. M., & Watanobe, Y. (2023). ChatGPT for education and research: Opportunities, threats, and strategies. Applied Sciences, 13(9), 5783. [https://doi.org/10.3390/app13095783](https://doi.org/10.3390/app13095783)
  • Ratta, R., Sodhi, J., & Saxena, U. (2025). The relevance of trust in the implementation of AI-driven clinical decision support systems by healthcare professionals: An extended UTAUT model. Electronic Journal of Knowledge Management, 23(1), 47–66. [https://doi.org/10.34190/ejkm.23.1.3499](https://doi.org/10.34190/ejkm.23.1.3499)
  • Salloum, S. A., Al-Emran, M., Shaalan, K., & Tarhini, A. (2019). Factors affecting the e-learning acceptance: A case study from UAE. Education and Information Technologies, 24(1), 509–530. [https://doi.org/10.1007/s10639-018-9786-3](https://doi.org/10.1007/s10639-018-9786-3)
  • Sbaffi, L., & Rowley, J. (2017). Trust and credibility in web-based health information: A review and agenda for future research. Journal of Medical Internet Research, 19(6), e218. [https://doi.org/10.2196/jmir.7579](https://doi.org/10.2196/jmir.7579)
  • Scherer, R., Siddiq, F., & Tondeur, J. (2019). The Technology Acceptance Model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Computers & Education, 128, 13–35. [https://doi.org/10.1016/j.compedu.2018.09.009](https://doi.org/10.1016/j.compedu.2018.09.009)
  • Seo, K., Tang, J., Roll, I, Fels, S., & Yoon, D. (2021). The impact of artificial intelligence on learner–instructor interaction in online learning. International Journal of Educational Technology in Higher Education, 18(1), 54. [https://doi.org/10.1186/s41239-021-00292-9](https://doi.org/10.1186/s41239-021-00292-9)
  • Shata, A., & Hartley, K. (2025). Artificial intelligence and communication technologies in academia: Faculty perceptions and the adoption of generative AI. International Journal of Educational Technology in Higher Education, 22, 14. [https://doi.org/10.1186/s41239-025-00511-7](https://doi.org/10.1186/s41239-025-00511-7)
  • Silva, C. A. G. d., Ramos, F. N., de Moraes, R. V., & Santos, E. L. d. (2024). ChatGPT: Challenges and benefits in software programming for higher education. Sustainability, 16(3), 1245. [https://doi.org/10.3390/su16031245](https://doi.org/10.3390/su16031245)
  • Stack Overflow. (2023, June 13). Stack Overflow Developer Survey 2023. [https://survey.stackoverflow.co/2023/](https://survey.stackoverflow.co/2023/) (Erişim: 15 Temmuz 2025)
  • Su, Y., Zhu, Z., Chen, J., Jin, Y., Wang, T., Lin, C.-L., & Xu, D. (2021). Factors influencing entrepreneurial intention of university students in China: Integrating the perceived university support and theory of planned behavior. Sustainability, 13(8), 4519. [https://doi.org/10.3390/su13084519](https://doi.org/10.3390/su13084519)
  • Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204. [https://doi.org/10.1287/mnsc.46.2.186.11926](https://doi.org/10.1287/mnsc.46.2.186.11926)
  • Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. [https://doi.org/10.2307/30036540](https://doi.org/10.2307/30036540)
  • Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157–178. [https://doi.org/10.2307/41410412](https://doi.org/10.2307/41410412)
  • Wamba-Taguimdje, S., Wamba, S. F., & Twinomurinzi, H. (2024). Why Should Users Take the Risk of Sustainable Use of Generative Artificial Intelligence Chatbots: An Exploration of ChatGPT’s Use. Journal of Global Information Management (JGIM), 32(1), 1–32. [https://doi.org/10.4018/JGIM.365600](https://doi.org/10.4018/JGIM.365600)
  • Wu, D., Zhang, S., Ma, Z., Yue, X.-G., & Dong, R. K. (2024). Unlocking potential: Key factors shaping undergraduate self-directed learning in AI-enhanced educational environments. Systems, 12(9), 332. [https://doi.org/10.3390/systems12090332](https://doi.org/10.3390/systems12090332)
  • Xiong, Y., Shi, Y., Pu, Q., & Liu, N. (2023). More trust or more risk? User acceptance of artificial intelligence virtual assistant. Human Factors and Ergonomics in Manufacturing & Service Industries, 34(3), 190–205. [https://doi.org/10.1002/hfm.21020](https://doi.org/10.1002/hfm.21020)
  • Yao, N., & Wang, Q. (2024). Factors influencing pre-service special education teachers’ intention toward AI in education: Digital literacy, teacher self-efficacy, perceived ease of use, and perceived usefulness. Heliyon, 10(14), e34894. [https://doi.org/10.1016/j.heliyon.2024.e34894](https://doi.org/10.1016/j.heliyon.2024.e34894)
  • Zaman, S. (2025). Assessing students’ behavioral intentions towards AI-based learning tools. Journal of Asian Development Studies, 14(1), 656–672. [https://doi.org/10.62345/jads.2025.14.1.50](https://doi.org/10.62345/jads.2025.14.1.50)
  • Zeng, E., Liu, R., & Feng, Y. (2025). Analysis of user intention to use AI-assisted customized fashion design software in the dimension of interaction design—An empirical study in China based on an extended TAM model. Research Square (Version 1). [https://doi.org/10.21203/rs.3.rs-6149700/v1](https://doi.org/10.21203/rs.3.rs-6149700/v1)
  • Zhang, B., Liang, P., Zhou, X., Ahmad, A., & Waseem, M. (2023). Practices and challenges of using GitHub Copilot: An empirical study. arXiv. [https://doi.org/10.48550/arXiv.2303.08733](https://doi.org/10.48550/arXiv.2303.08733)
  • Zobeidi, T., Homayoon, S., Yazdanpanah, M., Komendantova, N., & Warner, L. (2023). Employing the TAM in predicting the use of online learning during and beyond the COVID-19 pandemic. Frontiers in Psychology, 14, 1104653. [https://doi.org/10.3389/fpsyg.2023.1104653](https://doi.org/10.3389/fpsyg.2023.1104653)
Toplam 71 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yükseköğretim Çalışmaları (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Ahmet Büyükeke 0000-0002-6103-7646

Gönderilme Tarihi 29 Haziran 2025
Kabul Tarihi 5 Eylül 2025
Yayımlanma Tarihi 24 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 4

Kaynak Göster

APA Büyükeke, A. (2025). Öğrencilerin Programlama Derslerinde Üretken Yapay Zekâ Araçlarını Kabulü: Genişletilmiş Teknoloji Kabul Modeli ile Türkiye’den Bulgular. Journal of University Research, 8(4), 543-556.

Articles published in the Journal of University Research (Üniversite Araştırmaları Dergisi - ÜAD) are licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License 32353.