Derleme
BibTex RIS Kaynak Göster

Alan Kullanım Değişikliği ve Kentleşmenin Yarasalar Üzerindeki Etkisi

Yıl 2023, Cilt: 6 Sayı: 2, 100 - 108, 31.12.2023

Öz

Yarasalar birçok habitata adapte olmuş uçabilen memelilerdir. Beslenme özellikleri ile ekosisteme katkılar sunmaktadırlar. Böceklerle beslenen yarasalar böcek kontrolünü, meyve ile beslenen yarasalar tohum dağılımını, nektarla beslenen yarasalar ise tozlaşma olayını gerçekleştirerek yeni bitki nesillerinin ortaya çıkmasını sağlamaktadır. Fakat yarasa popülasyonları ormansızlaşma, kentleşme ve tarım arazileri gibi alan kullanım değişikliği süreçlerinden negatif yönde etkilenmektedirler. Tünekleri yok edilmekte, kentsel alanlardan dışlanmakta, besin arama alanlarını yitirmekte, rekabet ve predatörlere daha sık maruz kalmaktadırlar. Bu risk faktörlerini oluşturan başlıca etmen antropojenik faaliyetlerdir. Bu faaliyetler sonucu dünya hızlı bir değişim süreci geçirmekte ve bu süreçte doğal alanlar yerini büyük ölçüde kentlere, plantasyonlara ve tahrip edilmiş alanlara bırakmaktadır. Doğal alanlarının tahribi ile yarasalar değişen yeni ortamlarına uyum sağlamaya mecbur kalmakta veya dışlanmaktadır. Yarasaların kentleşmeye olan tepkileri türe özgüdür ve bu tepkileri onlara biyoindikatör olma potansiyeli kazandırmaktadır. Bazı türler değişen ortamlardan yarar sağlamakta bazı türler ise bir yok oluşa sürüklenmektedir. Hayvan davranışlarını takip etmek, popülasyonların kentsel ve kırsal ortamlardaki sorunlara ne tür çözümler ürettiklerini anlayabilmek önem arz etmektedir. Böylesine hızlı değişen dünyaya yarasaların verdiği yanıtlar ve geliştirdikleri çözümler ne kadar çabuk anlaşılırsa gereken önlemlerin alınması o kadar hızlı olacaktır.

Kaynakça

  • Palheta L.R., Urbieta G.L., Brasil L.S., Dias-Silva K., Da Silva J.B., Graciolli G., Aguiar L.M.S. and Vieira T.B. (2020). Theeffect of urbanization on bats and communities ofbat flies (Diptera: Nycteribiidae and Streblidae) in the Amazon, Northern Brazil. Acta Chiropterologica 22,403–16.
  • Egert-Berg, K., Handel, M., Goldshtein, A., Eitan, O., Borissov, I. and Yovel, Y. (2021). Fruit bats adjust their foraging strategies to urban environments to diversify their diet. BMC Biology, 19, Article 123.
  • Jung, K. and Kalko, E.K. (2011). Adaptability and vulnerability of high flying Neotropical aerial insectivorous bats to urbanization. Diversity and Distributions, 17(2): 262-274.
  • Jones, G., Jacobs, D., Kunz, T., Willig, M. and Racey, P. (2009). Carpe noctem: the importance of bats as bioindicators. Endangered Species Research, 8(1-2): 93-115.
  • Kunz, T.H. and Lumsden, L.F. (2003). Ecology of cavity and foliage roosting bats. T.H. Kunz and M.B. Fenton (Eds.), Bat Ecology. (pp. 3-89). Chicago: University of Chicago Press.
  • Kunz, T.H. (1982). Roosting Ecology of Bats. T.H. Kunz (Eds.), Ecology of Bats (pp. 1-55). Boston, MA: Springer.
  • Thomas, J.P., Kukka, P.M., Benjamin, J.E., Barclay, R.M.R., Johnson, C.J., Schmiegelow, F.K.A. and Jung, T.S. (2021). Foraging habitat drives the distribution of an endangered bat in an urbanizing boreal landscape. Ecosphere, 12(3), Article e03457.
  • Kasso M. and Balakrishnan M. (2013). Ecological and economicimportance of bats (Order Chiroptera). Isrn Biodiversity, 1-9.
  • Kung, N.Y., Field, H.E., Mclaughlin, A., Edson, D. and Taylor, M. (2015). Flying-foxes in the Australian urban environment-community attitudes and opinions. One Health, 1: 24-30.
  • Duchamp, J.E., Sparks, D.W. and Whitaker, JR., J.O. (2004). Foraging-habitat selection by bats at an urban-rural interface: comparison between a successful and a less successful species. Canadian Journal of Zoology, 82(7): 1157-1164.
  • Thomas, J.P. and Jung, T.S. (2019). Life in a northern town: rural villages in the boreal forest are islands of habitat for an endangered bat. Ecosphere, 10(1), Article e02563.
  • Prat, Y., Taub, M., and Yovel, Y. (2016). Everyday bat vocalizations contain information about emitter, addressee, context, and behavior. Scientific Reports, 6(1), Article 39419.
  • Hooke, R.Leb. and Martín-Duque, J.F. (2012). Land transformation by humans: A review. GSA Today, 12(12): 4-10.
  • Jung, K. and Threlfall, C.G. (2016). Urbanisation and Its Effects on Bats-A Global Meta-Analysis. Bats in the Anthropocene: Conservation of Bats in a Changing World (pp. 13-33). Springer International Publishing.
  • Luck, G.W., Smallbone, L., Threlfall, C. and Law, B. (2013). Patterns in bat functional guilds across multiple urban centres in south-eastern Australia. Landscape Ecology, 28(3): 455-469.
  • Dimkić, I., Fira, D., Janakiev, T., Kabić, J., Stupar, M., Nenadić, M., Unković, N. and Grbić, M.L. (2021). The microbiome of bat guano: for what is this knowledge important? Applied Microbiology and Biotechnology, 105(4): 1407-1419.
  • Mendes, P. and Srbek-Araujo, A.C. (2021). Effects of land-use changes on Brazilian bats: a review of current knowledge. Mammal Review 51(1): 127-142.
  • Arslan, A. and Mesut, B. A. Ş. (2020). Antropojenik Faaliyetler Nedeniyle Değişen Çevrenin Yarasalar Üzerine Etkileri. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9(3), 1449-1459.
  • Scolozzi, R. and Geneletti, D. (2012). A multi-scale qualitative approach to assess the impact of urbanization on natural habitats and their connectivity. Environmental Impact Assessment Review, 36, 9-22.
  • Jung, K. and Kalko, E.K.V. (2010). Where forest meets urbanization: foraging plasticity of aerial insectivorous bats in an anthropogenically altered environment. Journal of Mammalogy, 91(1): 144-153.
  • Lausen, C.L. and Barclay, R.M.R. (2006). Benefits of living in a building: big brown bats (Eptesicus fuscus) in rocks versus buildings. Journal of Mammalogy, 87(2): 362-370.
  • López-Roig, M. and Serra-Cobo, J. (2014). Impact of human disturbance, density, and environmental conditions on the survival probabilities of pipistrelle bat (Pipistrellus pipistrellus). Population Ecology, 56(3): 471-480.
  • Karaer, M. C., Yorulmaz, T. and Tavşanoğlu, Ç. (2022). İklim Değişikliğinin Yarasalar Üzerine Olası Etkileri. JENAS Journal of Environmental and Natural Studies, 4(2), 174-198.
  • Waring, S.D., Essah, E., Gunnell, K. and Bonser, R. (2013). Double jeopardy: the potential for problems when bats interact with breathable roofing membranes in the United Kingdom. Architecture & Environment, 1(1): 1-13.
  • Kalpakis, S., Papadatou, E. and Von Helversen, O. (2005). Balcony of an urban building: an unintended trap fro free-tailed bats (Tadarida teniotis) in the city of Thessaloniki. Nyctalus, 10, 79-84.
  • Threlfall, C., Law, B. and Banks, P.B. (2013). Odour cues influence predation risk at artificial bat roosts in urban bushland. Biology Letters, 9(3): 20121144.
  • Mikula, P. (2013). Western Jackdaw (Corvus monedula) attacking bats (Chiroptera): Observations from Bardejov, northeastern Slovakia. Sylvia, 49, 157-159.
  • Kelm, D. H., Langheld, M., Nogueras, J., Popa-Lisseanu, A. G. and Ibáñez, C. (2023). Continuous low-intensity predation by owls (Strix aluco) on bats (Nyctalus lasiopterus) in Spain and the potential effect on bat colony stability. Royal Society Open Science, 10(8), 230309.
  • Avila-Flores, R. and Fenton, M.B. (2005). Use of Spatial Features by Foraging Insectivorous Bats in a Large Urban Landscape. Journal of Mammalogy, 86(6): 1193- 1204.
  • Conrad, K.F., Warren, M.S., Fox, R., Parsons, M.S. and Woiwod, I.P. (2006). Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biological Conservation, 132(3): 279-291.
  • Abbott, I.M., Sleeman, D.P. and Harrison, S. (2009). Bat activity affected by sewage effluent in Irish rivers. Biological Conservation, 142(12): 2904-2914.
  • Huszarik, M., Roodt, A. P., Wernicke, T., Chávez, F., Metz, A., Link, M., ... and Entling, M. H. (2023). Increased bat hunting at polluted streams suggests chemical exposure rather than prey shortage. Science of The Total Environment, 167080.
  • Rainho, A. and Palmeirim, J.M. (2011). The Importance of Distance to Resources in the Spatial Modelling of Bat Foraging Habitat. PLoS ONE, 6(4), Article e19227.
  • Amorim, F., Jorge, I., Beja, P. and Rebelo, H. (2018). Following the water? Landscape-scale temporal changes in bat spatial distribution in relation to Mediterranean summer drought. Ecology and Evolution, 8(11): 5801-5814.
  • Kafaei, S., Karami, P., Mehdizadeh, R. and Akmali, V. (2021). Relationship between niche breadth and range shifts of Rhinopoma muscatellum (Chiroptera: Rhinopomatidae) in climate change scenarios in arid and semiarid mountainous region of Iran. Journal of Mountain Science, 18(9): 2357-2376.
  • Russo, D. and Jones, G. (2002). Identification of twenty-two bat species (Mammalia: Chiroptera) from Italy by analysis of time‐expanded recordings of echolocation calls. Journal of Zoology, 258(1): 91-103.
  • Serra-Cobo, J., Amengual, B., Abellán, C., Bourhy, H. (2002). European bat lyssavirus infection in Spanish bat populations. Emerging Infectious Diseases, 8: 413- 420.
  • Verboom, B. and Huitema, H. (1997). The importance of linear landscape elements for the pipistrelle Pipistrellus pipistrellus and the serotine bat Eptesicus serotinus. Landscape Ecology, 12(2): 117-125.
  • Stanley, C., Bagniewska, J. M., Grabowska-Zhang, A. and Hesselberg, T. (2023). Wooded streets, but not streetlight dimming, favour bat activity in a temperate urban setting, Journal of Urban Ecology, 9(1), juad011.
  • Berthinussen, A. and Altringham, J. (2012). The effect of a major road on bat activity and diversity. Journal of Applied Ecology, 49(1): 82-89.
  • Fensome, A.G. and Mathews, F. (2016). Roads and bats: a meta-analysis and review of the evidence on vehicle collisions and barrier effects. Mammal Review, 46(4): 311-323.
  • Siemers, B.M. and Schaub, A. (2011). Hunting at the highway: traffic noise reduces foraging efficiency in acoustic predators. Proceedings of the Royal Society B: Biological Sciences, 278(1712): 1646-1652.
  • Barber, J.R., Crooks, K.R. and Fristrup, K.M. (2010). The costs of chronic noise exposure for terrestrial organisms. Trends in Ecology & Evolution, 25(3): 180-189.
  • Russo, D., Jones, G. and Arlettaz, R. (2007). Echolocation and passive listening by foraging mouse-eared bats Myotis myotis and M. blythii. Journal of Experimental Biology, 210(1): 166-176.
  • Raimbault, M. and Dubois, D. (2005). Urban soundscapes: Experiences and knowledge. Cities, 22(5): 339-350.
  • Kirkpatrick, L., Oldfield, I.F. and Park, K. (2017). Responses of bats to clear fell harvesting in Sitka Spruce plantations, and implications for wind turbine installation. Forest Ecology and Management, 395, 1-8.
  • Estrada, A. and Coates-Estrada, R. (2002). Bats in continuous forest, forest fragments and in an agricultural mosaic habitat-island at Los Tuxtlas, Mexico. Biological Conservation, 103(2): 237-245.
  • Davy, C.M., Russo, D. and Fenton, M.B. (2007). Use of native woodlands and traditional olive groves by foraging bats on a Mediterranean island: consequences for conservation. Journal of Zoology, 273(4): 397-405.
  • Ancillotto, L., Labadessa, R., Roscioni, F., Montioni, F., Fulco, E., Zollo, L. and Spilinga, C. (2023). Protected habitats support bats in Mediterranean dry grasslands. Science of The Total Environment, 882, 163415.
  • Korine, C., Izhaki, I. and Arad, Z. (1999). Is the Egyptian fruit-bat Rousettus aegyptiacus a pest in Israel? An analysis of the bat’s diet and implications for its conservation. Biologycal Conservation. 88(3): 301-306.
  • Frick, W.F., Kingston, T. and Flanders, J. (2020). A review of the major threats and challenges to global bat conservation. Ann. N. Y. Acad. Sci., 1469, 5–25.
  • Froidevaux, J.S.P., Boughey, K.L., Hawkins, C.L., Broyles, M. and Jones, G. (2019). Managing hedgerows for nocturnal wildlife: Do bats and their insect prey benefit from targeted agri‐environment schemes? Journal of Applied Ecology, 56(7): 1610-1623.
  • Frey-Ehrenbold, A., Bontadina, F., Arlettaz, R. and Obrist, M.K. (2013). Landscape connectivity, habitat structure and activity of bat guilds in farmlanddominated matrices. Journal of Applied Ecology, 50(1): 252-261.
  • Roeleke, M., Blohm, T., Hoffmeister, U., Marggraf, L., Schlägel, U.E., Teige, T., and Voigt, C.C. (2020). Landscape structure influences the use of social information in an insectivorous bat. Oikos, 129(6): 912-923.
  • Bontadina, F., Schmied, S.F., Beck, A. and Arlettaz, R. (2008). Changes in prey abundance unlikely to explain the demography of a critically endangered Central European bat. Journal of Applied Ecology, 45(2): 641-648.
  • Ancillotto, L., Ariano, A., Nardone, V., Budinski, I., Rydell, J. and Russo, D. (2017). Effects of free-ranging cattle and landscape complexity on bat foraging: Implications for bat conservation and livestock management. Agriculture, Ecosystems & Environment, 241, 54-61.
  • Wilkinson, G.S. and Wenrick Boughman, J. (1998). Social calls coordinate foraging in greater spear-nosed bats. Animal Behaviour, 55(2): 337-350.
  • Harten, L., Matalon, Y., Galli, N., Navon, H., Dor, R. and Yovel, Y. (2018). Persistent producer-scrounger relationships in bats. Science Advances, 4(2).
  • Russo, D. and Ancillotto, L. (2015). Sensitivity of bats to urbanization: A review. Mammalian Biology, 80(3): 205-212.
  • O’Shea, T.J., Cryan, P.M., Hayman, D.T.S., Plowright, R.K. and Streicker, D.G. (2016). Multiple mortality events in bats: a global review. Mammal Review, 46(3): 175-190.
  • Bello-Gutiérrez, J., Suzán, G., Hidalgo-Mihart, M.G. and Salas, G. (2010). Alopecia in Bats from Tabasco, México. Journal of Wildlife Diseases, 46(3): 1000-1004.

The Impact of Land use Change and Urbanization on Bats

Yıl 2023, Cilt: 6 Sayı: 2, 100 - 108, 31.12.2023

Öz

Bats are flying mammals that have adapted to many habitats. They contribute to the ecosystem through their feeding habits. Insect-eating bats provide insect control, fruit-eating bats facilitate seed dispersal, and nectar-feeding bats aid in pollination, allowing for the emergence of new plant generations. However, bat populations are negatively affected by processes such as deforestation, urbanization, and changes in land use for agriculture. Their roosts are destroyed, they are excluded from urban areas, they lose their foraging areas, and they are exposed to increased competition and predators. The main factors contributing to these risks are anthropogenic activities. As a result of these activities, the world is undergoing rapid change, with natural areas being largely replaced by cities, plantations, and degraded lands. Bats are either forced to adapt to their changing environments or are excluded from them due to the destruction of their natural habitats. The responses of bats to urbanization are species-specific, and these responses have the potential to make them bioindicators. Some species benefit from the changing environments, while others are pushed toward extinction. Monitoring animal behaviors and understanding the solutions that populations develop in urban and rural environments is important. The faster we can understand the responses and solutions that bats provide to this rapidly changing world, the quicker we can take the necessary measures.

Kaynakça

  • Palheta L.R., Urbieta G.L., Brasil L.S., Dias-Silva K., Da Silva J.B., Graciolli G., Aguiar L.M.S. and Vieira T.B. (2020). Theeffect of urbanization on bats and communities ofbat flies (Diptera: Nycteribiidae and Streblidae) in the Amazon, Northern Brazil. Acta Chiropterologica 22,403–16.
  • Egert-Berg, K., Handel, M., Goldshtein, A., Eitan, O., Borissov, I. and Yovel, Y. (2021). Fruit bats adjust their foraging strategies to urban environments to diversify their diet. BMC Biology, 19, Article 123.
  • Jung, K. and Kalko, E.K. (2011). Adaptability and vulnerability of high flying Neotropical aerial insectivorous bats to urbanization. Diversity and Distributions, 17(2): 262-274.
  • Jones, G., Jacobs, D., Kunz, T., Willig, M. and Racey, P. (2009). Carpe noctem: the importance of bats as bioindicators. Endangered Species Research, 8(1-2): 93-115.
  • Kunz, T.H. and Lumsden, L.F. (2003). Ecology of cavity and foliage roosting bats. T.H. Kunz and M.B. Fenton (Eds.), Bat Ecology. (pp. 3-89). Chicago: University of Chicago Press.
  • Kunz, T.H. (1982). Roosting Ecology of Bats. T.H. Kunz (Eds.), Ecology of Bats (pp. 1-55). Boston, MA: Springer.
  • Thomas, J.P., Kukka, P.M., Benjamin, J.E., Barclay, R.M.R., Johnson, C.J., Schmiegelow, F.K.A. and Jung, T.S. (2021). Foraging habitat drives the distribution of an endangered bat in an urbanizing boreal landscape. Ecosphere, 12(3), Article e03457.
  • Kasso M. and Balakrishnan M. (2013). Ecological and economicimportance of bats (Order Chiroptera). Isrn Biodiversity, 1-9.
  • Kung, N.Y., Field, H.E., Mclaughlin, A., Edson, D. and Taylor, M. (2015). Flying-foxes in the Australian urban environment-community attitudes and opinions. One Health, 1: 24-30.
  • Duchamp, J.E., Sparks, D.W. and Whitaker, JR., J.O. (2004). Foraging-habitat selection by bats at an urban-rural interface: comparison between a successful and a less successful species. Canadian Journal of Zoology, 82(7): 1157-1164.
  • Thomas, J.P. and Jung, T.S. (2019). Life in a northern town: rural villages in the boreal forest are islands of habitat for an endangered bat. Ecosphere, 10(1), Article e02563.
  • Prat, Y., Taub, M., and Yovel, Y. (2016). Everyday bat vocalizations contain information about emitter, addressee, context, and behavior. Scientific Reports, 6(1), Article 39419.
  • Hooke, R.Leb. and Martín-Duque, J.F. (2012). Land transformation by humans: A review. GSA Today, 12(12): 4-10.
  • Jung, K. and Threlfall, C.G. (2016). Urbanisation and Its Effects on Bats-A Global Meta-Analysis. Bats in the Anthropocene: Conservation of Bats in a Changing World (pp. 13-33). Springer International Publishing.
  • Luck, G.W., Smallbone, L., Threlfall, C. and Law, B. (2013). Patterns in bat functional guilds across multiple urban centres in south-eastern Australia. Landscape Ecology, 28(3): 455-469.
  • Dimkić, I., Fira, D., Janakiev, T., Kabić, J., Stupar, M., Nenadić, M., Unković, N. and Grbić, M.L. (2021). The microbiome of bat guano: for what is this knowledge important? Applied Microbiology and Biotechnology, 105(4): 1407-1419.
  • Mendes, P. and Srbek-Araujo, A.C. (2021). Effects of land-use changes on Brazilian bats: a review of current knowledge. Mammal Review 51(1): 127-142.
  • Arslan, A. and Mesut, B. A. Ş. (2020). Antropojenik Faaliyetler Nedeniyle Değişen Çevrenin Yarasalar Üzerine Etkileri. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9(3), 1449-1459.
  • Scolozzi, R. and Geneletti, D. (2012). A multi-scale qualitative approach to assess the impact of urbanization on natural habitats and their connectivity. Environmental Impact Assessment Review, 36, 9-22.
  • Jung, K. and Kalko, E.K.V. (2010). Where forest meets urbanization: foraging plasticity of aerial insectivorous bats in an anthropogenically altered environment. Journal of Mammalogy, 91(1): 144-153.
  • Lausen, C.L. and Barclay, R.M.R. (2006). Benefits of living in a building: big brown bats (Eptesicus fuscus) in rocks versus buildings. Journal of Mammalogy, 87(2): 362-370.
  • López-Roig, M. and Serra-Cobo, J. (2014). Impact of human disturbance, density, and environmental conditions on the survival probabilities of pipistrelle bat (Pipistrellus pipistrellus). Population Ecology, 56(3): 471-480.
  • Karaer, M. C., Yorulmaz, T. and Tavşanoğlu, Ç. (2022). İklim Değişikliğinin Yarasalar Üzerine Olası Etkileri. JENAS Journal of Environmental and Natural Studies, 4(2), 174-198.
  • Waring, S.D., Essah, E., Gunnell, K. and Bonser, R. (2013). Double jeopardy: the potential for problems when bats interact with breathable roofing membranes in the United Kingdom. Architecture & Environment, 1(1): 1-13.
  • Kalpakis, S., Papadatou, E. and Von Helversen, O. (2005). Balcony of an urban building: an unintended trap fro free-tailed bats (Tadarida teniotis) in the city of Thessaloniki. Nyctalus, 10, 79-84.
  • Threlfall, C., Law, B. and Banks, P.B. (2013). Odour cues influence predation risk at artificial bat roosts in urban bushland. Biology Letters, 9(3): 20121144.
  • Mikula, P. (2013). Western Jackdaw (Corvus monedula) attacking bats (Chiroptera): Observations from Bardejov, northeastern Slovakia. Sylvia, 49, 157-159.
  • Kelm, D. H., Langheld, M., Nogueras, J., Popa-Lisseanu, A. G. and Ibáñez, C. (2023). Continuous low-intensity predation by owls (Strix aluco) on bats (Nyctalus lasiopterus) in Spain and the potential effect on bat colony stability. Royal Society Open Science, 10(8), 230309.
  • Avila-Flores, R. and Fenton, M.B. (2005). Use of Spatial Features by Foraging Insectivorous Bats in a Large Urban Landscape. Journal of Mammalogy, 86(6): 1193- 1204.
  • Conrad, K.F., Warren, M.S., Fox, R., Parsons, M.S. and Woiwod, I.P. (2006). Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biological Conservation, 132(3): 279-291.
  • Abbott, I.M., Sleeman, D.P. and Harrison, S. (2009). Bat activity affected by sewage effluent in Irish rivers. Biological Conservation, 142(12): 2904-2914.
  • Huszarik, M., Roodt, A. P., Wernicke, T., Chávez, F., Metz, A., Link, M., ... and Entling, M. H. (2023). Increased bat hunting at polluted streams suggests chemical exposure rather than prey shortage. Science of The Total Environment, 167080.
  • Rainho, A. and Palmeirim, J.M. (2011). The Importance of Distance to Resources in the Spatial Modelling of Bat Foraging Habitat. PLoS ONE, 6(4), Article e19227.
  • Amorim, F., Jorge, I., Beja, P. and Rebelo, H. (2018). Following the water? Landscape-scale temporal changes in bat spatial distribution in relation to Mediterranean summer drought. Ecology and Evolution, 8(11): 5801-5814.
  • Kafaei, S., Karami, P., Mehdizadeh, R. and Akmali, V. (2021). Relationship between niche breadth and range shifts of Rhinopoma muscatellum (Chiroptera: Rhinopomatidae) in climate change scenarios in arid and semiarid mountainous region of Iran. Journal of Mountain Science, 18(9): 2357-2376.
  • Russo, D. and Jones, G. (2002). Identification of twenty-two bat species (Mammalia: Chiroptera) from Italy by analysis of time‐expanded recordings of echolocation calls. Journal of Zoology, 258(1): 91-103.
  • Serra-Cobo, J., Amengual, B., Abellán, C., Bourhy, H. (2002). European bat lyssavirus infection in Spanish bat populations. Emerging Infectious Diseases, 8: 413- 420.
  • Verboom, B. and Huitema, H. (1997). The importance of linear landscape elements for the pipistrelle Pipistrellus pipistrellus and the serotine bat Eptesicus serotinus. Landscape Ecology, 12(2): 117-125.
  • Stanley, C., Bagniewska, J. M., Grabowska-Zhang, A. and Hesselberg, T. (2023). Wooded streets, but not streetlight dimming, favour bat activity in a temperate urban setting, Journal of Urban Ecology, 9(1), juad011.
  • Berthinussen, A. and Altringham, J. (2012). The effect of a major road on bat activity and diversity. Journal of Applied Ecology, 49(1): 82-89.
  • Fensome, A.G. and Mathews, F. (2016). Roads and bats: a meta-analysis and review of the evidence on vehicle collisions and barrier effects. Mammal Review, 46(4): 311-323.
  • Siemers, B.M. and Schaub, A. (2011). Hunting at the highway: traffic noise reduces foraging efficiency in acoustic predators. Proceedings of the Royal Society B: Biological Sciences, 278(1712): 1646-1652.
  • Barber, J.R., Crooks, K.R. and Fristrup, K.M. (2010). The costs of chronic noise exposure for terrestrial organisms. Trends in Ecology & Evolution, 25(3): 180-189.
  • Russo, D., Jones, G. and Arlettaz, R. (2007). Echolocation and passive listening by foraging mouse-eared bats Myotis myotis and M. blythii. Journal of Experimental Biology, 210(1): 166-176.
  • Raimbault, M. and Dubois, D. (2005). Urban soundscapes: Experiences and knowledge. Cities, 22(5): 339-350.
  • Kirkpatrick, L., Oldfield, I.F. and Park, K. (2017). Responses of bats to clear fell harvesting in Sitka Spruce plantations, and implications for wind turbine installation. Forest Ecology and Management, 395, 1-8.
  • Estrada, A. and Coates-Estrada, R. (2002). Bats in continuous forest, forest fragments and in an agricultural mosaic habitat-island at Los Tuxtlas, Mexico. Biological Conservation, 103(2): 237-245.
  • Davy, C.M., Russo, D. and Fenton, M.B. (2007). Use of native woodlands and traditional olive groves by foraging bats on a Mediterranean island: consequences for conservation. Journal of Zoology, 273(4): 397-405.
  • Ancillotto, L., Labadessa, R., Roscioni, F., Montioni, F., Fulco, E., Zollo, L. and Spilinga, C. (2023). Protected habitats support bats in Mediterranean dry grasslands. Science of The Total Environment, 882, 163415.
  • Korine, C., Izhaki, I. and Arad, Z. (1999). Is the Egyptian fruit-bat Rousettus aegyptiacus a pest in Israel? An analysis of the bat’s diet and implications for its conservation. Biologycal Conservation. 88(3): 301-306.
  • Frick, W.F., Kingston, T. and Flanders, J. (2020). A review of the major threats and challenges to global bat conservation. Ann. N. Y. Acad. Sci., 1469, 5–25.
  • Froidevaux, J.S.P., Boughey, K.L., Hawkins, C.L., Broyles, M. and Jones, G. (2019). Managing hedgerows for nocturnal wildlife: Do bats and their insect prey benefit from targeted agri‐environment schemes? Journal of Applied Ecology, 56(7): 1610-1623.
  • Frey-Ehrenbold, A., Bontadina, F., Arlettaz, R. and Obrist, M.K. (2013). Landscape connectivity, habitat structure and activity of bat guilds in farmlanddominated matrices. Journal of Applied Ecology, 50(1): 252-261.
  • Roeleke, M., Blohm, T., Hoffmeister, U., Marggraf, L., Schlägel, U.E., Teige, T., and Voigt, C.C. (2020). Landscape structure influences the use of social information in an insectivorous bat. Oikos, 129(6): 912-923.
  • Bontadina, F., Schmied, S.F., Beck, A. and Arlettaz, R. (2008). Changes in prey abundance unlikely to explain the demography of a critically endangered Central European bat. Journal of Applied Ecology, 45(2): 641-648.
  • Ancillotto, L., Ariano, A., Nardone, V., Budinski, I., Rydell, J. and Russo, D. (2017). Effects of free-ranging cattle and landscape complexity on bat foraging: Implications for bat conservation and livestock management. Agriculture, Ecosystems & Environment, 241, 54-61.
  • Wilkinson, G.S. and Wenrick Boughman, J. (1998). Social calls coordinate foraging in greater spear-nosed bats. Animal Behaviour, 55(2): 337-350.
  • Harten, L., Matalon, Y., Galli, N., Navon, H., Dor, R. and Yovel, Y. (2018). Persistent producer-scrounger relationships in bats. Science Advances, 4(2).
  • Russo, D. and Ancillotto, L. (2015). Sensitivity of bats to urbanization: A review. Mammalian Biology, 80(3): 205-212.
  • O’Shea, T.J., Cryan, P.M., Hayman, D.T.S., Plowright, R.K. and Streicker, D.G. (2016). Multiple mortality events in bats: a global review. Mammal Review, 46(3): 175-190.
  • Bello-Gutiérrez, J., Suzán, G., Hidalgo-Mihart, M.G. and Salas, G. (2010). Alopecia in Bats from Tabasco, México. Journal of Wildlife Diseases, 46(3): 1000-1004.
Toplam 61 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Koruma ve Biyolojik Çeşitlilik, Yaban Hayatı ve Habitat Yönetimi, Çevre Yönetimi (Diğer)
Bölüm Makaleler
Yazarlar

Omer Solak Amet 0000-0002-3673-9603

Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 11 Temmuz 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 6 Sayı: 2

Kaynak Göster

APA Solak Amet, O. (2023). Alan Kullanım Değişikliği ve Kentleşmenin Yarasalar Üzerindeki Etkisi. Ulusal Çevre Bilimleri Araştırma Dergisi, 6(2), 100-108.
AMA Solak Amet O. Alan Kullanım Değişikliği ve Kentleşmenin Yarasalar Üzerindeki Etkisi. UCBAD. Aralık 2023;6(2):100-108.
Chicago Solak Amet, Omer. “Alan Kullanım Değişikliği Ve Kentleşmenin Yarasalar Üzerindeki Etkisi”. Ulusal Çevre Bilimleri Araştırma Dergisi 6, sy. 2 (Aralık 2023): 100-108.
EndNote Solak Amet O (01 Aralık 2023) Alan Kullanım Değişikliği ve Kentleşmenin Yarasalar Üzerindeki Etkisi. Ulusal Çevre Bilimleri Araştırma Dergisi 6 2 100–108.
IEEE O. Solak Amet, “Alan Kullanım Değişikliği ve Kentleşmenin Yarasalar Üzerindeki Etkisi”, UCBAD, c. 6, sy. 2, ss. 100–108, 2023.
ISNAD Solak Amet, Omer. “Alan Kullanım Değişikliği Ve Kentleşmenin Yarasalar Üzerindeki Etkisi”. Ulusal Çevre Bilimleri Araştırma Dergisi 6/2 (Aralık 2023), 100-108.
JAMA Solak Amet O. Alan Kullanım Değişikliği ve Kentleşmenin Yarasalar Üzerindeki Etkisi. UCBAD. 2023;6:100–108.
MLA Solak Amet, Omer. “Alan Kullanım Değişikliği Ve Kentleşmenin Yarasalar Üzerindeki Etkisi”. Ulusal Çevre Bilimleri Araştırma Dergisi, c. 6, sy. 2, 2023, ss. 100-8.
Vancouver Solak Amet O. Alan Kullanım Değişikliği ve Kentleşmenin Yarasalar Üzerindeki Etkisi. UCBAD. 2023;6(2):100-8.
 ❤ UCBAD