SIGNIFICANCE OF HYDROXYMETHYLFURFURAL AND MELANOIDINS AS PRODUCTS OF MAILLARD REACTIONS IN HONEY
Yıl 2022,
, 96 - 113, 19.05.2022
Ina Ramírez Miranda
Yolanda Moguel Ordoñez
David Betancur Ancona
Öz
Honey presents exceptionally favorable conditions for a non-enzymatic glycation of proteins or Maillard reaction (MR), which is a complex network of chemical reactions which is favored during processing and storage and that often influence the quality and acceptability of honey. One of the organic compounds produced in the intermediate stages of MR that has been the subject of several investigations and controversies, due to its relationship with adverse effects on human health, is 5-hydroxymethylfurfural (HMF), which has become an indicator of honey quality. Conversely melanoidins, polymeric molecules responsible for non-enzymatic browning and which have been related to beneficial effects due to the antioxidant and antibacterial properties of honey, are produced in the final stages of MR. The aim of this article is to provide a review on the formation as well as the positive and negative effects associated with the formation of HMF and melanoidins as MR products in honey.
Destekleyen Kurum
Consejo Nacional de Ciencia y Tecnología (COMACYT)
Teşekkür
The autors acknowledge doctoral fellowship support from Consejo Nacional de Ciencia y Tecnología, CONACyT
Kaynakça
- Abraham, K., Gürtler, R., Berg, K., Heinemeyer, G., Lampen, A., & Appel, K.E. 2011. Toxicology and risk assessment of 5-Hydroxymethylfurfural in food. Mol. Nutr. Food Res. 55(5): 667–678. doi: 10.1002/mnfr.201000564.
- Adams, C.J., Manley Harris, M., & Molan, P.C. 2009. The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey. Carbohydr. Res. 344(8): 1050–1053. doi: 10.1016/j.carres.2009.03.020.
- Al-Diab, D., & Jarkas, B. 2015. Effect of storage and thermal treatment on the quality of some local brands of honey from Latakia markets. J. Entomol. Zool. 3(3): 328-334. (Retrieved by: 10.06.2021), https://www.entomoljournal.com/vol3Issue3/pdf/3-4-48.1.pdf.
- Aljahdali, N., Gadonna-Widehem, P., Anton, P.M., & Carbonero, F. 2020. Gut microbiota modulation by dietary barley malt melanoidins. Nutrients. 12(1): 241. doi:10.3390/nu12010241.
- Ameur, L., Mathieu, O., Lalanne, V., Trystram, G., & Birlouezaragon, I. 2007. Comparison of the effects of sucrose and hexose on furfural formation and browning in cookies baked at different temperatures. Food Chem. 101(4): 1407–1416. doi: 10.1016/j.foodchem.2006.03.049.
- Annapoorani, A., Anilakumar, K.R., Khanum, F., Anjaneya, M.N., & Bawa, A.S. 2010. Studies on the physicochemical characteristics of heated honey, honey mixed with ghee and their food consumption pattern by rats. Aryuveda J. 31(2): 141-146. doi: 10.4103/0974-8520.72363.
- Archer, M.C., Bruce, W.R., Chan, C.C., Corpet, D.E., Medline, A., Roncucci, L., Stamp, D., & Zhang, X.M. 1992. Aberrant crypt foci and microadenoma as markers for colon cancer. Environ. Health Perspect. 98: 195–197. doi: 10.1289/ehp.9298195.
- Bertrand, E., El Boustany, P., Faulds, C., & Berdagué, J.L. 2018. The Maillard reaction in food: An introduction. In book: Reference Module in Food Science 1–10. doi: 10.1016/B978-0-08-100596-5.21459-5.
- Biluca, F.C., Braghini, F., Gonzaga, L.V., Costa, A.C.O., & Fett, R. 2016. Physicochemical profiles, minerals and bioactive compounds of stingless bee honey (Meliponinae). J. Food Compos. Anal. 50: 61–69. doi: 10.1016/j.jfca.2016.05.007.
- Biluca, F.C., Della Betta, F., de Oliveira, G.P., Pereira, L. M., Gonzaga, L. V., Costa, A. C. O., & Fett, R. 2014. 5-HMF and carbohydrates content in stingless bee honey by CE before and after thermal treatment. Food Chem. 159: 244–249. doi: 10.1016/j.foodchem.2014.03.016.
- Blidi, S., Gotsiou, P., Loupassaki, S., Grigorakis, S., & Calokerinos, A.C. 2017. Effect of thermal treatment on the quality of honey samples from Crete. Adv. Food Sci. Eng. 1(1): 1-8. doi: 10.22606/afse.2017.11001.
- Bogdanov, S., Lüllmann, C., Martin, P., von der Ohe, W., Russmann, H., Vorwohl, G., et al. 1999. Honey quality and international regulatory standards: review by the International Honey Commission. Bee World. 80(2): 61–69. doi: 10.1080/0005772x.1999.11099428.
- Borrelli, R.C., & Fogliano, V. 2005. Bread crust melanoidins as potential prebiotic ingredients. Mol. Nutr. Food Res. 49(7): 673–678. doi: 10.1002/mnfr.200500011.
- Bruce, W.R., Archer, M.C., Corpet, D.E., Medline, A., Minkin, S., Stamp, D., Yin, Y., & Zhang, X.M. 1993. Diet, aberrant crypt foci and colorectal cancer. Mutat. Res. 290(1): 111–118. doi: 10.1016/0027-5107(93)90038-h.
- Brudzynski, K. 2012. Honey melanoidins: Emerging novel understanding on the mechanism of antioxidant and antibacterial action of honey. In book: Honey: Current Research and Clinical Application. Chapter: II. Nova Science Publishers, Inc. 17-38. (Retrieved by: 27.07.2021), https://www.researchgate.net/publication/230899121_Honey_Melanoidins_Emerging_Novel_Understanding_on_the_Mechanism_of_Antioxidant_and_Antibacterial_Action_of_Honey.
- Brudzynski, K., & Miotto, D. 2011a. Honey melanoidins: Analysis of the compositions of the high molecular weight melanoidins exhibiting radical-scavenging activity. Food Chem. 127(3): 1023–1030. doi: 10.1016/j.foodchem.2011.01.075.
- Brudzynski, K., & Miotto, D. 2011b. The recognition of high molecular weight melanoidins as the main components responsible for radical-scavenging capacity of unheated and heat-treated Canadian honeys. Food Chem. 125(2): 570–575. doi: 10.1016/j.foodchem.2010.09.049.
- Brudzynski, K., & Miotto, D. 2011c. The relationship between the content of Maillard reaction-like products and bioactivity of Canadian honeys. Food Chem. 124(3): 869–874. doi: 10.1016/j.foodchem.2010.07.009.
- Cämmerer, B., Jalyschko, W., & Kroh, L.W. 2002. Intact carbohydrate structures as part of the melanoidin skeleton. J. Agric. Food Chem. 50(7): 2083–2087. doi: 10.1021/jf011106w.
- Capuano, E., & Fogliano, V. 2011. Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT - Food Sci. Technol. 44(4): 793–810. doi: 10.1016/j.lwt.2010.11.002.
- Capuano, E., Ferrigno, A., Acampa, I., Ait-Ameur, L., & Fogliano, V. 2008. Characterization of the Maillard reaction in bread crisps. Eur. Food Res. Technol. 228(2): 311–319. doi: 10.1007/s00217-008-0936-5.
- Carvalho, D.O., Correia, E., Lopes, L., & Guido, L.F. 2014. Further insights into the role of melanoidins on the antioxidant potential of barley malt. Food Chem. 160: 127–133. doi: 10.1016/j.foodchem.2014.03.074.
- Chua, L.S., Adnan, N.A., Abdul-Rahaman, N.L., & Sarmidi, M.R. 2014. Effect of thermal treatment on the biochemical composition of tropical honey simples. Int. Food Res. J. 21(2): 773-778. doi: 10.18689/mjft-1000124.
- Chuttong, B., Chanbang, Y., Sringarm, K., & Burgett, M. 2016. Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chem. 192: 149–155. doi: 10.1016/j.foodchem.2015.06.089.
- CXS 12 1981. Adopted in 1981. Revised in 1987, 2001. Amended in 2019. Standard for Honey. Codex Alimentarius International Food Standards. (Access date: 05.09.2019) https://www.fao.org/fao-who-codexalimentarius/sh-proxy/es/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B12-1981%252FCXS_012s.pdf.
- De Almeida, M.L.B., Stramm, K.M., Horita, A., Barth, O.M., da Silva de Freitas, A., & Estevinho, L.M. 2013, Comparative study of the physicochemical and palynological characteristics of honey from Melipona subnitida and Apis mellifera. Int. J. Food Sci. Technol. 48(8): 1698–1706. doi: 10.1111/ijfs.12140.
- De Oliveira, F.C., Coimbra, J.S. dos R., de Oliveira, E.B., Zuñiga, A.D.G., & Rojas, E.E.G. 2016. Food protein-polysaccharide conjugates obtained via the Maillard reaction: A Review. Crit. Rev. Food Sci. Nutr. 56(7): 1108–1125. doi: 10.1080/10408398.2012.755669.
- Diaz, M.N., Cavia S.M., Salazar, G., Dolores R.P.M., & Muñiz, P. 2020. Cytotoxicity study of bakery product melanoidins on intestinal and endothelial cell lines. Food Chem. 343: 128405. doi: 10.1016/j.foodchem.2020.128405.
- Durling, L.J.K., Busk, L., & Hellman, B.E. 2009. Evaluation of the DNA damaging effect of the heat-induced food toxicant 5-hydroxymethylfurfural (HMF) in various cell lines with different activities of sulfotransferases. Food Chem. Toxicol. 47(4): 880–884. doi; 10.1016/j.fct.2009.01.022.
- Echavarría, A.P., Pagán, J., & Ibarz, A. 2012. Melanoidins Formed by Maillard Reaction in Food and Their Biological Activity. Food Eng. Rev. 4(4): 203–223. doi: 10.1007/s12393-012-9057-9.
- EFSA 2005. Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request from the commission related to flavouring group evaluation 13: furfuryl and furan derivatives with and without additional sidechain substituents and heteroatoms from chemical group 14. EFSA J. 215, 1–73 (Access 27.07.2019), https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2005.215.
- Escriche, I., Visquert, M., Juan-Borrás, M., & Fito, P. 2009. Influence of simulated industrial thermal treatments on the volatile fractions of different varieties of honey. Food Chem. 112(2): 329–338. doi: 10.1016/j.foodchem.2008.05.068.
- EU 2002. Council Directive 2001/110/EC of 20 December 2001 relating to honey. Official Journal, L 10, 47-52. (Access date: 18.08.2019), https://www.fao.org/faolex/results/details/es/c/LEX-FAOC037441/.
- Friedman, M. 1996. Food browning and its prevention: An overview. J. Agric. Food Chem. 44(3): 631–653. doi: 10.1021/jf950394r.
- Fromowitz, M., Shuga, J., Wlassowsky, A.Y., Ji, Z., North, M., Vulpe, C.D., Smith, M.T., & Zhang, L. 2012. Bone marrow genotoxicity of 2, 5-dimethylfuran, a green biofuel candidate. Environ. Mol. Mutagen. 53(6): 488–491. doi: 10.1002/em.21707.
- Glatt, H., Schneider, H., Murkovic, M., Monien, B.H., & Meinl, W. 2011. Hydroxymethyl-substituted furans: mutagenicity in Salmonella typhimurium strains engineered for expression of various human and rodent sulphotransferases. Mutagenesis. 27(1): 41–48. doi: 10.1093/mutage/ger054.
- Gökmen, V., Çetinkaya Açar, Ö., Köksel, H., & Acar, J. 2007. Effects of dough formula and baking conditions on acrylamide and hydroxymethylfurfural formation in cookies. Food Chem. 104(3): 1136–1142. doi: 10.1016/j.foodchem.2007.01.008.
- Goulas, V., Nicolaou, D., Botsaris, G., & Barbouti, A. 2018. Straw wine melanoidins as potential multifunctional agents: insight into antioxidant, antibacterial, and angiotensin-I-converting enzyme inhibition effects. Biomedicines. 6(3): 83. doi: 10.3390/biomedicines6030083.
- Gregorc, A., Jurišić, S., & Sampson, B. 2020. Hydroxymethylfurfural affects caged honey bees (Apis mellifera carnica). Diversity 2020, 12(1): 18. doi: 10.3390/d12010018.
- Guo, W., Liu, Y. Zhu, X., & Wang, S. 2011. Temperature-dependent dielectric properties of honey associated with dielectric heating. J. Food Eng. 102(3): 209–216. doi: 10.1016/j.jfoodeng.2010.08.016.
- Hayase, F., Usui, T., Nishiyama, K., Sasaki, S., Shirahashi, Y., Tsuchiya, N., et al. 2005. Chemistry and biological effects of melanoidins and glyceraldehyde-derived pyridinium as advanced glycation and products. Ann. N. Y. Acad. Sci. 1043(1); 104–110. doi: 10.1196/annals.1333.013.
- Hayden, M.R., & Tyagi, S.C. 2004, Uric acid: A new look at an old risk marker for cardiovascular disease, metabolic syndrome, and type 2 diabetes mellitus: The urate redox shuttle. Nutr. Metab. 1(1): 10. doi: 10.1186/1743-7075-1-10.
- Hiramoto, S., Itoh, K., Shizuuchi, S., Kawachi, Y., Morishita, Y., Nagase, M., et al. 2004. Melanoidin, a food protein-derived advanced Maillard reaction product, suppresses Helicobacter pylori in vitro and in vivo. Helicobacter. 9(5): 429–435. doi: 10.1111/j.1083-4389.2004.00263.x.
- Hofmann, T. 1998. Studies on melanoidin-type colorants generated from the Maillard reaction of protein-bound lysine and furan-2-carboxaldehyde - chemical characterisation of a red coloured domaine. Zeitschrift For Lebensmitteluntersuchung Und -Forschung A. 206 (4): 251–258. doi: 10.1007/s002170050253.
- Høie, A.H., Svendsen, C., Brunborg, G., Glatt, H., Alexander, J., Meinl, W., & Husøy, T. 2015. Genotoxicity of three food processing contaminants in transgenic mice expressing human sulfotransferases 1A1 and 1A2 as assessed by the in vivo alkaline single cell gel electrophoresis assay. Environ. Mol. Mutagen. 56(8): 709–714. doi: 10.1002/em.21963.
- Huidobro, J.F., & Simal, J. 1984. Parámetros de Calidad de la miel VI: hidroximetilfurfural. Offarm. 3 (12): 767-781. (Retrevied by: 24.06.2019), https://www.researchgate.net/publication/235698354_Parametros_de_calidad_de_la_miel_VI_Hidroximetilfurfural.
- Ibarz, A., Garvín, A., Garza, S., & Pagán, J. 2009. Toxic effect of melanoidins from glucose–asparagine on trypsin activity. Food Chem. Toxicol. 47(8): 2071–2075. doi: 10.1016/j.fct.2009.05.025.
- Jachimowicz, T., & El Sherbiny, G. 1975. Zur problematik der verwendung von invertzucker für die bienenfütterung. Apidologie, Springer Verlag, 6 (2): 121- 143. ffhal-00890379f (Retrevied by: 20.07.2019), https://hal.archives-ouvertes.fr/hal-00890379/document.
- Janzowski, C., Glaab, V., Samimi, E., Schlatter, J., & Eisenbrand, G. 2000. 5-Hydroxymethylfurfural: assessment of mutagenicity, DNA-damaging potential and reactivity towards cellular glutathione. Food Chem. Toxicol. 38(9): 801–809. doi: 10.1016/s0278-6915(00)00070-3.
- Kamei, H., Koide, T., Hashimoto, Y., Kojima, T., Umeda, T., & Hasegawa, M. 1997. Tumor cell growth-inhibiting effect of melanoidins extracted from miso and soy sauce. Cancer Biother. Radiopharm. 12(6): 405–409. doi: 10.1089/cbr.1997.12.405.
- Karabagias, I.K., Badeka, A., Kontakos, S., Karabournioti, S., & Kontominas, M.G. 2014. Characterization and classification of Thymus capitatus (L.) honey according to geographical origin based on volatile compounds, physicochemical parameters and chemometrics. Food Res. Int. 55: 363–372. doi: 10.1016/j.foodres.2013.11.032.
- Khalil, M.I., Sulaiman, S.A., & Gan, S.H. 2010. High 5-hydroxymethylfurfural concentrations are found in Malaysian honey samples stored for more than one year. Food Chem. Toxicol. 48(8-9): 2388–2392. doi: 10.1016/j.fct.2010.05.076.
- Kitts, D.D., Chen, X.M., & Jing, H. 2012. Demonstration of antioxidant and anti-inflammatory bioactivities from sugar–amino acid Maillard reaction products. J. Agric. Food Chem. 60 (27): 6718–6727. doi: 10.1021/jf2044636.
- Langner, E., & Rzeski, W. 2013. Biological properties of melanoidins: A review. Int. J. Food Prop. 17(2): 344–353. doi: 10.1080/10942912.2011.631253.
- Le Blanc, B.W., Eggleston, G., Sammataro, D., Cornett, C., Dufault, R., Deeby, T., & St. Cyr, E. 2009. Formation of hydroxymethylfurfural in domestic high-fructose corn syrup and its toxicity to the honey bee (Apis mellifera). J. Agric. Food Chem. 57 (16): 7369–7376. doi: 10.1021/jf9014526.
- Lee, C.H., Chen, K.T., Lin, J.A., Chen, Y.T., Chen, Y.A., Wu, J.T., & Hsieh, C.W. 2019. Recent advances in processing technology to reduce 5-hydroxymethylfurfural in foods. Trends Food Sci. Technol. 93: 271-280. doi: 10.1016/j.tifs.2019.09.021.
- Lee, Y.C., Shlyankevich, M., Jeong, H. K., Douglas, J. S., & Surh, Y.J. 1995. Bioactivation of 5-hydroxymethyl-2-furaldehyde to an electrophilic and mutagenic allylic sulfuric acid ester. Biochem. Biophys. Res. Commun. 209 (3): 996–1002. doi: 10.1006/bbrc.1995.1596.
- Li, M.M., Wu, L.Y., Zhao, T., Xiong, L., Huang, X., Liu, Z.H., et al. 2010. The protective role of 5-HMF against hypoxic injury. Cell Stress Chaperones. 16(3): 267–273. doi: 10.1007/s12192-010-0238-2.
- Libonnatti, C., Varela, S., & Basualdo, M. 2014. Antibacterial activity of honey: A review of honey around the world. J. Microbiol. Antimicrob. 6(3): 51–56. doi: 10.5897/jma2014.0308.
- Lindenmeier, M., Faist, V., & Hofmann, T. 2002. Structural and functional characterization of pronyl-lysine, a novel protein modification in bread crust melanoidins showing in vitro antioxidative and phase I/II enzyme modulating activity. J. Agric. Food Chem. 50(24): 6997–7006. doi: 10.1021/jf020618n.
- Liu, X., Xia, B., Hu, L., Ni, Z., Thakur, K., & Wei, Z. 2020; Maillard conjugates and their potential in food and nutritional industries: A review. Food Frontiers. 1(4): 382-397. doi: 10.1002/fft2.43.
- Lund, M.N., & Ray, C.A. 2017. Control of Maillard Reactions in Foods: Strategies and Chemical Mechanisms. J. Agric. Food Chem. 65(23): 4537-4552. doi: 10.1021/acs.jafc.7b00882.
- Machiels, D., & Istasse, L. 2002. La réaction de Maillard : importance et applications en chimie des aliments. Ann. Med. Vet. 146(6): 347-352. Available: http://www.facmv.ulg.ac.be/amv/articles/2002_146_6_04.pdf.
- Majtan, J. 2011. Methylglyoxal—A potential risk factor of Manuka honey in healing of diabetic ulcers. Evid. Based Complement. Alternat. Med. 1–5. doi: 10.1093/ecam/neq013.
- Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M.C., & Lerici, C.R. 2000. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Technol. 11(9-10): 340–346. doi: 10.1016/s0924-2244(01)00014-0.
- Marko, D., Kemény, M., Bernady, E., Habermeyer, M., Weyand, U., Meiers, S., Frank, O., & Hofmann, T. 2002. Studies on the inhibition of tumor cell growth and microtubule assembly by 3-hydroxy-4-[(E)-(2-furyl)methylidene]methyl-3-cyclopentene-1,2-dione, an intensively coloured Maillard reaction product. Food Chem. Toxicol. 40(1): 9–18. doi: 10.1016/s0278-6915(01)00093-x.
- Martins, S.I.F.S., Jongen, W.M.F., & van Boekel, M.A.J.S. 2001. A review of Maillard reaction in food and implications to kenetic modelling. Trends Food Sci. Technol. 11: 364-373. doi: 10.1016/S0924-2244(01)00022-X.
- Mavric, E., Wittmann, S., Barth, G., & Henle, T. 2008. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol. Nutr. Food Res. 52(4): 483–489. doi: 10.1002/mnfr.200700282.
- Morales, F.J. 2008. Hydroxymethylfurfural (HMF) and related compounds. Process-Induced Food Toxicants: Occurrence, Formation, Mitigation, and Health Risks. John Wiley & Sons, USA, 135–174. doi: 10.1002/9780470430101.ch2e.
- Murkovic, M., & Bornik, M.A. 2007. Formation of 5-hydroxymethyl-2-furfural (HMF) and 5-hydroxymethyl-2-furoic acid during roasting of coffee. Mol. Nutr. Food Res. 51(4): 390–394. doi: 10.1002/mnfr.200600251.
- Narayana Murthy, U.M., & Sun, W.Q. 2000. Protein modification by Amadori and Maillard reactions during seed storage: roles of sugar hydrolysis and lipid peroxidation. J. Exp. Bot. 51(348): 1221–1228. doi: 10.1093/jexbot/51.348.1221.
- Neupane, K., & Thapa, R. 2005. Alternative to off-season sugar supplement feeding of honeybees. J Inst Agric Anim Sci. 26: 77–81. doi: 10.3126/jiaas.v26i0.615.
- Nishi, Y., Miyakawa, Y., & Kato, K. 1989. Chromosome aberrations induced by pyrolysates of carbohydrates in Chinese hamster V79 cells. Mutat. Res. Lett. 227(2): 117–123. doi: 10.1016/0165-7992(89)90007-9.
- Nordin, A., Sainik, N.Q.A.V., Chowdhury, S.R., Saim, A.B., & Idrus, R.B.H. 2018. Physicochemical properties of stingless bee honey from around the globe: A comprehensive review. J. Food Compos. Anal. 73: 91-102. doi: 10.1016/j.jfca.2018.06.002.
- Otles S. 2006. Antioxidative properties of honey in poultry meat. Science of honey. (Access date: 16.04.2019), http://eng.ege.edu.tr/~otles/honey/?hny=hnylnk27 [23 April 2019].
- Pastoriza de la C.S., Álvarez, J., Végvári, Á., Montilla, G.J., Cruz, L.O., Delgado, A.C., & Rufián-Henares, J.A.. 2016. Relationship between HMF intake and SMF formation in vivo: An animal and human study. Mol. Nutr. Food Res. 61(3): 1600773. doi: 10.1002/mnfr.201600773.
- Ramírez, J.A., Guerra, H.E, & García, V.B. 2000. Browning Indicators in bread. J. Agric. Food Chem. 48(9): 4176–4181. doi: 10.1021/jf9907687.
- Rawel, H.M., & Rohn, S. 2010. Nature of hydroxycinnamate-protein interactions. Phytochem. Rev. 9 (1): 93–109. doi: 10.1007/s11101-009-9154-4 https://produccioncientificaluz.org/index.php/cientifica/article/view/14793.
- Ríos, A.M., Novoa, M.L., & Vit, P. 2001. Effects of extraction, storage conditions and heating treatment on antibacterial activity of Zanthoxylum fagara honey from Cojedes, Venezuela. RevicyhLUZ. 11(5): 397-402. (Retrevied by: 21.07.2019), https://produccioncientificaluz.org/index.php/cientifica/article/view/14793.
- Rufián-Henares, J.A., & Morales, F.J. 2007. Angiotensin-I converting enzyme inhibitory activity of coffee melanoidins. J. Agric. Food Chem. 55(4): 1480–1485. doi: 10.1021/jf062604d.
- Rufián-Henares, J.A., & Morales, F.J. 2007. Functional properties of melanoidins: In vitro antioxidant, antimicrobial and antihypertensive activities. Food Res. Int. 40(8): 995–1002. doi: 10.1016/j.foodres.2007.05.002.
- Rufián-Henares. J.A., & Morales, F.J. 2008. Antimicrobial activity of melanoidins against Escherichia coli is mediated by a membrane damage mechanism. J. Agric. Food Chem. 56: 2357–2362 doi: 10.1021/jf073300+.
- Rufián-Henares, J.A., & Pastoriza, de la C.S. 2009. Antimicrobial activity of coffee melanoidins-A study of their metal-chelating properties. J. Agric. Food Chem. 57(2): 432–438. doi: 10.1021/jf8027842.
- Sanchez, C., Castignani, H., & Rabaglio, M., 2018. El mercado apícola internacional. INTA. Argentina. (Access date: 11.06.2019) https://inta.gob.ar/sites/default/files/inta_cicpes_instdeeconomia_sanchez_mercado_apicola_internacional.pdf.
- Sanz, C.S., & Sanz C.M.M. 1994. Índice de diastasas y contenido de hidroximetilfurfural en las mieles de La Rioja. Zubía 12:181-1991. (Retrieved by: 18.05.2019), https://dialnet.unirioja.es/servlet/articulo?codigo=110290.
- Šarić, G., Marković, K., Vukičević, D., Lež, E., Hruškar, M., & Vahčić, N. 2013. Changes of antioxidant activity in honey after heat treatment. Czech J. Food Sci. 31(6): 601–606. doi: 10.17221/509/2012-cjfs.
- Schoental, R., Hard, G., & Gibbard, S. 1971. Histopathology of renal lipomatous tumors in rats treated with the “natural” products, pyrrolizidine alkaloids and α, β-unsaturated aldehydes. JNCI: J. Natl. Cancer Inst. 47(5): 1037-1034. doi: 10.1093/jnci/47.5.1037.
- Shapla, U.M., Solayman, M., Alam, N., Khalil, M.I., & Gan, S.H. 2018. 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health. Chem. Cent. J. 12(35). doi: 10.1186/s13065-018-0408-3.
- Silván, J.M., Assar, S.H., Srey, C., Dolores del Castillo, M., & Ames, J.M. 2011. Control of the Maillard reaction by ferulic acid. Food Chem. 128(1): 208–213. doi: 10.1016/j.foodchem.2011.03.047.
- Silván, J.M., van de Lagemaat, J., Olano, A., & Del Castillo, M.D. 2006. Analysis and biological properties of amino acid derivates formed by Maillard reaction in foods. J. Pharm. Biomed. Anal. 41(5): 1543–1551. doi: 10.1016/j.jpba.2006.04.004.
- Soliman, W., El-Sharkawy, H., El-Santeel, F., & Khattaby, A. 2019. Effect of storage and heat on chemical-physical properties and antimicrobial activity of bee honey. J. Prod. Dev. 24(4): 773-786. doi: 10.21608/jpd.2019.81024.
- Sousa, J.M.B. de, Souza, E.L. de, Marques, G., Benassi, M. de T., Gullón, B., Pintado, M.M., & Magnani, M. 2016. Sugar profile, physicochemical and sensory aspects of monofloral honeys produced by different stingless bee species in Brazilian semi-arid region. LWT - Food Sci. Technol. 65: 645–651. doi: 10.1016/j.lwt.2015.08.058.
- Souza F.W.E., Mendes, A.E.M., Paiva, S., K. M., Barros, M.F.I., Reinaldo, O.V., Ribeiro L.C., Aroucha, S.M.C. 2010. Parâmetros físico-químicos do mel de abelha sem Ferrão (Melipona subnitida) após tratamento termico. Acta Vet. Bras. 4(3): 153-157. (Access date: 06.06.2019), https://www.researchgate.net/publication/277033378_PARAMETROS_FISICO-QUIMICOS_DO_MEL_DE_ABELHA_SEM_FERRAO_Melipona_subnitida_APOS_TRATAMENTO_TERMICO.
- Spano, N., Casula, L., Panzanelli, A., Pilo, M., PIiu, P., Scanu, R., Tapparo, A., & Sanna, G. 2006. An RP-HPLC determination of 5-hydroxymethylfurfural in honeyThe case of strawberry tree honey. Talanta. 68(4): 1390–1395. doi: 10.1016/j.talanta.2005.08.003.
- Subramanian, R., Umesh Hebbar, H., & Rastogi, N.K. 2007. Processing of Honey: A Review. Int. J. Food Prop. 10(1): 127–143. doi: 10.1080/10942910600981708.
- Suntiparapop, K., Prapaipong, P., & Chantawannakul, P. 2012. Chemical and biological properties of honey from Thai stingless bee (Tetragonula leaviceps). J. Apic. Res. 51(1): 45–52. doi: 10.3896/ibra.1.51.1.06.
- Surh, Y.J., & Tannenbaum, S.R. 1994. Activation of the Maillard reaction product 5-(hydroxymethyl) furfural to strong mutagens via allylic sulfonation and chlorination. Chem. Res. Toxicol. 7(3): 313–318. doi: 10.1021/tx00039a007.
- Surh, Y. J., Liem, A., Miller, J.A., & Tannenbaum, S.R. 1994. 5-Sulfooxymethylfurfural as a possible ultimate mutagenic and carcinogenic metabolite of the Maillard reaction product, 5-hydroxymethylfurfural. Carcinogenesis. 15(10): 2375–2377. doi: 10.1093/carcin/15.10.2375.
- Svendsen, C., Husøy, T., Glatt, H., Paulsen, J.E., & Alexander, J. 2009. 5-Hydroxymethylfurfural and 5-sulfooxymethylfurfural increase adenoma and flat ACF number in the intestine of Min/+ mice. Anticancer Res. 29: 1921–1926 (Retrieved by: 19.06.2019), https://ar.iiarjournals.org/content/anticanres/29/6/1921.full.pdf.
- Tagliazucchi, D., & Verzelloni, E. 2014. Relationship between the chemical composition and the biological activities of food melanoidins. Food Sci. Biotechnol. 23(2): 561–568. doi: 10.1007/s10068-014-0077-5.
- Tressl, R., Wondrak, G.T., Krüger, R.P., & Rewicki, D. 1998. New Melanoidin-like Maillard Polymers from 2-Deoxypentoses. J. Agric. Food Chem. 46(1): 104–110. doi: 10.1021/jf970657c.
- Turhan, I., Tetik, N., Karhan, M., Gurel, F., & Reyhan Tavukcuoglu, H. 2008. Quality of honeys influenced by thermal treatment. LWT - Food Sci. Technol. 41(8): 1396–1399. doi: 10.1016/j.lwt.2007.09.008.
- Turkmen, N., Sari, F., Poyrazoglu, E.S., & Velioglu, Y.S. 2006. Effects of prolonged heating on antioxidant activity and colour of honey. Food Chem. 95(4): 653–657. doi: 10.1016/j.foodchem.2005.02.004.
- Turkut, G.M., Degirmenci1, A, Yildiz, O., Can, Z., Cavrar, S., Yaylaci K. F., Kolayli, S. 2018. Investigating 5-hydroxymethylfurfural formation kinetic and antioxidant activity in heat treated honey from different floral sources. J. Food Meas. Charact. 12:2358–2365.doi: https://doi.org/10.1007/s11694-018-9852-y.
- Van Boekel, M.A.J.S. 1998. Effect of heating on Maillard reactions in milk. Food Chem. 62(4): 403–414. doi: 10.1016/s0308-8146(98)00075-2.
- Van Boekel, M.A.J.S. 2001. Kinetic aspects of the Maillard reaction: a critical review. Nahrung. 45 (3): 150–159. doi: 10.1002/1521-3803(20010601)45:3<150::AID-FOOD150>3.0.CO;2-9.
- Visquert, F.M. 2015. Influencia de las condiciones térmicas en la calidad de la miel. Universitat Politècnica de València. PhD diss., (Retrieved by: 13.04.2019), https://dialnet.unirioja.es/servlet/tesis?codigo=74887#:~:text=En%20la%20etapa%20de%20almacenamiento%2C%20los%20tiempos%20de%20residencia%20prolongados,condiciones%20de%20licuaci%C3%B3n%20y%20pasteurizaci%C3%B3n.
- Vit, P., Medina, M. & Enríquez, M.E. 2004. Quality standards for medicinal uses of Meliponinae honey in Guatemala, Mexico and Venezuela. Bee World. 85(1): 2–5. doi: 10.1080/0005772x.2004.11099603.
- Wang, M.Y., Zhao, F.M., Peng, H.Y., Lou, C.H., Li, Y., Ding, X., et al. 2010. Investigation on the morphological protective effect of 5-hydroxymethylfurfural extracted from wine-processed Fructus corni on human L02 hepatocytes. J. Ethnopharmacol. 130(2): 424–428. doi: 10.1016/j.jep.2010.05.024.
- Wen, X., Enokizo, A., Hattori, H., Kobayashi, S., Murata, M., & Homma, S. 2005. Effect of roasting on properties of the zinc-chelating substance in coffee brews. J. Agric. Food Chem. 53(7): 2684–2689. doi: 10.1021/jf048304i.
- Yamada, P., Nemoto, M., Shigemori, H., Yokota, & Isoda, H. 2011. Isolation of 5-(Hydroxymethyl)furfural from Lycium chinense and its inhibitory effect on the chemical mediator release by basophilic cells. Planta Med. 77(05): 434–440. doi: 10.1055/s-0030-1250402.
- Zamora, R., & Hidalgo, F.J. 2005. Coordinate contribution of lipid oxidation and Maillard reaction to the nonenzymatic food browning. Crit. Rev. Food Sci. Nutr. 45(1): 49–59. doi: 10.1080/10408690590900117.
- Zee van der, R., & Pisa, L. 2010. Bijensterfte 2009-10 en toxische invertsuikersiroop Onderzoek naar de schadelijkheid voor bijen van Sint-Ambrosius (Fructo - Bee) Siroop. Nederlands Centrum Bijenonderzoek. 1-15. (Retrieved by: 27.06.2019), https://www.bijenonderzoek.nl/Downloads/Bijensterfte%202009-10_en%20toxische_%20invertsuikersiroop.pdf.
- Zhang, X.M., Chan, C.C., Stamp, D., Minkin, S., C. Archer, M., & Bruce, W.R. 1993. Initiation and promotion of colonic aberrant crypt foci in rats by 5-hydroxymethy1-2-furaldehyde in thermolyzed sucrose. Carcinogenesis. 14(4): 773–775. doi: 10.1093/carcin/14.4.773.
- Zhao, L., Chen, J., Su, J., Li, L., Hu, S., Li, B., Zhang, X., Xu, Z., Chen, T., 2013. In vitro antioxidant and antiproliferative activities of 5-Hydroxymethylfurfural. J. Agric. Food Chem. 61(44), 10604–10611 doi: 10.1021/jf403098y.
- Zhao, L., Su, J., Li, L., Chen, J., Hu, S., Zhang, X., & Chen, T. 2014. Mechanistic elucidation of apoptosis and cell cycle arrest induced by 5-hydroxymethylfurfural, the important role of ROS-mediated signaling pathways. Food Res. Int. 66: 186–196. doi: 10.1016/j.foodres.2014.08.051.
- Zirbes, L., Nguyen, B.K., de Graaf, D.C., De Meulenaer, B., Reybroeck, W., Haubruge, E., & Saegerman, C. 2013. Hydroxymethylfurfural: A possible emergent cause of honey bee mortality? J. Agric. Food Chem. 61(49): 11865–11870. doi: 10.1021/jf403280n.
Baldaki Maillard Reaksiyonlarının Ürünleri Olarak Hidroksimetilfurfural ve Melanoidinlerin Önemi
Yıl 2022,
, 96 - 113, 19.05.2022
Ina Ramírez Miranda
Yolanda Moguel Ordoñez
David Betancur Ancona
Öz
Bal, proteinlerin enzimatik olmayan glikasyonu veya işleme ve depolama sırasında tercih edilen ve genellikle balın kalitesini ve kabul edilebilirliğini etkileyen karmaşık bir kimyasal reaksiyonlar ağı olan Maillard reaksiyonu (MR) için son derece uygun koşullar sunar. İnsan sağlığı üzerindeki olumsuz etkileri nedeniyle birçok araştırma ve tartışmaya konu olan MR'ın ara aşamalarında üretilen organik bileşiklerden biri de bal kalitesinin bir göstergesi haline gelen 5-hidroksimetilfurfural (5-HMF)'dir. Tersine, enzimatik olmayan esmerleşmeden sorumlu olan ve balın antioksidan ve antibakteriyel özelliklerinden dolayı faydalı etkileri ile ilişkilendirilen polimerik moleküller olan melanoidinler, MR'ın son aşamalarında üretilir. Bu makalenin amacı, balda MR ürünleri olarak HMF ve melanoidinlerin oluşumu ile ilgili olumlu ve olumsuz etkilerinin yanı sıra oluşumu hakkında bir inceleme sunmaktır.
Kaynakça
- Abraham, K., Gürtler, R., Berg, K., Heinemeyer, G., Lampen, A., & Appel, K.E. 2011. Toxicology and risk assessment of 5-Hydroxymethylfurfural in food. Mol. Nutr. Food Res. 55(5): 667–678. doi: 10.1002/mnfr.201000564.
- Adams, C.J., Manley Harris, M., & Molan, P.C. 2009. The origin of methylglyoxal in New Zealand manuka (Leptospermum scoparium) honey. Carbohydr. Res. 344(8): 1050–1053. doi: 10.1016/j.carres.2009.03.020.
- Al-Diab, D., & Jarkas, B. 2015. Effect of storage and thermal treatment on the quality of some local brands of honey from Latakia markets. J. Entomol. Zool. 3(3): 328-334. (Retrieved by: 10.06.2021), https://www.entomoljournal.com/vol3Issue3/pdf/3-4-48.1.pdf.
- Aljahdali, N., Gadonna-Widehem, P., Anton, P.M., & Carbonero, F. 2020. Gut microbiota modulation by dietary barley malt melanoidins. Nutrients. 12(1): 241. doi:10.3390/nu12010241.
- Ameur, L., Mathieu, O., Lalanne, V., Trystram, G., & Birlouezaragon, I. 2007. Comparison of the effects of sucrose and hexose on furfural formation and browning in cookies baked at different temperatures. Food Chem. 101(4): 1407–1416. doi: 10.1016/j.foodchem.2006.03.049.
- Annapoorani, A., Anilakumar, K.R., Khanum, F., Anjaneya, M.N., & Bawa, A.S. 2010. Studies on the physicochemical characteristics of heated honey, honey mixed with ghee and their food consumption pattern by rats. Aryuveda J. 31(2): 141-146. doi: 10.4103/0974-8520.72363.
- Archer, M.C., Bruce, W.R., Chan, C.C., Corpet, D.E., Medline, A., Roncucci, L., Stamp, D., & Zhang, X.M. 1992. Aberrant crypt foci and microadenoma as markers for colon cancer. Environ. Health Perspect. 98: 195–197. doi: 10.1289/ehp.9298195.
- Bertrand, E., El Boustany, P., Faulds, C., & Berdagué, J.L. 2018. The Maillard reaction in food: An introduction. In book: Reference Module in Food Science 1–10. doi: 10.1016/B978-0-08-100596-5.21459-5.
- Biluca, F.C., Braghini, F., Gonzaga, L.V., Costa, A.C.O., & Fett, R. 2016. Physicochemical profiles, minerals and bioactive compounds of stingless bee honey (Meliponinae). J. Food Compos. Anal. 50: 61–69. doi: 10.1016/j.jfca.2016.05.007.
- Biluca, F.C., Della Betta, F., de Oliveira, G.P., Pereira, L. M., Gonzaga, L. V., Costa, A. C. O., & Fett, R. 2014. 5-HMF and carbohydrates content in stingless bee honey by CE before and after thermal treatment. Food Chem. 159: 244–249. doi: 10.1016/j.foodchem.2014.03.016.
- Blidi, S., Gotsiou, P., Loupassaki, S., Grigorakis, S., & Calokerinos, A.C. 2017. Effect of thermal treatment on the quality of honey samples from Crete. Adv. Food Sci. Eng. 1(1): 1-8. doi: 10.22606/afse.2017.11001.
- Bogdanov, S., Lüllmann, C., Martin, P., von der Ohe, W., Russmann, H., Vorwohl, G., et al. 1999. Honey quality and international regulatory standards: review by the International Honey Commission. Bee World. 80(2): 61–69. doi: 10.1080/0005772x.1999.11099428.
- Borrelli, R.C., & Fogliano, V. 2005. Bread crust melanoidins as potential prebiotic ingredients. Mol. Nutr. Food Res. 49(7): 673–678. doi: 10.1002/mnfr.200500011.
- Bruce, W.R., Archer, M.C., Corpet, D.E., Medline, A., Minkin, S., Stamp, D., Yin, Y., & Zhang, X.M. 1993. Diet, aberrant crypt foci and colorectal cancer. Mutat. Res. 290(1): 111–118. doi: 10.1016/0027-5107(93)90038-h.
- Brudzynski, K. 2012. Honey melanoidins: Emerging novel understanding on the mechanism of antioxidant and antibacterial action of honey. In book: Honey: Current Research and Clinical Application. Chapter: II. Nova Science Publishers, Inc. 17-38. (Retrieved by: 27.07.2021), https://www.researchgate.net/publication/230899121_Honey_Melanoidins_Emerging_Novel_Understanding_on_the_Mechanism_of_Antioxidant_and_Antibacterial_Action_of_Honey.
- Brudzynski, K., & Miotto, D. 2011a. Honey melanoidins: Analysis of the compositions of the high molecular weight melanoidins exhibiting radical-scavenging activity. Food Chem. 127(3): 1023–1030. doi: 10.1016/j.foodchem.2011.01.075.
- Brudzynski, K., & Miotto, D. 2011b. The recognition of high molecular weight melanoidins as the main components responsible for radical-scavenging capacity of unheated and heat-treated Canadian honeys. Food Chem. 125(2): 570–575. doi: 10.1016/j.foodchem.2010.09.049.
- Brudzynski, K., & Miotto, D. 2011c. The relationship between the content of Maillard reaction-like products and bioactivity of Canadian honeys. Food Chem. 124(3): 869–874. doi: 10.1016/j.foodchem.2010.07.009.
- Cämmerer, B., Jalyschko, W., & Kroh, L.W. 2002. Intact carbohydrate structures as part of the melanoidin skeleton. J. Agric. Food Chem. 50(7): 2083–2087. doi: 10.1021/jf011106w.
- Capuano, E., & Fogliano, V. 2011. Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT - Food Sci. Technol. 44(4): 793–810. doi: 10.1016/j.lwt.2010.11.002.
- Capuano, E., Ferrigno, A., Acampa, I., Ait-Ameur, L., & Fogliano, V. 2008. Characterization of the Maillard reaction in bread crisps. Eur. Food Res. Technol. 228(2): 311–319. doi: 10.1007/s00217-008-0936-5.
- Carvalho, D.O., Correia, E., Lopes, L., & Guido, L.F. 2014. Further insights into the role of melanoidins on the antioxidant potential of barley malt. Food Chem. 160: 127–133. doi: 10.1016/j.foodchem.2014.03.074.
- Chua, L.S., Adnan, N.A., Abdul-Rahaman, N.L., & Sarmidi, M.R. 2014. Effect of thermal treatment on the biochemical composition of tropical honey simples. Int. Food Res. J. 21(2): 773-778. doi: 10.18689/mjft-1000124.
- Chuttong, B., Chanbang, Y., Sringarm, K., & Burgett, M. 2016. Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chem. 192: 149–155. doi: 10.1016/j.foodchem.2015.06.089.
- CXS 12 1981. Adopted in 1981. Revised in 1987, 2001. Amended in 2019. Standard for Honey. Codex Alimentarius International Food Standards. (Access date: 05.09.2019) https://www.fao.org/fao-who-codexalimentarius/sh-proxy/es/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B12-1981%252FCXS_012s.pdf.
- De Almeida, M.L.B., Stramm, K.M., Horita, A., Barth, O.M., da Silva de Freitas, A., & Estevinho, L.M. 2013, Comparative study of the physicochemical and palynological characteristics of honey from Melipona subnitida and Apis mellifera. Int. J. Food Sci. Technol. 48(8): 1698–1706. doi: 10.1111/ijfs.12140.
- De Oliveira, F.C., Coimbra, J.S. dos R., de Oliveira, E.B., Zuñiga, A.D.G., & Rojas, E.E.G. 2016. Food protein-polysaccharide conjugates obtained via the Maillard reaction: A Review. Crit. Rev. Food Sci. Nutr. 56(7): 1108–1125. doi: 10.1080/10408398.2012.755669.
- Diaz, M.N., Cavia S.M., Salazar, G., Dolores R.P.M., & Muñiz, P. 2020. Cytotoxicity study of bakery product melanoidins on intestinal and endothelial cell lines. Food Chem. 343: 128405. doi: 10.1016/j.foodchem.2020.128405.
- Durling, L.J.K., Busk, L., & Hellman, B.E. 2009. Evaluation of the DNA damaging effect of the heat-induced food toxicant 5-hydroxymethylfurfural (HMF) in various cell lines with different activities of sulfotransferases. Food Chem. Toxicol. 47(4): 880–884. doi; 10.1016/j.fct.2009.01.022.
- Echavarría, A.P., Pagán, J., & Ibarz, A. 2012. Melanoidins Formed by Maillard Reaction in Food and Their Biological Activity. Food Eng. Rev. 4(4): 203–223. doi: 10.1007/s12393-012-9057-9.
- EFSA 2005. Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request from the commission related to flavouring group evaluation 13: furfuryl and furan derivatives with and without additional sidechain substituents and heteroatoms from chemical group 14. EFSA J. 215, 1–73 (Access 27.07.2019), https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2005.215.
- Escriche, I., Visquert, M., Juan-Borrás, M., & Fito, P. 2009. Influence of simulated industrial thermal treatments on the volatile fractions of different varieties of honey. Food Chem. 112(2): 329–338. doi: 10.1016/j.foodchem.2008.05.068.
- EU 2002. Council Directive 2001/110/EC of 20 December 2001 relating to honey. Official Journal, L 10, 47-52. (Access date: 18.08.2019), https://www.fao.org/faolex/results/details/es/c/LEX-FAOC037441/.
- Friedman, M. 1996. Food browning and its prevention: An overview. J. Agric. Food Chem. 44(3): 631–653. doi: 10.1021/jf950394r.
- Fromowitz, M., Shuga, J., Wlassowsky, A.Y., Ji, Z., North, M., Vulpe, C.D., Smith, M.T., & Zhang, L. 2012. Bone marrow genotoxicity of 2, 5-dimethylfuran, a green biofuel candidate. Environ. Mol. Mutagen. 53(6): 488–491. doi: 10.1002/em.21707.
- Glatt, H., Schneider, H., Murkovic, M., Monien, B.H., & Meinl, W. 2011. Hydroxymethyl-substituted furans: mutagenicity in Salmonella typhimurium strains engineered for expression of various human and rodent sulphotransferases. Mutagenesis. 27(1): 41–48. doi: 10.1093/mutage/ger054.
- Gökmen, V., Çetinkaya Açar, Ö., Köksel, H., & Acar, J. 2007. Effects of dough formula and baking conditions on acrylamide and hydroxymethylfurfural formation in cookies. Food Chem. 104(3): 1136–1142. doi: 10.1016/j.foodchem.2007.01.008.
- Goulas, V., Nicolaou, D., Botsaris, G., & Barbouti, A. 2018. Straw wine melanoidins as potential multifunctional agents: insight into antioxidant, antibacterial, and angiotensin-I-converting enzyme inhibition effects. Biomedicines. 6(3): 83. doi: 10.3390/biomedicines6030083.
- Gregorc, A., Jurišić, S., & Sampson, B. 2020. Hydroxymethylfurfural affects caged honey bees (Apis mellifera carnica). Diversity 2020, 12(1): 18. doi: 10.3390/d12010018.
- Guo, W., Liu, Y. Zhu, X., & Wang, S. 2011. Temperature-dependent dielectric properties of honey associated with dielectric heating. J. Food Eng. 102(3): 209–216. doi: 10.1016/j.jfoodeng.2010.08.016.
- Hayase, F., Usui, T., Nishiyama, K., Sasaki, S., Shirahashi, Y., Tsuchiya, N., et al. 2005. Chemistry and biological effects of melanoidins and glyceraldehyde-derived pyridinium as advanced glycation and products. Ann. N. Y. Acad. Sci. 1043(1); 104–110. doi: 10.1196/annals.1333.013.
- Hayden, M.R., & Tyagi, S.C. 2004, Uric acid: A new look at an old risk marker for cardiovascular disease, metabolic syndrome, and type 2 diabetes mellitus: The urate redox shuttle. Nutr. Metab. 1(1): 10. doi: 10.1186/1743-7075-1-10.
- Hiramoto, S., Itoh, K., Shizuuchi, S., Kawachi, Y., Morishita, Y., Nagase, M., et al. 2004. Melanoidin, a food protein-derived advanced Maillard reaction product, suppresses Helicobacter pylori in vitro and in vivo. Helicobacter. 9(5): 429–435. doi: 10.1111/j.1083-4389.2004.00263.x.
- Hofmann, T. 1998. Studies on melanoidin-type colorants generated from the Maillard reaction of protein-bound lysine and furan-2-carboxaldehyde - chemical characterisation of a red coloured domaine. Zeitschrift For Lebensmitteluntersuchung Und -Forschung A. 206 (4): 251–258. doi: 10.1007/s002170050253.
- Høie, A.H., Svendsen, C., Brunborg, G., Glatt, H., Alexander, J., Meinl, W., & Husøy, T. 2015. Genotoxicity of three food processing contaminants in transgenic mice expressing human sulfotransferases 1A1 and 1A2 as assessed by the in vivo alkaline single cell gel electrophoresis assay. Environ. Mol. Mutagen. 56(8): 709–714. doi: 10.1002/em.21963.
- Huidobro, J.F., & Simal, J. 1984. Parámetros de Calidad de la miel VI: hidroximetilfurfural. Offarm. 3 (12): 767-781. (Retrevied by: 24.06.2019), https://www.researchgate.net/publication/235698354_Parametros_de_calidad_de_la_miel_VI_Hidroximetilfurfural.
- Ibarz, A., Garvín, A., Garza, S., & Pagán, J. 2009. Toxic effect of melanoidins from glucose–asparagine on trypsin activity. Food Chem. Toxicol. 47(8): 2071–2075. doi: 10.1016/j.fct.2009.05.025.
- Jachimowicz, T., & El Sherbiny, G. 1975. Zur problematik der verwendung von invertzucker für die bienenfütterung. Apidologie, Springer Verlag, 6 (2): 121- 143. ffhal-00890379f (Retrevied by: 20.07.2019), https://hal.archives-ouvertes.fr/hal-00890379/document.
- Janzowski, C., Glaab, V., Samimi, E., Schlatter, J., & Eisenbrand, G. 2000. 5-Hydroxymethylfurfural: assessment of mutagenicity, DNA-damaging potential and reactivity towards cellular glutathione. Food Chem. Toxicol. 38(9): 801–809. doi: 10.1016/s0278-6915(00)00070-3.
- Kamei, H., Koide, T., Hashimoto, Y., Kojima, T., Umeda, T., & Hasegawa, M. 1997. Tumor cell growth-inhibiting effect of melanoidins extracted from miso and soy sauce. Cancer Biother. Radiopharm. 12(6): 405–409. doi: 10.1089/cbr.1997.12.405.
- Karabagias, I.K., Badeka, A., Kontakos, S., Karabournioti, S., & Kontominas, M.G. 2014. Characterization and classification of Thymus capitatus (L.) honey according to geographical origin based on volatile compounds, physicochemical parameters and chemometrics. Food Res. Int. 55: 363–372. doi: 10.1016/j.foodres.2013.11.032.
- Khalil, M.I., Sulaiman, S.A., & Gan, S.H. 2010. High 5-hydroxymethylfurfural concentrations are found in Malaysian honey samples stored for more than one year. Food Chem. Toxicol. 48(8-9): 2388–2392. doi: 10.1016/j.fct.2010.05.076.
- Kitts, D.D., Chen, X.M., & Jing, H. 2012. Demonstration of antioxidant and anti-inflammatory bioactivities from sugar–amino acid Maillard reaction products. J. Agric. Food Chem. 60 (27): 6718–6727. doi: 10.1021/jf2044636.
- Langner, E., & Rzeski, W. 2013. Biological properties of melanoidins: A review. Int. J. Food Prop. 17(2): 344–353. doi: 10.1080/10942912.2011.631253.
- Le Blanc, B.W., Eggleston, G., Sammataro, D., Cornett, C., Dufault, R., Deeby, T., & St. Cyr, E. 2009. Formation of hydroxymethylfurfural in domestic high-fructose corn syrup and its toxicity to the honey bee (Apis mellifera). J. Agric. Food Chem. 57 (16): 7369–7376. doi: 10.1021/jf9014526.
- Lee, C.H., Chen, K.T., Lin, J.A., Chen, Y.T., Chen, Y.A., Wu, J.T., & Hsieh, C.W. 2019. Recent advances in processing technology to reduce 5-hydroxymethylfurfural in foods. Trends Food Sci. Technol. 93: 271-280. doi: 10.1016/j.tifs.2019.09.021.
- Lee, Y.C., Shlyankevich, M., Jeong, H. K., Douglas, J. S., & Surh, Y.J. 1995. Bioactivation of 5-hydroxymethyl-2-furaldehyde to an electrophilic and mutagenic allylic sulfuric acid ester. Biochem. Biophys. Res. Commun. 209 (3): 996–1002. doi: 10.1006/bbrc.1995.1596.
- Li, M.M., Wu, L.Y., Zhao, T., Xiong, L., Huang, X., Liu, Z.H., et al. 2010. The protective role of 5-HMF against hypoxic injury. Cell Stress Chaperones. 16(3): 267–273. doi: 10.1007/s12192-010-0238-2.
- Libonnatti, C., Varela, S., & Basualdo, M. 2014. Antibacterial activity of honey: A review of honey around the world. J. Microbiol. Antimicrob. 6(3): 51–56. doi: 10.5897/jma2014.0308.
- Lindenmeier, M., Faist, V., & Hofmann, T. 2002. Structural and functional characterization of pronyl-lysine, a novel protein modification in bread crust melanoidins showing in vitro antioxidative and phase I/II enzyme modulating activity. J. Agric. Food Chem. 50(24): 6997–7006. doi: 10.1021/jf020618n.
- Liu, X., Xia, B., Hu, L., Ni, Z., Thakur, K., & Wei, Z. 2020; Maillard conjugates and their potential in food and nutritional industries: A review. Food Frontiers. 1(4): 382-397. doi: 10.1002/fft2.43.
- Lund, M.N., & Ray, C.A. 2017. Control of Maillard Reactions in Foods: Strategies and Chemical Mechanisms. J. Agric. Food Chem. 65(23): 4537-4552. doi: 10.1021/acs.jafc.7b00882.
- Machiels, D., & Istasse, L. 2002. La réaction de Maillard : importance et applications en chimie des aliments. Ann. Med. Vet. 146(6): 347-352. Available: http://www.facmv.ulg.ac.be/amv/articles/2002_146_6_04.pdf.
- Majtan, J. 2011. Methylglyoxal—A potential risk factor of Manuka honey in healing of diabetic ulcers. Evid. Based Complement. Alternat. Med. 1–5. doi: 10.1093/ecam/neq013.
- Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M.C., & Lerici, C.R. 2000. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Technol. 11(9-10): 340–346. doi: 10.1016/s0924-2244(01)00014-0.
- Marko, D., Kemény, M., Bernady, E., Habermeyer, M., Weyand, U., Meiers, S., Frank, O., & Hofmann, T. 2002. Studies on the inhibition of tumor cell growth and microtubule assembly by 3-hydroxy-4-[(E)-(2-furyl)methylidene]methyl-3-cyclopentene-1,2-dione, an intensively coloured Maillard reaction product. Food Chem. Toxicol. 40(1): 9–18. doi: 10.1016/s0278-6915(01)00093-x.
- Martins, S.I.F.S., Jongen, W.M.F., & van Boekel, M.A.J.S. 2001. A review of Maillard reaction in food and implications to kenetic modelling. Trends Food Sci. Technol. 11: 364-373. doi: 10.1016/S0924-2244(01)00022-X.
- Mavric, E., Wittmann, S., Barth, G., & Henle, T. 2008. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol. Nutr. Food Res. 52(4): 483–489. doi: 10.1002/mnfr.200700282.
- Morales, F.J. 2008. Hydroxymethylfurfural (HMF) and related compounds. Process-Induced Food Toxicants: Occurrence, Formation, Mitigation, and Health Risks. John Wiley & Sons, USA, 135–174. doi: 10.1002/9780470430101.ch2e.
- Murkovic, M., & Bornik, M.A. 2007. Formation of 5-hydroxymethyl-2-furfural (HMF) and 5-hydroxymethyl-2-furoic acid during roasting of coffee. Mol. Nutr. Food Res. 51(4): 390–394. doi: 10.1002/mnfr.200600251.
- Narayana Murthy, U.M., & Sun, W.Q. 2000. Protein modification by Amadori and Maillard reactions during seed storage: roles of sugar hydrolysis and lipid peroxidation. J. Exp. Bot. 51(348): 1221–1228. doi: 10.1093/jexbot/51.348.1221.
- Neupane, K., & Thapa, R. 2005. Alternative to off-season sugar supplement feeding of honeybees. J Inst Agric Anim Sci. 26: 77–81. doi: 10.3126/jiaas.v26i0.615.
- Nishi, Y., Miyakawa, Y., & Kato, K. 1989. Chromosome aberrations induced by pyrolysates of carbohydrates in Chinese hamster V79 cells. Mutat. Res. Lett. 227(2): 117–123. doi: 10.1016/0165-7992(89)90007-9.
- Nordin, A., Sainik, N.Q.A.V., Chowdhury, S.R., Saim, A.B., & Idrus, R.B.H. 2018. Physicochemical properties of stingless bee honey from around the globe: A comprehensive review. J. Food Compos. Anal. 73: 91-102. doi: 10.1016/j.jfca.2018.06.002.
- Otles S. 2006. Antioxidative properties of honey in poultry meat. Science of honey. (Access date: 16.04.2019), http://eng.ege.edu.tr/~otles/honey/?hny=hnylnk27 [23 April 2019].
- Pastoriza de la C.S., Álvarez, J., Végvári, Á., Montilla, G.J., Cruz, L.O., Delgado, A.C., & Rufián-Henares, J.A.. 2016. Relationship between HMF intake and SMF formation in vivo: An animal and human study. Mol. Nutr. Food Res. 61(3): 1600773. doi: 10.1002/mnfr.201600773.
- Ramírez, J.A., Guerra, H.E, & García, V.B. 2000. Browning Indicators in bread. J. Agric. Food Chem. 48(9): 4176–4181. doi: 10.1021/jf9907687.
- Rawel, H.M., & Rohn, S. 2010. Nature of hydroxycinnamate-protein interactions. Phytochem. Rev. 9 (1): 93–109. doi: 10.1007/s11101-009-9154-4 https://produccioncientificaluz.org/index.php/cientifica/article/view/14793.
- Ríos, A.M., Novoa, M.L., & Vit, P. 2001. Effects of extraction, storage conditions and heating treatment on antibacterial activity of Zanthoxylum fagara honey from Cojedes, Venezuela. RevicyhLUZ. 11(5): 397-402. (Retrevied by: 21.07.2019), https://produccioncientificaluz.org/index.php/cientifica/article/view/14793.
- Rufián-Henares, J.A., & Morales, F.J. 2007. Angiotensin-I converting enzyme inhibitory activity of coffee melanoidins. J. Agric. Food Chem. 55(4): 1480–1485. doi: 10.1021/jf062604d.
- Rufián-Henares, J.A., & Morales, F.J. 2007. Functional properties of melanoidins: In vitro antioxidant, antimicrobial and antihypertensive activities. Food Res. Int. 40(8): 995–1002. doi: 10.1016/j.foodres.2007.05.002.
- Rufián-Henares. J.A., & Morales, F.J. 2008. Antimicrobial activity of melanoidins against Escherichia coli is mediated by a membrane damage mechanism. J. Agric. Food Chem. 56: 2357–2362 doi: 10.1021/jf073300+.
- Rufián-Henares, J.A., & Pastoriza, de la C.S. 2009. Antimicrobial activity of coffee melanoidins-A study of their metal-chelating properties. J. Agric. Food Chem. 57(2): 432–438. doi: 10.1021/jf8027842.
- Sanchez, C., Castignani, H., & Rabaglio, M., 2018. El mercado apícola internacional. INTA. Argentina. (Access date: 11.06.2019) https://inta.gob.ar/sites/default/files/inta_cicpes_instdeeconomia_sanchez_mercado_apicola_internacional.pdf.
- Sanz, C.S., & Sanz C.M.M. 1994. Índice de diastasas y contenido de hidroximetilfurfural en las mieles de La Rioja. Zubía 12:181-1991. (Retrieved by: 18.05.2019), https://dialnet.unirioja.es/servlet/articulo?codigo=110290.
- Šarić, G., Marković, K., Vukičević, D., Lež, E., Hruškar, M., & Vahčić, N. 2013. Changes of antioxidant activity in honey after heat treatment. Czech J. Food Sci. 31(6): 601–606. doi: 10.17221/509/2012-cjfs.
- Schoental, R., Hard, G., & Gibbard, S. 1971. Histopathology of renal lipomatous tumors in rats treated with the “natural” products, pyrrolizidine alkaloids and α, β-unsaturated aldehydes. JNCI: J. Natl. Cancer Inst. 47(5): 1037-1034. doi: 10.1093/jnci/47.5.1037.
- Shapla, U.M., Solayman, M., Alam, N., Khalil, M.I., & Gan, S.H. 2018. 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health. Chem. Cent. J. 12(35). doi: 10.1186/s13065-018-0408-3.
- Silván, J.M., Assar, S.H., Srey, C., Dolores del Castillo, M., & Ames, J.M. 2011. Control of the Maillard reaction by ferulic acid. Food Chem. 128(1): 208–213. doi: 10.1016/j.foodchem.2011.03.047.
- Silván, J.M., van de Lagemaat, J., Olano, A., & Del Castillo, M.D. 2006. Analysis and biological properties of amino acid derivates formed by Maillard reaction in foods. J. Pharm. Biomed. Anal. 41(5): 1543–1551. doi: 10.1016/j.jpba.2006.04.004.
- Soliman, W., El-Sharkawy, H., El-Santeel, F., & Khattaby, A. 2019. Effect of storage and heat on chemical-physical properties and antimicrobial activity of bee honey. J. Prod. Dev. 24(4): 773-786. doi: 10.21608/jpd.2019.81024.
- Sousa, J.M.B. de, Souza, E.L. de, Marques, G., Benassi, M. de T., Gullón, B., Pintado, M.M., & Magnani, M. 2016. Sugar profile, physicochemical and sensory aspects of monofloral honeys produced by different stingless bee species in Brazilian semi-arid region. LWT - Food Sci. Technol. 65: 645–651. doi: 10.1016/j.lwt.2015.08.058.
- Souza F.W.E., Mendes, A.E.M., Paiva, S., K. M., Barros, M.F.I., Reinaldo, O.V., Ribeiro L.C., Aroucha, S.M.C. 2010. Parâmetros físico-químicos do mel de abelha sem Ferrão (Melipona subnitida) após tratamento termico. Acta Vet. Bras. 4(3): 153-157. (Access date: 06.06.2019), https://www.researchgate.net/publication/277033378_PARAMETROS_FISICO-QUIMICOS_DO_MEL_DE_ABELHA_SEM_FERRAO_Melipona_subnitida_APOS_TRATAMENTO_TERMICO.
- Spano, N., Casula, L., Panzanelli, A., Pilo, M., PIiu, P., Scanu, R., Tapparo, A., & Sanna, G. 2006. An RP-HPLC determination of 5-hydroxymethylfurfural in honeyThe case of strawberry tree honey. Talanta. 68(4): 1390–1395. doi: 10.1016/j.talanta.2005.08.003.
- Subramanian, R., Umesh Hebbar, H., & Rastogi, N.K. 2007. Processing of Honey: A Review. Int. J. Food Prop. 10(1): 127–143. doi: 10.1080/10942910600981708.
- Suntiparapop, K., Prapaipong, P., & Chantawannakul, P. 2012. Chemical and biological properties of honey from Thai stingless bee (Tetragonula leaviceps). J. Apic. Res. 51(1): 45–52. doi: 10.3896/ibra.1.51.1.06.
- Surh, Y.J., & Tannenbaum, S.R. 1994. Activation of the Maillard reaction product 5-(hydroxymethyl) furfural to strong mutagens via allylic sulfonation and chlorination. Chem. Res. Toxicol. 7(3): 313–318. doi: 10.1021/tx00039a007.
- Surh, Y. J., Liem, A., Miller, J.A., & Tannenbaum, S.R. 1994. 5-Sulfooxymethylfurfural as a possible ultimate mutagenic and carcinogenic metabolite of the Maillard reaction product, 5-hydroxymethylfurfural. Carcinogenesis. 15(10): 2375–2377. doi: 10.1093/carcin/15.10.2375.
- Svendsen, C., Husøy, T., Glatt, H., Paulsen, J.E., & Alexander, J. 2009. 5-Hydroxymethylfurfural and 5-sulfooxymethylfurfural increase adenoma and flat ACF number in the intestine of Min/+ mice. Anticancer Res. 29: 1921–1926 (Retrieved by: 19.06.2019), https://ar.iiarjournals.org/content/anticanres/29/6/1921.full.pdf.
- Tagliazucchi, D., & Verzelloni, E. 2014. Relationship between the chemical composition and the biological activities of food melanoidins. Food Sci. Biotechnol. 23(2): 561–568. doi: 10.1007/s10068-014-0077-5.
- Tressl, R., Wondrak, G.T., Krüger, R.P., & Rewicki, D. 1998. New Melanoidin-like Maillard Polymers from 2-Deoxypentoses. J. Agric. Food Chem. 46(1): 104–110. doi: 10.1021/jf970657c.
- Turhan, I., Tetik, N., Karhan, M., Gurel, F., & Reyhan Tavukcuoglu, H. 2008. Quality of honeys influenced by thermal treatment. LWT - Food Sci. Technol. 41(8): 1396–1399. doi: 10.1016/j.lwt.2007.09.008.
- Turkmen, N., Sari, F., Poyrazoglu, E.S., & Velioglu, Y.S. 2006. Effects of prolonged heating on antioxidant activity and colour of honey. Food Chem. 95(4): 653–657. doi: 10.1016/j.foodchem.2005.02.004.
- Turkut, G.M., Degirmenci1, A, Yildiz, O., Can, Z., Cavrar, S., Yaylaci K. F., Kolayli, S. 2018. Investigating 5-hydroxymethylfurfural formation kinetic and antioxidant activity in heat treated honey from different floral sources. J. Food Meas. Charact. 12:2358–2365.doi: https://doi.org/10.1007/s11694-018-9852-y.
- Van Boekel, M.A.J.S. 1998. Effect of heating on Maillard reactions in milk. Food Chem. 62(4): 403–414. doi: 10.1016/s0308-8146(98)00075-2.
- Van Boekel, M.A.J.S. 2001. Kinetic aspects of the Maillard reaction: a critical review. Nahrung. 45 (3): 150–159. doi: 10.1002/1521-3803(20010601)45:3<150::AID-FOOD150>3.0.CO;2-9.
- Visquert, F.M. 2015. Influencia de las condiciones térmicas en la calidad de la miel. Universitat Politècnica de València. PhD diss., (Retrieved by: 13.04.2019), https://dialnet.unirioja.es/servlet/tesis?codigo=74887#:~:text=En%20la%20etapa%20de%20almacenamiento%2C%20los%20tiempos%20de%20residencia%20prolongados,condiciones%20de%20licuaci%C3%B3n%20y%20pasteurizaci%C3%B3n.
- Vit, P., Medina, M. & Enríquez, M.E. 2004. Quality standards for medicinal uses of Meliponinae honey in Guatemala, Mexico and Venezuela. Bee World. 85(1): 2–5. doi: 10.1080/0005772x.2004.11099603.
- Wang, M.Y., Zhao, F.M., Peng, H.Y., Lou, C.H., Li, Y., Ding, X., et al. 2010. Investigation on the morphological protective effect of 5-hydroxymethylfurfural extracted from wine-processed Fructus corni on human L02 hepatocytes. J. Ethnopharmacol. 130(2): 424–428. doi: 10.1016/j.jep.2010.05.024.
- Wen, X., Enokizo, A., Hattori, H., Kobayashi, S., Murata, M., & Homma, S. 2005. Effect of roasting on properties of the zinc-chelating substance in coffee brews. J. Agric. Food Chem. 53(7): 2684–2689. doi: 10.1021/jf048304i.
- Yamada, P., Nemoto, M., Shigemori, H., Yokota, & Isoda, H. 2011. Isolation of 5-(Hydroxymethyl)furfural from Lycium chinense and its inhibitory effect on the chemical mediator release by basophilic cells. Planta Med. 77(05): 434–440. doi: 10.1055/s-0030-1250402.
- Zamora, R., & Hidalgo, F.J. 2005. Coordinate contribution of lipid oxidation and Maillard reaction to the nonenzymatic food browning. Crit. Rev. Food Sci. Nutr. 45(1): 49–59. doi: 10.1080/10408690590900117.
- Zee van der, R., & Pisa, L. 2010. Bijensterfte 2009-10 en toxische invertsuikersiroop Onderzoek naar de schadelijkheid voor bijen van Sint-Ambrosius (Fructo - Bee) Siroop. Nederlands Centrum Bijenonderzoek. 1-15. (Retrieved by: 27.06.2019), https://www.bijenonderzoek.nl/Downloads/Bijensterfte%202009-10_en%20toxische_%20invertsuikersiroop.pdf.
- Zhang, X.M., Chan, C.C., Stamp, D., Minkin, S., C. Archer, M., & Bruce, W.R. 1993. Initiation and promotion of colonic aberrant crypt foci in rats by 5-hydroxymethy1-2-furaldehyde in thermolyzed sucrose. Carcinogenesis. 14(4): 773–775. doi: 10.1093/carcin/14.4.773.
- Zhao, L., Chen, J., Su, J., Li, L., Hu, S., Li, B., Zhang, X., Xu, Z., Chen, T., 2013. In vitro antioxidant and antiproliferative activities of 5-Hydroxymethylfurfural. J. Agric. Food Chem. 61(44), 10604–10611 doi: 10.1021/jf403098y.
- Zhao, L., Su, J., Li, L., Chen, J., Hu, S., Zhang, X., & Chen, T. 2014. Mechanistic elucidation of apoptosis and cell cycle arrest induced by 5-hydroxymethylfurfural, the important role of ROS-mediated signaling pathways. Food Res. Int. 66: 186–196. doi: 10.1016/j.foodres.2014.08.051.
- Zirbes, L., Nguyen, B.K., de Graaf, D.C., De Meulenaer, B., Reybroeck, W., Haubruge, E., & Saegerman, C. 2013. Hydroxymethylfurfural: A possible emergent cause of honey bee mortality? J. Agric. Food Chem. 61(49): 11865–11870. doi: 10.1021/jf403280n.