Araştırma Makalesi
BibTex RIS Kaynak Göster

LSTM ve Hibrit CNN–LSTM Derin Öğrenme Yaklaşımları ile Isparta İli İçin Zaman Serisi Tabanlı Sıcaklık Tahmini

Yıl 2025, Cilt: 8 Sayı: 3, 104 - 117, 29.11.2025
https://doi.org/10.71445/umbd.1761095

Öz

Günlük hava sıcaklığı, tarım, enerji, sağlık ve su yönetimi gibi pek çok sektörü doğrudan etkileyen kritik bir meteorolojik parametredir. Küresel iklim değişikliğiyle birlikte sıcaklık rejimlerindeki dalgalanmalar ve uzun vadeli artışlar, bölgesel tahmin modellerinin geliştirilmesini daha da önemli hale getirmiştir. Bu çalışmada, Isparta ili için günlük hava sıcaklığı tahmini amacıyla dört farklı modelin (XGBoost, LSTM, CNN ve CNN–LSTM) karşılaştırmalı analizi gerçekleştirilmiştir. Geçmiş yıllara ait günlük sıcaklık verileri kullanılarak yapılan tahminlerde, modeller hem eğitim hem de test setleri üzerinde MAE, MSE, R², NSE ve Willmott d gibi istatistiksel ölçütlerle değerlendirilmiştir. Elde edilen sonuçlar, test verisi üzerinde LSTM modelinin en yüksek doğruluğu sunduğunu göstermiştir (MAE 1,139, MSE 2,334, R² 0,966, NSE 0,965, Willmott d 0,991). CNN–LSTM modeli ise LSTM’e çok yakın değerlerle (MAE 1,236, MSE 2,661, R² 0,962, NSE 0,960, Willmott d 0,990) istikrarlı bir alternatif olarak öne çıkmıştır. CNN modeli rekabetçi performans sergilemiş (MAE 1,228, MSE 2,688, R² 0,961, NSE 0,960, Willmott d 0,989), XGBoost modeli ise diğer modellere kıyasla daha zayıf kalmıştır (MAE 2,526, MSE 10,63, R² 0,855, NSE 0,843, Willmott d 0,960). Genel olarak, LSTM modeli uzun vadeli bağımlılıkları yakalama başarısıyla öne çıkarken, CNN–LSTM modeli kısa dönemli örüntüleri de dikkate alarak güvenilir ve kararlı bir tahmin yaklaşımı sunmuştur. Bu bulgular, derin öğrenme modellerinin yerel ölçekli sıcaklık tahminlerinde karar vericilere daha doğru öngörüler sağlayabileceğini ortaya koymaktadır.

Kaynakça

  • Aksay, E., Çoban, E., & Güçlü, Y. S. (2025). Normalized innovative trend analysis model and Mann-Kendall test for solar data. Modeling Earth Systems and Environment, 11(5), Article 347. https://doi.org/10.1007/s40808-025-02550-5
  • Alizamir, M. (2025). Daily soil temperature prediction using hybrid deep learning and SHAP for sustainable soil management. International Journal of Green Energy. Advance online publication. https://doi.org/10.1080/19942060.2025.2541686
  • Astsatryan, H., Hakobyan, G., Harutyunyan, A., Poghosyan, M., & Kostanyan, H. (2021). Air temperature prediction using artificial neural networks for the Ararat Valley. Earth Science Informatics, 14, 2359–2372. https://doi.org/10.1007/s12145-021-00583-9
  • Brownlee, J. (2019). XGBoost With Python: Gradient Boosted Trees with XGBoost and scikit-learn. Machine Learning Mastery.
  • Beloev, H. I., Saitov, S. R., Filimonova, A. A., Chichirova, N. D., Babikov, O. E., & Iliev, I. K. (2025). Short-Term Electrical Load Forecasting Based on XGBoost Model. Energies, 18(19), 5144. https://doi.org/10.3390/en18195144
  • Buratto, W. G., Muniz, R. N., Nied, A., Barros, C. F. D. O., Cardoso, R., & Gonzalez, G. V. (2024). Wavelet CNN‐LSTM time series forecasting of electricity power generation considering biomass thermal systems. IET Generation, Transmission & Distribution, 18(21), 3437-3451.https://doi.org/10.1049/gtd2.13292
  • Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).https://doi.org/10.1145/2939672.2939785
  • Cifuentes, J., Marulanda, G., Bello, A., & Reneses, J. (2020). Air temperature forecasting using machine learning techniques: a review. Energies, 13(16), 4215. https://doi.org/10.3390/en13164215
  • Çoban, E. (2024). Makine öğrenmesi algoritmaları ile yaz sezonu ortalama akım değerlerinin tahmini. Journal of Innovations in Civil Engineering and Technology, 6(2), 73–81. https://doi.org/10.60093/jiciviltech.1497771
  • Fang, Z., Yang, S., Lv, C., An, S., & Wu, W. (2022). Application of a data-driven XGBoost model for the prediction of COVID-19 in the USA: A time-series study. BMJ Open, 12(2), e056685. https://doi.org/10.1136/bmjopen-2021-056685
  • Gao, P., Li, D., Liu, Z., Li, W., & Yang, X. (2023). NDVI prediction based on time series decomposition and CNN–LSTM combination. Water Resources Management, 37, 1089–1106. https://doi.org/10.1007/s11269-022-03419-3
  • Henderi, H., Wahyuningsih, T., & Rahwanto, E. (2021). Comparison of Min-Max normalization and Z-Score Normalization in the K-nearest neighbor (kNN) Algorithm to Test the Accuracy of Types of Breast Cancer. Indonesian Journal of Information and Information Systems, 4(1), 1–6. https://doi.org/10.47738/ijiis.v4i1.73
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  • Hou, J., Li, L., Wang, R., & Wang, Z. (2022). Hourly temperature prediction using CNN–LSTM. Geomatics, Natural Hazards and Risk, 13(1), 1138–1157. https://doi.org/10.1080/19475705.2022.2102942
  • Hou, W., Zhang, X., & Wang, Y. (2022). Hourly air temperature prediction using CNN–LSTM hybrid deep learning model: A case study in Yinchuan, China. Atmosphere, 13(8), 1269. https://doi.org/10.1080/19475705.2022.2102942
  • Kalkınç, H. Y., Çoban, E., & Güçlü, Y. S. (2025). Wilcoxon testi ve saçılma diyagramı kullanılarak hidrometeorolojik verilerin trend analizi. Turkish Journal of Civil Engineering, 36(5), 1-31. https://doi.org/10.18400/tjce.1630037
  • Karevan, Z., & Suykens, J. A. K. (2020). Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks, 125, 1–9. https://doi.org/10.1016/j.neunet.2019.12.030
  • Kim, T. Y., & Cho, S. (2019). Predicting residential energy consumption using CNN-LSTM neural networks. Energy, 182, 72–81. https://doi.org/10.1016/j.energy.2019.05.230
  • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791
  • Mutlu, A. Comparative evaluation of NASA, ERA5, and observational data for accuracy and reliability. Theor Appl Climatol 156, 367 (2025). https://doi.org/10.1007/s00704-025-05605-w
  • Nelson, D. M. Q., Pereira, A. M., & de Oliveira, R. A. (2017). Stock market's price movement prediction with LSTM neural networks. In 2017 International Joint Conference on Neural Networks (IJCNN) (pp. 1419–1426). https://doi.org/10.1109/IJCNN.2017.7966019
  • Nielsen, D. (2016). Tree boosting with XGBoost: Why does XGBoost win “every” machine learning competition? Master’s thesis, NTNU. http://hdl.handle.net/11250/2433761
  • Oord, A. V. D., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., ... & Kavukcuoglu, K. (2016). WaveNet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. https://arxiv.org/abs/1609.03499
  • Saplıoğlu, K., & Çimen, M. (2010). Yapay sinir ağlarını kullanarak günlük yağış miktarının tahmini. Mühendislik Bilimleri ve Tasarım Dergisi, 1(1), 14–21.
  • Utku, A. (2024). CNN–LSTM hibrit modeli ile Bingöl ve Tunceli için hava sıcaklığı tahmini. International Journal of Pure and Applied Sciences, 10(2), 550–562. https://doi.org/10.29132/ijpas.1548698
  • Xiao, C., Liu, X., & Zeng, Z. (2019). Sea surface temperature prediction using LSTM-AdaBoost combination with time series satellite data. Remote Sensing of Environment, 233, 111358. https://doi.org/10.1016/j.rse.2019.111358
  • Yan, H., He, Z., Gao, C., Xie, M., Sheng, H., & Chen, H. (2022). Investment estimation of prefabricated concrete buildings based on XGBoost machine learning algorithm. Advanced Engineering Informatics, 54, 101789. https://doi.org/10.1016/j.aei.2022.101789
  • Yilmaz, M. (2023). Accuracy assessment of temperature trends from ERA5 and ERA5-Land. Science of The Total Environment, 856, 159182. https://doi.org/10.1016/j.scitotenv.2022.159182
  • Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A review of recurrent neural networks: LSTM cells and network architectures. Neural computation, 31(7), 1235-1270. https://doi.org/10.1162/neco_a_01199
  • Zhang, P., Jia, Y., & Shang, Y. (2022). Research and application of XGBoost in imbalanced data. International Journal of Distributed Sensor Networks, 18(6), 15501329221106935. https://doi.org/10.1177/15501329221106935

Time Series–Based Temperature Forecasting for Isparta Province Using LSTM and Hybrid CNN–LSTM Deep Learning Approaches

Yıl 2025, Cilt: 8 Sayı: 3, 104 - 117, 29.11.2025
https://doi.org/10.71445/umbd.1761095

Öz

Temperature and its variations play a crucial role in agriculture, energy consumption, and urban planning. Accurately forecasting air temperature is essential for sustainable resource management and climate adaptation strategies. In this study, four different models—XGBoost, LSTM, CNN, and the hybrid CNN–LSTM—were applied for daily temperature prediction in Isparta, a region sensitive to climatic fluctuations. The performance of the models was evaluated using statistical metrics including MAE, MSE, R², NSE, and Willmott’s d. The results show that the LSTM model achieved the highest accuracy on the test data, with a mean absolute error of 1.14 °C, mean squared error of 2.33, coefficient of determination of 0.966, Nash–Sutcliffe efficiency of 0.965, and Willmott’s d index of 0.991. The CNN–LSTM model provided very close results, with a mean absolute error of 1.23 °C, mean squared error of 2.66, coefficient of determination of 0.962, Nash–Sutcliffe efficiency of 0.960, and Willmott’s d index of 0.990, demonstrating a stable predictive ability. The CNN model also produced competitive results, while the XGBoost algorithm showed weaker performance with higher error values and lower generalization capability. These findings highlight that LSTM is most effective in capturing long-term dependencies, whereas the CNN–LSTM hybrid offers a robust alternative capable of modeling both short-term patterns and long-term dynamics. Thus, both models can be considered valuable tools for local meteorological forecasting and climate-aware decision-making.

Kaynakça

  • Aksay, E., Çoban, E., & Güçlü, Y. S. (2025). Normalized innovative trend analysis model and Mann-Kendall test for solar data. Modeling Earth Systems and Environment, 11(5), Article 347. https://doi.org/10.1007/s40808-025-02550-5
  • Alizamir, M. (2025). Daily soil temperature prediction using hybrid deep learning and SHAP for sustainable soil management. International Journal of Green Energy. Advance online publication. https://doi.org/10.1080/19942060.2025.2541686
  • Astsatryan, H., Hakobyan, G., Harutyunyan, A., Poghosyan, M., & Kostanyan, H. (2021). Air temperature prediction using artificial neural networks for the Ararat Valley. Earth Science Informatics, 14, 2359–2372. https://doi.org/10.1007/s12145-021-00583-9
  • Brownlee, J. (2019). XGBoost With Python: Gradient Boosted Trees with XGBoost and scikit-learn. Machine Learning Mastery.
  • Beloev, H. I., Saitov, S. R., Filimonova, A. A., Chichirova, N. D., Babikov, O. E., & Iliev, I. K. (2025). Short-Term Electrical Load Forecasting Based on XGBoost Model. Energies, 18(19), 5144. https://doi.org/10.3390/en18195144
  • Buratto, W. G., Muniz, R. N., Nied, A., Barros, C. F. D. O., Cardoso, R., & Gonzalez, G. V. (2024). Wavelet CNN‐LSTM time series forecasting of electricity power generation considering biomass thermal systems. IET Generation, Transmission & Distribution, 18(21), 3437-3451.https://doi.org/10.1049/gtd2.13292
  • Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).https://doi.org/10.1145/2939672.2939785
  • Cifuentes, J., Marulanda, G., Bello, A., & Reneses, J. (2020). Air temperature forecasting using machine learning techniques: a review. Energies, 13(16), 4215. https://doi.org/10.3390/en13164215
  • Çoban, E. (2024). Makine öğrenmesi algoritmaları ile yaz sezonu ortalama akım değerlerinin tahmini. Journal of Innovations in Civil Engineering and Technology, 6(2), 73–81. https://doi.org/10.60093/jiciviltech.1497771
  • Fang, Z., Yang, S., Lv, C., An, S., & Wu, W. (2022). Application of a data-driven XGBoost model for the prediction of COVID-19 in the USA: A time-series study. BMJ Open, 12(2), e056685. https://doi.org/10.1136/bmjopen-2021-056685
  • Gao, P., Li, D., Liu, Z., Li, W., & Yang, X. (2023). NDVI prediction based on time series decomposition and CNN–LSTM combination. Water Resources Management, 37, 1089–1106. https://doi.org/10.1007/s11269-022-03419-3
  • Henderi, H., Wahyuningsih, T., & Rahwanto, E. (2021). Comparison of Min-Max normalization and Z-Score Normalization in the K-nearest neighbor (kNN) Algorithm to Test the Accuracy of Types of Breast Cancer. Indonesian Journal of Information and Information Systems, 4(1), 1–6. https://doi.org/10.47738/ijiis.v4i1.73
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
  • Hou, J., Li, L., Wang, R., & Wang, Z. (2022). Hourly temperature prediction using CNN–LSTM. Geomatics, Natural Hazards and Risk, 13(1), 1138–1157. https://doi.org/10.1080/19475705.2022.2102942
  • Hou, W., Zhang, X., & Wang, Y. (2022). Hourly air temperature prediction using CNN–LSTM hybrid deep learning model: A case study in Yinchuan, China. Atmosphere, 13(8), 1269. https://doi.org/10.1080/19475705.2022.2102942
  • Kalkınç, H. Y., Çoban, E., & Güçlü, Y. S. (2025). Wilcoxon testi ve saçılma diyagramı kullanılarak hidrometeorolojik verilerin trend analizi. Turkish Journal of Civil Engineering, 36(5), 1-31. https://doi.org/10.18400/tjce.1630037
  • Karevan, Z., & Suykens, J. A. K. (2020). Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks, 125, 1–9. https://doi.org/10.1016/j.neunet.2019.12.030
  • Kim, T. Y., & Cho, S. (2019). Predicting residential energy consumption using CNN-LSTM neural networks. Energy, 182, 72–81. https://doi.org/10.1016/j.energy.2019.05.230
  • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791
  • Mutlu, A. Comparative evaluation of NASA, ERA5, and observational data for accuracy and reliability. Theor Appl Climatol 156, 367 (2025). https://doi.org/10.1007/s00704-025-05605-w
  • Nelson, D. M. Q., Pereira, A. M., & de Oliveira, R. A. (2017). Stock market's price movement prediction with LSTM neural networks. In 2017 International Joint Conference on Neural Networks (IJCNN) (pp. 1419–1426). https://doi.org/10.1109/IJCNN.2017.7966019
  • Nielsen, D. (2016). Tree boosting with XGBoost: Why does XGBoost win “every” machine learning competition? Master’s thesis, NTNU. http://hdl.handle.net/11250/2433761
  • Oord, A. V. D., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., ... & Kavukcuoglu, K. (2016). WaveNet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. https://arxiv.org/abs/1609.03499
  • Saplıoğlu, K., & Çimen, M. (2010). Yapay sinir ağlarını kullanarak günlük yağış miktarının tahmini. Mühendislik Bilimleri ve Tasarım Dergisi, 1(1), 14–21.
  • Utku, A. (2024). CNN–LSTM hibrit modeli ile Bingöl ve Tunceli için hava sıcaklığı tahmini. International Journal of Pure and Applied Sciences, 10(2), 550–562. https://doi.org/10.29132/ijpas.1548698
  • Xiao, C., Liu, X., & Zeng, Z. (2019). Sea surface temperature prediction using LSTM-AdaBoost combination with time series satellite data. Remote Sensing of Environment, 233, 111358. https://doi.org/10.1016/j.rse.2019.111358
  • Yan, H., He, Z., Gao, C., Xie, M., Sheng, H., & Chen, H. (2022). Investment estimation of prefabricated concrete buildings based on XGBoost machine learning algorithm. Advanced Engineering Informatics, 54, 101789. https://doi.org/10.1016/j.aei.2022.101789
  • Yilmaz, M. (2023). Accuracy assessment of temperature trends from ERA5 and ERA5-Land. Science of The Total Environment, 856, 159182. https://doi.org/10.1016/j.scitotenv.2022.159182
  • Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A review of recurrent neural networks: LSTM cells and network architectures. Neural computation, 31(7), 1235-1270. https://doi.org/10.1162/neco_a_01199
  • Zhang, P., Jia, Y., & Shang, Y. (2022). Research and application of XGBoost in imbalanced data. International Journal of Distributed Sensor Networks, 18(6), 15501329221106935. https://doi.org/10.1177/15501329221106935
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Coğrafi Bilgi Sistemleri ve Mekansal Veri Modelleme
Bölüm Araştırma Makalesi
Yazarlar

Erdem Çoban 0000-0002-4526-7273

Yayımlanma Tarihi 29 Kasım 2025
Gönderilme Tarihi 10 Ağustos 2025
Kabul Tarihi 15 Kasım 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 3

Kaynak Göster

APA Çoban, E. (2025). LSTM ve Hibrit CNN–LSTM Derin Öğrenme Yaklaşımları ile Isparta İli İçin Zaman Serisi Tabanlı Sıcaklık Tahmini. Uluborlu Mesleki Bilimler Dergisi, 8(3), 104-117. https://doi.org/10.71445/umbd.1761095
Creative Commons Lisansı
Isparta Uygulamalı Bilimler Üniversitesi Uluborlu Mesleki Bilimler Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.