Makaslı platformlar sahip oldukları basit mekanik yapısı ve üretim kolaylığı sebebiyle endüstride yaygın olarak kullanılmaktadır. Platform için gerek duyulan hidrolik kuvvet ve platformun yükselme süresi, tasarımda önemli faktörler arasında yer almaktadır. Bu çalışmada, platformun uzuv boyu, hidrolik silindirin mafsal konumları ve hidrolik hızı değişken parametreler olarak seçilmiştir. Parametreler için öngörülen farklı değerlerin platformun yükselme süresine ve platformda ihtiyaç duyulan hidrolik kuvvetine etkileri incelenmiştir. Ayrıca, parametre seçimlerinde hidrolik silindirin maksimum strok değeri bir tasarım sınırı olarak dikkate alınmıştır. Hidrolik kuvvet ifadesi hem Virtüel İşler Prensibi (VİP) hem de Virtüel Güçler Prensibi (VGP) ile elde edilerek statik ve dinamik hesaplar arasında oluşan farklar belirlenmiştir. Simülasyonlar sonucunda, farklı tasarım ölçüleri ve hidrolik hızları ile elde edilen sonuçlar karşılaştırılarak yükselme süresini ve hidrolik kuvveti minimize etmek için uygun geometri belirlenmiştir.
1. Bao, Z. (2019) Study on Simulation of System Dynamic Characteristics of Hydraulic Scissor Lift Based on Load-Sensing Control Technology. IOP Conference Series: Materials Science and Engineering, 612(4). https://doi.org/10.1088/1757-899X/612/4/042036
2. Channi, P., ve Tripathi, J. P. (2021) Design and Analysis of Hydraulic Scissor Lift. International Journal of Research in Engineering, Science and Management, 4(2), 56–61.
3. Doçi, I., Lajqi, S., Makolli, S., ve Bibaj, B. (2021) Scissor lift dynamic analysis and motion regulation for the case of lifting with maximum load. International Scientific Journal “Trans & Motauto World,” 6(2), 38–42.
4. Görkem Dengiz, C., Can Şenel, M., Yıldızlı, K., ve Koç, E. (2018) Design and Analysis of Scissor Lifting System by Using Finite Elements Method. Universal Journal of Materials Science, 6(2), 58–63. https://doi.org/10.13189/ujms.2018.060202
5. He, S., Ouyang, M., Gong, J., ve Liu, G. (2019) Mechanical simulation and installation position optimisation of a lifting cylinder of a scissors aerial work platform. The Journal of Engineering, 2019(13), 74–78. https://doi.org/10.1049/joe.2018.8961
6. Islam, M. T., Yin, C., Jian, S., ve Rolland, L. (2014) Dynamic analysis of Scissor Lift mechanism through bond graph modeling. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 1393–1399. https://doi.org/10.1109/AIM.2014.6878277
7. Ismael, O. Y., Almaged, M., ve Mahmood, A. (2019) Quantitative Design Analysis of an Electric Scissor Lift. American Scientific Research Journal for Engineering, 59(1), 128–141.
8. Paramasivam, V., Tilahun, S., Kerebih Jembere, A., ve Selvaraj, S. K. (2021) Analytical investigation of hydraulic scissor lift for modular industrial plants in ethiopia. Materials Today: Proceedings, 46, 7596–7601. https://doi.org/10.1016/j.matpr.2021.01.838
9. Rani, D., Agarwal, N., ve Tirth, V. (2015). Design and Fabrication of Hydraulic Scissor Lift. In MIT International Journal of Mechanical Engineering (Vol. 5, Issue 2).
10. Rashid, H., Ariffin, M. K. A. M., Noh, M. H. M., Abdullah, A. H., Hamid, A. H. A., Jusoh, M. A. M., ve Othman, A. (2012) Design review of scissors lifts structure for commercial aircraft ground support equipment using Finite Element Analysis. Procedia Engineering, 41, 1696–1701. https://doi.org/10.1016/j.proeng.2012.07.370
11. Roys Jeyangel, A., Babu, M., ve Balasubramani, V. (2015) Design and Kinematic Analysis of Gear Powered Scissor Lift. In International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) (Vol. 12).
12. Singh, M., Shrivastava, A. K., ve Patel, A. (2018). Design and Optimization of Portable Hydraulic Scissor Lift by Using FEA Method. International Journal of Recent Technology Science & Management, 3(3), 6–18.
13. Stawinski, L., Zaczynski, J., Morawiec, A., Skowronska, J., ve Kosucki, A. (2021). Energy consumption structure and its improvement of low-lifting scissor capacity scissor lift. Energies, 14(5). https://doi.org/10.3390/en14051366
14. Sun, L. B., Wang, R. R., ve Li, X. X. (2014). Lifting force calculation and safty analysis of hydraulic scissor lift platform. Advanced Materials Research, 960–961, 1450–1454. https://doi.org/10.4028/www.scientific.net/AMR.960-961.1450
15. Tian, H., ve Zhang, Z. (2011). Design and simulation based on Pro/E for a hydraulic lift platform in scissors type. Procedia Engineering, 16, 772–781. https://doi.org/10.1016/j.proeng.2011.08.1153
16. Todorović, M., Bulatović, R., ve Markovic, G. (2021a) Finding the Optimal Shape of Hydraulic Scissors Lift Legs Using HHO Optimization Method. https://www.researchgate.net/publication/353072053
17. Todorović, M., Zdravković, N. B., Savković, M., Marković, G., ve Pavlović, G. (2021b) Optimization of Scissor Mechanism Lifting Platform Members Using HHO Method. The Eight International Conference Transport and Logistics, 91–96.
18. Yimer, W., ve Wang, Y. (2019) Design, Analysis and Manufacturing of Double Scissors Lift Elevated by One Hydraulic Cylinder. International Journal of Engineering Research & Technology, 8(11), 709–713.
19. Zhang, W., Zhang, X., Yan, C., Xiang, S., ve Wang, L. (2015) A characteristic triangle method on input vectors of scissor lift mechanism and its applications in modeling and analysis. Journal of Advanced Mechanical Design, Systems and Manufacturing, 9(3). https://doi.org/10.1299/jamdsm.2015jamdsm0042
20. Zhang, W., ve Zhao, J. (2016) Analysis on nonlinear stiffness and vibration isolation performance of scissor-like structure with full types. Nonlinear Dynamics, 86(1), 17–36.
https://doi.org/10.1007/s11071-016-2869-z
Investigation of Design Parameters Affecting Rise Time and Hydraulic Cylinder Force for Scissor Lifting Platform
Scissor lifting platforms are widely used in industry due to their simple mechanical structure and ease of production. The hydraulic force required for the platform and the rise time of the platform are among the important factors in the design. In this study, the length of the scissor arms, the joint positions of the hydraulic cylinder and the hydraulic speed were chosen as variable parameters. The effects of different values assigned to the parameters on the rise time of the platform and the hydraulic force required on the platform were investigated. In addition, the maximum stroke value of the hydraulic cylinder is considered as a design limit in parameter selections. The hydraulic force expression was obtained with both the Virtual Works Principle (VWP) and the Virtual Power Principle (VPP). Differences between static and dynamic calculations have been determined. Thus, by comparing the results obtained with different design dimensions and hydraulic speeds, the appropriate geometry was determined to minimize the rise time and hydraulic force.
1. Bao, Z. (2019) Study on Simulation of System Dynamic Characteristics of Hydraulic Scissor Lift Based on Load-Sensing Control Technology. IOP Conference Series: Materials Science and Engineering, 612(4). https://doi.org/10.1088/1757-899X/612/4/042036
2. Channi, P., ve Tripathi, J. P. (2021) Design and Analysis of Hydraulic Scissor Lift. International Journal of Research in Engineering, Science and Management, 4(2), 56–61.
3. Doçi, I., Lajqi, S., Makolli, S., ve Bibaj, B. (2021) Scissor lift dynamic analysis and motion regulation for the case of lifting with maximum load. International Scientific Journal “Trans & Motauto World,” 6(2), 38–42.
4. Görkem Dengiz, C., Can Şenel, M., Yıldızlı, K., ve Koç, E. (2018) Design and Analysis of Scissor Lifting System by Using Finite Elements Method. Universal Journal of Materials Science, 6(2), 58–63. https://doi.org/10.13189/ujms.2018.060202
5. He, S., Ouyang, M., Gong, J., ve Liu, G. (2019) Mechanical simulation and installation position optimisation of a lifting cylinder of a scissors aerial work platform. The Journal of Engineering, 2019(13), 74–78. https://doi.org/10.1049/joe.2018.8961
6. Islam, M. T., Yin, C., Jian, S., ve Rolland, L. (2014) Dynamic analysis of Scissor Lift mechanism through bond graph modeling. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 1393–1399. https://doi.org/10.1109/AIM.2014.6878277
7. Ismael, O. Y., Almaged, M., ve Mahmood, A. (2019) Quantitative Design Analysis of an Electric Scissor Lift. American Scientific Research Journal for Engineering, 59(1), 128–141.
8. Paramasivam, V., Tilahun, S., Kerebih Jembere, A., ve Selvaraj, S. K. (2021) Analytical investigation of hydraulic scissor lift for modular industrial plants in ethiopia. Materials Today: Proceedings, 46, 7596–7601. https://doi.org/10.1016/j.matpr.2021.01.838
9. Rani, D., Agarwal, N., ve Tirth, V. (2015). Design and Fabrication of Hydraulic Scissor Lift. In MIT International Journal of Mechanical Engineering (Vol. 5, Issue 2).
10. Rashid, H., Ariffin, M. K. A. M., Noh, M. H. M., Abdullah, A. H., Hamid, A. H. A., Jusoh, M. A. M., ve Othman, A. (2012) Design review of scissors lifts structure for commercial aircraft ground support equipment using Finite Element Analysis. Procedia Engineering, 41, 1696–1701. https://doi.org/10.1016/j.proeng.2012.07.370
11. Roys Jeyangel, A., Babu, M., ve Balasubramani, V. (2015) Design and Kinematic Analysis of Gear Powered Scissor Lift. In International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) (Vol. 12).
12. Singh, M., Shrivastava, A. K., ve Patel, A. (2018). Design and Optimization of Portable Hydraulic Scissor Lift by Using FEA Method. International Journal of Recent Technology Science & Management, 3(3), 6–18.
13. Stawinski, L., Zaczynski, J., Morawiec, A., Skowronska, J., ve Kosucki, A. (2021). Energy consumption structure and its improvement of low-lifting scissor capacity scissor lift. Energies, 14(5). https://doi.org/10.3390/en14051366
14. Sun, L. B., Wang, R. R., ve Li, X. X. (2014). Lifting force calculation and safty analysis of hydraulic scissor lift platform. Advanced Materials Research, 960–961, 1450–1454. https://doi.org/10.4028/www.scientific.net/AMR.960-961.1450
15. Tian, H., ve Zhang, Z. (2011). Design and simulation based on Pro/E for a hydraulic lift platform in scissors type. Procedia Engineering, 16, 772–781. https://doi.org/10.1016/j.proeng.2011.08.1153
16. Todorović, M., Bulatović, R., ve Markovic, G. (2021a) Finding the Optimal Shape of Hydraulic Scissors Lift Legs Using HHO Optimization Method. https://www.researchgate.net/publication/353072053
17. Todorović, M., Zdravković, N. B., Savković, M., Marković, G., ve Pavlović, G. (2021b) Optimization of Scissor Mechanism Lifting Platform Members Using HHO Method. The Eight International Conference Transport and Logistics, 91–96.
18. Yimer, W., ve Wang, Y. (2019) Design, Analysis and Manufacturing of Double Scissors Lift Elevated by One Hydraulic Cylinder. International Journal of Engineering Research & Technology, 8(11), 709–713.
19. Zhang, W., Zhang, X., Yan, C., Xiang, S., ve Wang, L. (2015) A characteristic triangle method on input vectors of scissor lift mechanism and its applications in modeling and analysis. Journal of Advanced Mechanical Design, Systems and Manufacturing, 9(3). https://doi.org/10.1299/jamdsm.2015jamdsm0042
20. Zhang, W., ve Zhao, J. (2016) Analysis on nonlinear stiffness and vibration isolation performance of scissor-like structure with full types. Nonlinear Dynamics, 86(1), 17–36.
https://doi.org/10.1007/s11071-016-2869-z
Eser, S., & Telli Çetin, S. (2023). MAKASLI BİR PLATFORM İÇİN YÜKSELME SÜRESİ VE HİDROLİK SİLİNDİR KUVVETİNE ETKİ EDEN TASARIM PARAMETRELERİNİN İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(2), 507-522. https://doi.org/10.17482/uumfd.1280594
AMA
Eser S, Telli Çetin S. MAKASLI BİR PLATFORM İÇİN YÜKSELME SÜRESİ VE HİDROLİK SİLİNDİR KUVVETİNE ETKİ EDEN TASARIM PARAMETRELERİNİN İNCELENMESİ. UUJFE. Ağustos 2023;28(2):507-522. doi:10.17482/uumfd.1280594
Chicago
Eser, Sezgin, ve Sevda Telli Çetin. “MAKASLI BİR PLATFORM İÇİN YÜKSELME SÜRESİ VE HİDROLİK SİLİNDİR KUVVETİNE ETKİ EDEN TASARIM PARAMETRELERİNİN İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28, sy. 2 (Ağustos 2023): 507-22. https://doi.org/10.17482/uumfd.1280594.
EndNote
Eser S, Telli Çetin S (01 Ağustos 2023) MAKASLI BİR PLATFORM İÇİN YÜKSELME SÜRESİ VE HİDROLİK SİLİNDİR KUVVETİNE ETKİ EDEN TASARIM PARAMETRELERİNİN İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28 2 507–522.
IEEE
S. Eser ve S. Telli Çetin, “MAKASLI BİR PLATFORM İÇİN YÜKSELME SÜRESİ VE HİDROLİK SİLİNDİR KUVVETİNE ETKİ EDEN TASARIM PARAMETRELERİNİN İNCELENMESİ”, UUJFE, c. 28, sy. 2, ss. 507–522, 2023, doi: 10.17482/uumfd.1280594.
ISNAD
Eser, Sezgin - Telli Çetin, Sevda. “MAKASLI BİR PLATFORM İÇİN YÜKSELME SÜRESİ VE HİDROLİK SİLİNDİR KUVVETİNE ETKİ EDEN TASARIM PARAMETRELERİNİN İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 28/2 (Ağustos 2023), 507-522. https://doi.org/10.17482/uumfd.1280594.
JAMA
Eser S, Telli Çetin S. MAKASLI BİR PLATFORM İÇİN YÜKSELME SÜRESİ VE HİDROLİK SİLİNDİR KUVVETİNE ETKİ EDEN TASARIM PARAMETRELERİNİN İNCELENMESİ. UUJFE. 2023;28:507–522.
MLA
Eser, Sezgin ve Sevda Telli Çetin. “MAKASLI BİR PLATFORM İÇİN YÜKSELME SÜRESİ VE HİDROLİK SİLİNDİR KUVVETİNE ETKİ EDEN TASARIM PARAMETRELERİNİN İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 28, sy. 2, 2023, ss. 507-22, doi:10.17482/uumfd.1280594.
Vancouver
Eser S, Telli Çetin S. MAKASLI BİR PLATFORM İÇİN YÜKSELME SÜRESİ VE HİDROLİK SİLİNDİR KUVVETİNE ETKİ EDEN TASARIM PARAMETRELERİNİN İNCELENMESİ. UUJFE. 2023;28(2):507-22.
30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir). Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.
Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr