Araştırma Makalesi
BibTex RIS Kaynak Göster

R1234YF SOĞUTUCU AKIŞKANI KULLANAN İÇ ISI DEĞİŞTİRİCİLİ BİR OTOMOBİL KLİMA SİSTEMİNİN PERFORMANSININ R134A’LI SİSTEM İLE KARŞILAŞTIRILMASI

Yıl 2024, , 783 - 802, 24.12.2024
https://doi.org/10.17482/uumfd.1525619

Öz

Bu çalışmada, termostatik genleşme valfli deneysel bir otomobil klima sisteminin R1234yf ve R134a soğutucu akışkanları kullanılması durumundaki çeşitli performans parametrelerinin değerleri belirlenmiş ve karşılaştırmalı olarak sunulmuştur. Masa üstü deney seti şeklinde kurulan sisteme, R1234yf ile çalışırken karşılaşılacak performans düşmesinin telafi edilmesi amacıyla emme ve sıvı hatları arasında ısı transferi sağlayan eş merkezli bir iç ısı değiştirici eklenmiştir. Isı değiştirici, sadece R1234yf testlerinin bir kısmında kullanılmıştır. Çevrimdeki soğutucu akışkan debisi ile çeşitli noktalardaki basınç ve sıcaklıkların sürekli rejim şartlarındaki değerleri ölçülmüştür. Ölçüm sonuçları kullanılarak çevrim bileşenlerinin enerji ve ekserji analizleri yapılmış, böylece çeşitli performans parametrelerinin değerleri akışkan ve ısı değiştirici kullanım durumuna göre belirlenerek birbirleri ile karşılaştırılmıştır. R1234yf’li sistemin evaporatör yükü, ısı değiştirici kullanılmaması ve kullanılması durumlarında R134a’lı sistemden ortalama olarak sırasıyla %12,9 ve %11,2 daha düşük bulunmuştur. Isı değiştiricisiz R1234yf’li sistemin STK değeri, R134a’lı sistemden ortalama %5,3 kadar daha küçük iken, ısı değiştiricinin devreye alınmasıyla STK iyileşmekte ve ortalama olarak sadece %2,5 daha küçük çıkmaktadır. Isı değiştiricisiz durumda R1234yf’li sistemin ekserjik verimi, R134a’lı klimadan ortalama %18,1 kadar daha küçük çıkmakta, ısı değiştirici devreye alındığında ise ekserjik verim ortalama % 6,1 daha düşük olmaktadır.

Kaynakça

  • Alkan, A. ve İnan, M.S. (2023) Experimental investigation of the effects of compressor types on the performance of an automobile air conditioning system using R1234yf, International Journal of Refrigeration, 155. 58-66. https://doi.org/10.1016/j.ijrefrig.2023.09.004
  • Alkan, A., Kolip, A. ve Hosoz, M. (2021) Energetic and exergetic performance comparison of an experimental automotive air conditioning system using refrigerants R1234yf and R134a, Journal of Thermal Engineering, 7, 1163-1173. https://doi.org/10.18186/thermal.978014
  • Aral, M.C., Suhermanto, M. ve Hosoz, M. (2021) Performance evaluation of an automotive air conditioning and heat pump system using R1234yf and R134a, Science and Technology for the Built Environment, 27, 44-60. https://doi.org/10.1080/23744731.2020.1776067
  • Bhatti, M.S. (1999) Riding in Comfort Part II: Evolution of Automotive Air Conditioning, Ashrae Journal, 41, 44-50.
  • Cho, H., Lee, H. ve Park, C. (2013) Performance characteristics of an automobile air conditioning system with internal heat exchanger using refrigerant R1234yf, Applied Thermal Engineering, 61, 563-569. https://doi.org/10.1016/j.applthermaleng.2013.08.030
  • Cho, H. ve Park, C. (2016) Experimental investigation of performance and exergy analysis of automotive air conditioning systems using refrigerant R1234yf at various compressor speeds, Applied Thermal Engineering, 101, 30-37. https://doi.org/10.1016/j.applthermaleng.2016.01.153
  • Devecioglu, A.G. ve Oruç, V. (2018) A comparative energetic analysis for some low-GWP refrigerants as R134a replacements in various vapor compression refrigeration systems, Journal of Thermal Sciences and Technology, 38, 51-61.
  • Direk, M., Kelesoglu, A. ve Akin, A. (2017) Drop-in performance analysis and effect of IHX for an automotive air conditioning system with R1234yf as a replacement of R134a, Strojniski vestnik – Journal of Mechanical Engineering, 63, 314-319. https://doi.org/10.5545/sv-jme.2016.4247
  • Direk, M. ve Soylu, E. (2018) The effect of internal heat exchanger using R1234ze(E) as an alternative refrigerant in a mobile air-conditioning system, Strojniski vestnik – Journal of Mechanical Engineering, 64, 114-120. https://doi.org/10.5545/sv-jme.2017.5093
  • EU (2014) Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006, Official Journal of European Union, L 150/195.
  • Gungor, U. ve Hosoz, M. (2024) Performance comparison of a mobile air conditioning system using an orifice tube as an expansion device for R1234yf and R134a, Science and Technology for the Built Environment, 30, 588-598. https://doi.org/10.1080/23744731.2024.2309124
  • Güngör, U. (2021) R134a ve R1234yf soğutucu akışkanlı bir otomobil iklimlendirme sisteminde iç ısı değiştirici kullanımının sistem performansına etkilerinin deneysel analizi, Yüksek Lisans Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü, Kocaeli.
  • Klein, S.A. (2016) EES – Engineering Equation Solver, Version 10.167, F-Chart Software.
  • Lee, Y. ve Jung, D. (2012) A brief performance comparison of R1234yf and R134a in a bench tester for automobile applications, Applied Thermal Engineering, 35, 240-242. https://doi.org/10.1016/j.applthermaleng.2011.09.004
  • Lemmon, E.W., Huber, M.L. ve McLinden, M.O. (2013) Reference Fluid Thermodynamic and Transport Properties (REFPROP), Version 9.1, in NIST Standard Reference Database 23, National Institute of Standards and Technology, Gaithersburg.
  • Moffat, R.J. (1988) Describing the uncertainties in the experimental results, Experimental Thermal and Fluid Science, 1, 3-17. https://doi.org/10.1016/0894-1777(88)90043-X
  • Mota-Babiloni, A., Navarro-Esbri, J., Barragan-Cervera, A., Moles, F. ve Peris, B. (2014) Drop-in energy performance evaluation of R1234yf and R1234ze(e) in a vapor compression system as R134a replacements, Applied Thermal Engineering, 71, 259-265. https://doi.org/10.1016/j.applthermaleng.2014.06.056
  • Prabakaran, R., Lal, D.M. ve Kim S.C. (2023) Thermodynamic analysis of air conditioning system for a passenger vehicle with suction line heat exchanger using HFO-1234yf, Heat Transfer Engineering, 814-832. https://doi.org/10.1080/01457632.2023.2227801
  • Prabakaran, R., Sidney, S., Iyyappan, R. ve Lal, D.M. (2019) Experimental studies on the performance of mobile air conditioning system using environmental friendly HFO-1234yf as a refrigerant, Proceedings of the Institution of Mechanical Engineers Part E-Journal of Process and Engineering, 235, 735-742. https://doi.org/10.1177/0954408919881236
  • SAE (2008) SAE J2765, Procedure for measuring system COP (Coefficient of Performance) of a mobile air conditioning system on a test bench, SAE International Surface Vehicle Standard.
  • Tasdemirci, E., Alptekin, E. ve Hosoz, M. (2022) Experimental performance comparison of R1234yf and R134a automobile air conditioning systems employing a variable capacity compressor, International Journal of Vehicle Design, 90, 1-18, (2022). https://doi.org/10.1504/IJVD.2022.129169
  • UNEP (1987) The Montreal Protocol on Substances that Deplete the Ozone Layer, United Nations Environment Programme.
  • UNEP (1997) Kyoto Protocol to the United Nations Framework Convention on Climate Change, United Nations Environment Programme.
  • Wang, C.C. (2014) System performance of R-1234yf refrigerant in air-conditioning and heat pump system − an overview of current status, Applied Thermal Engineering, 73, 1412-1420. https://doi.org/10.1016/j.applthermaleng.2014.08.012.
  • Wantha, C. (2019) Analysis of heat transfer characteristics of tube-in-tube internal heat exchangers for HFO-1234yf and HFC-134a refrigeration systems, Applied Thermal Engineering, 157, 113747, 1-10. https://doi.org/10.1016/j.applthermaleng.2019.113747
  • Yataganbaba, A., Kilicarslan, A. ve Kurtbas, I. (2015) Exergy analysis of R1234yf and R1234ze as R134a replacements in a two evaporator vapour compression refrigeration system, International Journal of Refrigeration, 60, 26-37. https://doi.org/10.1016/j.ijrefrig.2015.08.010
  • Zhang, Z., Wang, J., Feng, X., Chang, L., Chen, Y., ve Wang, X. (2018) The solutions to electric vehicle air conditioning systems: A review, Renewable and Sustainable Energy Reviews, 91, 443-463. https://doi.org/10.1016/j.rser.2018.04.005
  • Zilio, C., Brown, J.S., Schiochet, G. ve Cavallini, A. (2011) The refrigerant R1234yf in air conditioning systems, Energy, 36, 6110-6120. https://doi.org/10.1016/j.energy.2011.08.002

Performance Comparison of an R1234yf Automobile Air Conditioning System using an Internal Heat Exchanger with R134a System

Yıl 2024, , 783 - 802, 24.12.2024
https://doi.org/10.17482/uumfd.1525619

Öz

In this study, various performance parameters of an experimental automobile air conditioning (AAC) system with a thermostatic expansion valve were evaluated for the cases of using R1234yf and R134a refrigerants and the results were presented comparatively. The system was set up as a desktop experimental set, and a concentric internal heat exchanger (IHX) providing heat transfer from the liquid to the suction line was added to compensate for the performance loss in R1234yf operations. The IHX was employed only in some R1234yf tests. The refrigerant flow rate, pressure and temperature measurements at various points were performed under steady-state conditions. Then, energy and exergy analyses were performed to determine the values of the performance merits. The evaporator load of the R1234yf system was on average 12,9% and 11,2% lower than the R134a one for the cases of not using and using the IHX, respectively. While the coefficient of performance (COP) of the R1234yf system without IHX was 5,3% less than that of the R134a one, COP was improved with the activation of IHX and became only 2,5% lower. The R1234yf system without IHX yielded 18,1% less exergetic efficiency than the R134a one, while it was 6,1% lower with active IHX.

Kaynakça

  • Alkan, A. ve İnan, M.S. (2023) Experimental investigation of the effects of compressor types on the performance of an automobile air conditioning system using R1234yf, International Journal of Refrigeration, 155. 58-66. https://doi.org/10.1016/j.ijrefrig.2023.09.004
  • Alkan, A., Kolip, A. ve Hosoz, M. (2021) Energetic and exergetic performance comparison of an experimental automotive air conditioning system using refrigerants R1234yf and R134a, Journal of Thermal Engineering, 7, 1163-1173. https://doi.org/10.18186/thermal.978014
  • Aral, M.C., Suhermanto, M. ve Hosoz, M. (2021) Performance evaluation of an automotive air conditioning and heat pump system using R1234yf and R134a, Science and Technology for the Built Environment, 27, 44-60. https://doi.org/10.1080/23744731.2020.1776067
  • Bhatti, M.S. (1999) Riding in Comfort Part II: Evolution of Automotive Air Conditioning, Ashrae Journal, 41, 44-50.
  • Cho, H., Lee, H. ve Park, C. (2013) Performance characteristics of an automobile air conditioning system with internal heat exchanger using refrigerant R1234yf, Applied Thermal Engineering, 61, 563-569. https://doi.org/10.1016/j.applthermaleng.2013.08.030
  • Cho, H. ve Park, C. (2016) Experimental investigation of performance and exergy analysis of automotive air conditioning systems using refrigerant R1234yf at various compressor speeds, Applied Thermal Engineering, 101, 30-37. https://doi.org/10.1016/j.applthermaleng.2016.01.153
  • Devecioglu, A.G. ve Oruç, V. (2018) A comparative energetic analysis for some low-GWP refrigerants as R134a replacements in various vapor compression refrigeration systems, Journal of Thermal Sciences and Technology, 38, 51-61.
  • Direk, M., Kelesoglu, A. ve Akin, A. (2017) Drop-in performance analysis and effect of IHX for an automotive air conditioning system with R1234yf as a replacement of R134a, Strojniski vestnik – Journal of Mechanical Engineering, 63, 314-319. https://doi.org/10.5545/sv-jme.2016.4247
  • Direk, M. ve Soylu, E. (2018) The effect of internal heat exchanger using R1234ze(E) as an alternative refrigerant in a mobile air-conditioning system, Strojniski vestnik – Journal of Mechanical Engineering, 64, 114-120. https://doi.org/10.5545/sv-jme.2017.5093
  • EU (2014) Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006, Official Journal of European Union, L 150/195.
  • Gungor, U. ve Hosoz, M. (2024) Performance comparison of a mobile air conditioning system using an orifice tube as an expansion device for R1234yf and R134a, Science and Technology for the Built Environment, 30, 588-598. https://doi.org/10.1080/23744731.2024.2309124
  • Güngör, U. (2021) R134a ve R1234yf soğutucu akışkanlı bir otomobil iklimlendirme sisteminde iç ısı değiştirici kullanımının sistem performansına etkilerinin deneysel analizi, Yüksek Lisans Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü, Kocaeli.
  • Klein, S.A. (2016) EES – Engineering Equation Solver, Version 10.167, F-Chart Software.
  • Lee, Y. ve Jung, D. (2012) A brief performance comparison of R1234yf and R134a in a bench tester for automobile applications, Applied Thermal Engineering, 35, 240-242. https://doi.org/10.1016/j.applthermaleng.2011.09.004
  • Lemmon, E.W., Huber, M.L. ve McLinden, M.O. (2013) Reference Fluid Thermodynamic and Transport Properties (REFPROP), Version 9.1, in NIST Standard Reference Database 23, National Institute of Standards and Technology, Gaithersburg.
  • Moffat, R.J. (1988) Describing the uncertainties in the experimental results, Experimental Thermal and Fluid Science, 1, 3-17. https://doi.org/10.1016/0894-1777(88)90043-X
  • Mota-Babiloni, A., Navarro-Esbri, J., Barragan-Cervera, A., Moles, F. ve Peris, B. (2014) Drop-in energy performance evaluation of R1234yf and R1234ze(e) in a vapor compression system as R134a replacements, Applied Thermal Engineering, 71, 259-265. https://doi.org/10.1016/j.applthermaleng.2014.06.056
  • Prabakaran, R., Lal, D.M. ve Kim S.C. (2023) Thermodynamic analysis of air conditioning system for a passenger vehicle with suction line heat exchanger using HFO-1234yf, Heat Transfer Engineering, 814-832. https://doi.org/10.1080/01457632.2023.2227801
  • Prabakaran, R., Sidney, S., Iyyappan, R. ve Lal, D.M. (2019) Experimental studies on the performance of mobile air conditioning system using environmental friendly HFO-1234yf as a refrigerant, Proceedings of the Institution of Mechanical Engineers Part E-Journal of Process and Engineering, 235, 735-742. https://doi.org/10.1177/0954408919881236
  • SAE (2008) SAE J2765, Procedure for measuring system COP (Coefficient of Performance) of a mobile air conditioning system on a test bench, SAE International Surface Vehicle Standard.
  • Tasdemirci, E., Alptekin, E. ve Hosoz, M. (2022) Experimental performance comparison of R1234yf and R134a automobile air conditioning systems employing a variable capacity compressor, International Journal of Vehicle Design, 90, 1-18, (2022). https://doi.org/10.1504/IJVD.2022.129169
  • UNEP (1987) The Montreal Protocol on Substances that Deplete the Ozone Layer, United Nations Environment Programme.
  • UNEP (1997) Kyoto Protocol to the United Nations Framework Convention on Climate Change, United Nations Environment Programme.
  • Wang, C.C. (2014) System performance of R-1234yf refrigerant in air-conditioning and heat pump system − an overview of current status, Applied Thermal Engineering, 73, 1412-1420. https://doi.org/10.1016/j.applthermaleng.2014.08.012.
  • Wantha, C. (2019) Analysis of heat transfer characteristics of tube-in-tube internal heat exchangers for HFO-1234yf and HFC-134a refrigeration systems, Applied Thermal Engineering, 157, 113747, 1-10. https://doi.org/10.1016/j.applthermaleng.2019.113747
  • Yataganbaba, A., Kilicarslan, A. ve Kurtbas, I. (2015) Exergy analysis of R1234yf and R1234ze as R134a replacements in a two evaporator vapour compression refrigeration system, International Journal of Refrigeration, 60, 26-37. https://doi.org/10.1016/j.ijrefrig.2015.08.010
  • Zhang, Z., Wang, J., Feng, X., Chang, L., Chen, Y., ve Wang, X. (2018) The solutions to electric vehicle air conditioning systems: A review, Renewable and Sustainable Energy Reviews, 91, 443-463. https://doi.org/10.1016/j.rser.2018.04.005
  • Zilio, C., Brown, J.S., Schiochet, G. ve Cavallini, A. (2011) The refrigerant R1234yf in air conditioning systems, Energy, 36, 6110-6120. https://doi.org/10.1016/j.energy.2011.08.002
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Otomotiv Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Umut Güngör 0000-0002-9844-7681

Murat Hoşöz 0000-0002-3136-9586

Erken Görünüm Tarihi 18 Aralık 2024
Yayımlanma Tarihi 24 Aralık 2024
Gönderilme Tarihi 31 Temmuz 2024
Kabul Tarihi 26 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Güngör, U., & Hoşöz, M. (2024). R1234YF SOĞUTUCU AKIŞKANI KULLANAN İÇ ISI DEĞİŞTİRİCİLİ BİR OTOMOBİL KLİMA SİSTEMİNİN PERFORMANSININ R134A’LI SİSTEM İLE KARŞILAŞTIRILMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 29(3), 783-802. https://doi.org/10.17482/uumfd.1525619
AMA Güngör U, Hoşöz M. R1234YF SOĞUTUCU AKIŞKANI KULLANAN İÇ ISI DEĞİŞTİRİCİLİ BİR OTOMOBİL KLİMA SİSTEMİNİN PERFORMANSININ R134A’LI SİSTEM İLE KARŞILAŞTIRILMASI. UUJFE. Aralık 2024;29(3):783-802. doi:10.17482/uumfd.1525619
Chicago Güngör, Umut, ve Murat Hoşöz. “R1234YF SOĞUTUCU AKIŞKANI KULLANAN İÇ ISI DEĞİŞTİRİCİLİ BİR OTOMOBİL KLİMA SİSTEMİNİN PERFORMANSININ R134A’LI SİSTEM İLE KARŞILAŞTIRILMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29, sy. 3 (Aralık 2024): 783-802. https://doi.org/10.17482/uumfd.1525619.
EndNote Güngör U, Hoşöz M (01 Aralık 2024) R1234YF SOĞUTUCU AKIŞKANI KULLANAN İÇ ISI DEĞİŞTİRİCİLİ BİR OTOMOBİL KLİMA SİSTEMİNİN PERFORMANSININ R134A’LI SİSTEM İLE KARŞILAŞTIRILMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29 3 783–802.
IEEE U. Güngör ve M. Hoşöz, “R1234YF SOĞUTUCU AKIŞKANI KULLANAN İÇ ISI DEĞİŞTİRİCİLİ BİR OTOMOBİL KLİMA SİSTEMİNİN PERFORMANSININ R134A’LI SİSTEM İLE KARŞILAŞTIRILMASI”, UUJFE, c. 29, sy. 3, ss. 783–802, 2024, doi: 10.17482/uumfd.1525619.
ISNAD Güngör, Umut - Hoşöz, Murat. “R1234YF SOĞUTUCU AKIŞKANI KULLANAN İÇ ISI DEĞİŞTİRİCİLİ BİR OTOMOBİL KLİMA SİSTEMİNİN PERFORMANSININ R134A’LI SİSTEM İLE KARŞILAŞTIRILMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29/3 (Aralık 2024), 783-802. https://doi.org/10.17482/uumfd.1525619.
JAMA Güngör U, Hoşöz M. R1234YF SOĞUTUCU AKIŞKANI KULLANAN İÇ ISI DEĞİŞTİRİCİLİ BİR OTOMOBİL KLİMA SİSTEMİNİN PERFORMANSININ R134A’LI SİSTEM İLE KARŞILAŞTIRILMASI. UUJFE. 2024;29:783–802.
MLA Güngör, Umut ve Murat Hoşöz. “R1234YF SOĞUTUCU AKIŞKANI KULLANAN İÇ ISI DEĞİŞTİRİCİLİ BİR OTOMOBİL KLİMA SİSTEMİNİN PERFORMANSININ R134A’LI SİSTEM İLE KARŞILAŞTIRILMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 29, sy. 3, 2024, ss. 783-02, doi:10.17482/uumfd.1525619.
Vancouver Güngör U, Hoşöz M. R1234YF SOĞUTUCU AKIŞKANI KULLANAN İÇ ISI DEĞİŞTİRİCİLİ BİR OTOMOBİL KLİMA SİSTEMİNİN PERFORMANSININ R134A’LI SİSTEM İLE KARŞILAŞTIRILMASI. UUJFE. 2024;29(3):783-802.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr