Araştırma Makalesi
BibTex RIS Kaynak Göster

DOĞU AKDENİZ YÜZEY AKINTILARININ UÇ DEĞER ANALİZİ, YÖNSELLİĞİ VE ZAMANSAL KARAKTERİSTİKLERİ

Yıl 2025, Cilt: 30 Sayı: 1, 201 - 220, 28.04.2025
https://doi.org/10.17482/uumfd.1590330

Öz

Çalışmada Doğu Akdeniz’de yer alan seçili noktalarda akıntı hızlarının uzun dönem ve uç değer istatistiklerine yer verilmiştir. 1987 ile 2022 arasındaki 36 yılı kapsayan saatlik deniz yüzeyi akıntı hızı zaman serisi, yönden bağımsız analizin yanı sıra sekiz temel yönde akıntı hızı büyüklüklerinin ayrıştırılmasıyla da incelenmiş ve uzun dönemle birlikte uç değer istatistiği için de yöne bağlı bir analiz gerçekleştirilmiştir. Yıllık maksimum değerlere dayalı Gumbel dağılımı ile eşik üstü tepe değerler ile hesaplanan Genelleştirilmiş Pareto Dağılımı (GPD) iki yöntem olarak seçilmiş ve karşılaştırılmalarına yer verilmiştir. Uzun dönem akıntı gülleri incelendiğinde en yüksek akıntı hızı değerlerinin genellikle Kuzey Ege’de görüldüğü ve en yüksek aralığı gösteren 0,3 m/s üzeri akıntıların en çok P1 (Kuzey Ege), P5 (Ege) ve P10 (Doğu Akdeniz) noktalarında görüldüğü ve sırasıyla Güney, Kuzeybatı ve Batı yönlü olduğu anlaşılmıştır. 100 yıllık tekerrür değerlerinin analiz noktalarında Gumbel dağılımı için 0,9 ile 1,5 m/s, GPD için ise 0,8 ile 1,5 m/s arasında değiştiği ve uç değer istatistiğindeki analiz noktaları arasında en çok görülen baskın yönün Kuzeydoğu olduğu anlaşılmıştır. Akıntı hızlarının yönselliği incelendiğinde uzun dönem ve uç değer istatistiklerinden elde edilen baskın yönlerin her durumda örtüşmeyebileceği sonucuna varılmıştır. İki yöntem ile elde edilen tekerrür değerlerinin farkı analiz noktaları baz alındığında %18’e kadar çıkmaktadır.

Kaynakça

  • Baldan, D., Coraci, E., Crosato, F., Cornello, M., Ferla, M., Morucci, S., Bonometto, A. (2023) Return periods of extreme sea levels: From magnitude to frequency, duration and seasonality. Implications in a regulated coastal lagoon. Science of The Total Environment, 866, 25 March 2023, 161326, https://doi.org/10.1016/j.scitotenv.2022.161326.
  • Bitner-Gregersen, E. M., Bhattacharya, S. K., Chatjigeorgiou, I. K., Eames, I., Ellermann, K., Ewans, K., Hermanski, G., Johnson, M. C., Ma, N., Maisondieu, C., Nilva, A., Rychlik, I. ve Waseda, T. (2014) Recent developments of ocean environmental description with focus on uncertainties. Ocean Engineering, 86, 26–46. https://doi.org/10.1016/j.oceaneng.2014.03.002.
  • Bonamente, M. (2017) Statistics and Analysis of Scientific Data, Springer, New York.
  • Bore, P.T., Amdahl, J. ve Kristiansen, D. (2019) Statistical modelling of extreme ocean current velocity profiles. Ocean Engineering, 186/106055, https://doi.org/10.1016/j.oceaneng.2019.05.037.
  • Breivik, Ø., Aarnes, O.J., Abdalla, S., Bidlot, J.-R. ve Janssen, P.A.E.M. (2014) Wind and wave extremes over the world oceans from very large ensembles, Geophysical Research Letters, 41 (14), 5122-5131. https://doi.org/10.1002/2014GL060997.
  • Brioval T., Samson, G., Giordani, H., Bourdallé-Badie, R., Lemarié, F., Madec, G. (2024) Impact of surface current and temperature feedback on kinetic energy over the North-East Atlantic from a coupled ocean / atmospheric boundary layer model. Dynamics of Atmospheres and Oceans, 107, September 2024, 101464. https://doi.org/10.1016/j.dynatmoce.2024.101464.
  • Carslaw, D. C. ve K. Ropkins, (2012) openair --- an R package for air quality data analysis. Environmental Modelling & Software. 27-28, 52-61.
  • https://marine.copernicus.eu/, Erişim Tarihi: 19.09.2024, Konu: Copernicus Marine Service.
  • Escudier, R., Clementi, E., Omar, M., Cipollone, A., Pistoia, J., Aydogdu, A., Drudi, M., Grandi, A., Lyubartsev, V., Lecci, R., Cretí, S., Masina, S., Coppini, G. ve Pinardi, N. (2020) Mediterranean Sea Physical Reanalysis (CMEMS MED-Currents) (Version 1) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1.
  • Escuider, R., Clementi, E., Nigam, T., Aydogdu, A., Elena, Fini, Pistoia, J., Grandi, A., Miraglio, P. (2024) Mediterranean Sea Production Centre MEDSEA_MULTIYEAR_PHY_006_004: Quality Information Document. Copernicus Monitoring Environment Marine Service (CMEMS).
  • Frolov, S., Paduan, J., Cook, M. ve Bellingham, J. (2012) Improved statistical prediction of surface currents based on historic HF-radar observations. Ocean Dynamics, 62:1111-1122. https://doi.org/10.1007/s10236-012-0553-5.
  • Görmüş, T., Ayat, B. ve Aydoğan, B. (2022) Statistical models for extreme waves: Comparison of distributions and Monte Carlo simulation of uncertainty. Ocean Engineering, 248, 110820. https://doi.org/10.1016/J.OCEANENG.2022.110820.
  • Huang, C.C., Tang, H.J. ve Liu, J.Y. (2008) Effects of waves and currents on gravity-type cages in the open sea. Aquacultural Engineering, 38/2, 105-116. https://doi.org/10.1016/j.aquaeng.2008.01.003.
  • Jonathan, P., Ewans, K. ve Flynn, J. (2012) Joint modelling of vertical profiles of large ocean currents. Ocean Engineering, 97, 15 March 2015, 175-185. https://doi.org/10.1016/j.oceaneng.2011.12.010.
  • Lerma, A.N., Bulteau, T., Lecacheux, S. ve Idier, D. (2015) Spatial variability of extreme wave height along the Atlantic and channel French coast. Ocean Engineering, 42, 195-204. https://doi.org/10.1016/j.oceaneng.2015.01.015.
  • Martzikos, N. T., Prinos, P. E., Memos, C. D. ve Tsoukala, V. K. (2021) Statistical analysis of Mediterranean coastal storms. Oceanologia, 63 (1), 133–148. https://doi.org/https://doi.org/10.1016/j.oceano.2020.11.001.
  • Massey, F.J. (1951) The Kolmogorov-Smirnov Test for Goodness of Fit, Journal of the American Statistical Association, 46:253, 68-78. https://doi.org/10.1080/01621459.1951.10500769.
  • Meucci, A., Young, I.R. ve Breivik, Ø. (2018) Wind and Wave Extremes from Atmosphere and Wave Model Ensembles. Journal of Climate, 31 (21), 8819-8842. https://doi.org/10.1175/JCLI-D-18-0217.1.
  • Meucci, A., Young, I.R. Hemer, M., Kirezci, E. ve Ranasinghe, R. (2020) Projected 21st century changes in extreme wind-wave events. Science Advances, 6 (24). https://doi.org/10.1126/sciadv.aaz7295.
  • Nascimento, F., Bourguignon, M., Leao, J. (2016) Extended generalized extreme value distribution with applications in environmental data. Hacettepe Journal of Mathematics and Statistics, 45 (6), 1847-1864.
  • Özcan, O., Bookhagen, B., Musaoğlu, N. (2017) Ekstrem Yağış Olaylarının Fırat Havzası’ndaki Hidrolojik Bileşenlerin Yıllar Arası Değişimi Üzerine Etkisi. Ege Coğrafya Dergisi, 26/1, 35-46.
  • Paskyabi, M.B. (2017). Statistical Characteristics of Ocean Currents: Measurements from Fixed and Moving Platforms. Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering OMAE2017, June 25-30, 2017, Trondheim, Norway.
  • Ring, M., Rodríguez-Ocampo, P.E., Rodolfo, S. ve Edgar, M. (2022) Extreme Value Analysis of Ocean Currents in the Mexican Caribbean Based on HYCOM Numerical Model Data. Frontiers in Marine Science, 9, https://doi.org/10.3389/fmars.2022.866874.
  • Ross, S.M. (2004) Introduction to Probability and Statistics for Engineers and Scientists, Third Edition, Elsevier Academic Press, A.B.D.
  • Ross, S.M. (2023) Simulation, Sixth Edition, Elsevier Academic Press, Birleşik Krallık.
  • Shamji, V.R., Aboobacker, V.M. ve Vineesh, T.C. (2020) Extreme value analysis of wave climate around Farasan Islands, southern Red Sea. Ocean Engineering, 207, 107395. https://doi.org/10.1016/j.oceaneng.2020.107395.
  • Sorensen, R.M. (2006) Basic Coastal Engineering, Third Edition, Springer, New York.
  • Vieira, B.F.V., Pinho, J.L.S., Barros, J.A.O. (2021) Extreme wave value analysis under uncertainty of climate change scenarios off Iberian Peninsula coast. Ocean Engineering, 229, 109018. https://doi.org/10.1016/j.oceaneng.2021.109018.
  • Wang, J., Liu, J., Wang, Y., Liao, Z. ve Sun, P. (2021) Spatiotemporal variations and extreme value analysis of significant wave height in the South China Sea based on 71-year long ERA5 wave reanalysis. Applied Ocean Research, 113, 102750. https://doi.org/10.1016/J.APOR.2021.102750.
  • Wu, Y., Tang, C.C.L., Li, M.Z. ve Prescott, R.H. (2011) Modelling Extreme Storm-Induced Currents over the Grand Banks. Atmosphere-Ocean, 49(3), 259–268. https://doi.org/10.1080/07055900.2011.605271.
  • Yang, Z., Wang, J., Liu, L., Miao, H., Miao, X., Zhang, Q. (2024) Estimating effects of wind and waves on the Doppler centroid frequency shift for the SAR retrieval of ocean currents. Remote Sensing of Environment, 311, 1 September 2024, 114312. https://doi.org/10.1016/j.rse.2024.114312.
  • Yüksel, Y., Ayat, B., Öztürk, M.N., Aydoğan, B., Güler, I., Çevik, E.O. ve Yalçıner, A.C. (2008). Responses of the stratified flows to their driving conditions—A field study. Ocean Engineering, 35, 1304-1321. https://doi.org/10.1016/j.oceaneng.2008.06.006.

Extreme Value Analysis, Directionality and Temporal Characteristics of Surface Currents in the Eastern Mediterranean Sea

Yıl 2025, Cilt: 30 Sayı: 1, 201 - 220, 28.04.2025
https://doi.org/10.17482/uumfd.1590330

Öz

In this study, long term and extreme value analysis of current velocities at selected points in the Eastern Mediterranean are presented. The hourly current velocity time series covering 36 years between 1987 and 2022 were analyzed by decomposing the magnitudes of the current velocity in eight directions, and a direction-dependent analysis was performed for the long term and extreme value statistics. Gumbel Distribution and Generalized Pareto Distribution (GPD) are selected as two methods. It was found that the highest current velocity values were generally observed in the North Aegean. The currents above 0,3 m/s were mostly observed at P1 (North Aegean), P5 (Aegean) and P10 (Eastern Mediterranean) analysis points and the South, Northwest and West directions, respectively. The 100-year values ranged between 0,9 and 1,5 m/s for the Gumbel distribution and between 0,8 and 1,5 m/s for the GPD at the analysis points, and the dominant direction among the points in the extreme value statistics was found to be Northeast. It is concluded that the dominant directions obtained from the long-term and extreme value statistics may not coincide in all cases. The difference in return values between the two methods reaches up to 18% in the analysis points.

Kaynakça

  • Baldan, D., Coraci, E., Crosato, F., Cornello, M., Ferla, M., Morucci, S., Bonometto, A. (2023) Return periods of extreme sea levels: From magnitude to frequency, duration and seasonality. Implications in a regulated coastal lagoon. Science of The Total Environment, 866, 25 March 2023, 161326, https://doi.org/10.1016/j.scitotenv.2022.161326.
  • Bitner-Gregersen, E. M., Bhattacharya, S. K., Chatjigeorgiou, I. K., Eames, I., Ellermann, K., Ewans, K., Hermanski, G., Johnson, M. C., Ma, N., Maisondieu, C., Nilva, A., Rychlik, I. ve Waseda, T. (2014) Recent developments of ocean environmental description with focus on uncertainties. Ocean Engineering, 86, 26–46. https://doi.org/10.1016/j.oceaneng.2014.03.002.
  • Bonamente, M. (2017) Statistics and Analysis of Scientific Data, Springer, New York.
  • Bore, P.T., Amdahl, J. ve Kristiansen, D. (2019) Statistical modelling of extreme ocean current velocity profiles. Ocean Engineering, 186/106055, https://doi.org/10.1016/j.oceaneng.2019.05.037.
  • Breivik, Ø., Aarnes, O.J., Abdalla, S., Bidlot, J.-R. ve Janssen, P.A.E.M. (2014) Wind and wave extremes over the world oceans from very large ensembles, Geophysical Research Letters, 41 (14), 5122-5131. https://doi.org/10.1002/2014GL060997.
  • Brioval T., Samson, G., Giordani, H., Bourdallé-Badie, R., Lemarié, F., Madec, G. (2024) Impact of surface current and temperature feedback on kinetic energy over the North-East Atlantic from a coupled ocean / atmospheric boundary layer model. Dynamics of Atmospheres and Oceans, 107, September 2024, 101464. https://doi.org/10.1016/j.dynatmoce.2024.101464.
  • Carslaw, D. C. ve K. Ropkins, (2012) openair --- an R package for air quality data analysis. Environmental Modelling & Software. 27-28, 52-61.
  • https://marine.copernicus.eu/, Erişim Tarihi: 19.09.2024, Konu: Copernicus Marine Service.
  • Escudier, R., Clementi, E., Omar, M., Cipollone, A., Pistoia, J., Aydogdu, A., Drudi, M., Grandi, A., Lyubartsev, V., Lecci, R., Cretí, S., Masina, S., Coppini, G. ve Pinardi, N. (2020) Mediterranean Sea Physical Reanalysis (CMEMS MED-Currents) (Version 1) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1.
  • Escuider, R., Clementi, E., Nigam, T., Aydogdu, A., Elena, Fini, Pistoia, J., Grandi, A., Miraglio, P. (2024) Mediterranean Sea Production Centre MEDSEA_MULTIYEAR_PHY_006_004: Quality Information Document. Copernicus Monitoring Environment Marine Service (CMEMS).
  • Frolov, S., Paduan, J., Cook, M. ve Bellingham, J. (2012) Improved statistical prediction of surface currents based on historic HF-radar observations. Ocean Dynamics, 62:1111-1122. https://doi.org/10.1007/s10236-012-0553-5.
  • Görmüş, T., Ayat, B. ve Aydoğan, B. (2022) Statistical models for extreme waves: Comparison of distributions and Monte Carlo simulation of uncertainty. Ocean Engineering, 248, 110820. https://doi.org/10.1016/J.OCEANENG.2022.110820.
  • Huang, C.C., Tang, H.J. ve Liu, J.Y. (2008) Effects of waves and currents on gravity-type cages in the open sea. Aquacultural Engineering, 38/2, 105-116. https://doi.org/10.1016/j.aquaeng.2008.01.003.
  • Jonathan, P., Ewans, K. ve Flynn, J. (2012) Joint modelling of vertical profiles of large ocean currents. Ocean Engineering, 97, 15 March 2015, 175-185. https://doi.org/10.1016/j.oceaneng.2011.12.010.
  • Lerma, A.N., Bulteau, T., Lecacheux, S. ve Idier, D. (2015) Spatial variability of extreme wave height along the Atlantic and channel French coast. Ocean Engineering, 42, 195-204. https://doi.org/10.1016/j.oceaneng.2015.01.015.
  • Martzikos, N. T., Prinos, P. E., Memos, C. D. ve Tsoukala, V. K. (2021) Statistical analysis of Mediterranean coastal storms. Oceanologia, 63 (1), 133–148. https://doi.org/https://doi.org/10.1016/j.oceano.2020.11.001.
  • Massey, F.J. (1951) The Kolmogorov-Smirnov Test for Goodness of Fit, Journal of the American Statistical Association, 46:253, 68-78. https://doi.org/10.1080/01621459.1951.10500769.
  • Meucci, A., Young, I.R. ve Breivik, Ø. (2018) Wind and Wave Extremes from Atmosphere and Wave Model Ensembles. Journal of Climate, 31 (21), 8819-8842. https://doi.org/10.1175/JCLI-D-18-0217.1.
  • Meucci, A., Young, I.R. Hemer, M., Kirezci, E. ve Ranasinghe, R. (2020) Projected 21st century changes in extreme wind-wave events. Science Advances, 6 (24). https://doi.org/10.1126/sciadv.aaz7295.
  • Nascimento, F., Bourguignon, M., Leao, J. (2016) Extended generalized extreme value distribution with applications in environmental data. Hacettepe Journal of Mathematics and Statistics, 45 (6), 1847-1864.
  • Özcan, O., Bookhagen, B., Musaoğlu, N. (2017) Ekstrem Yağış Olaylarının Fırat Havzası’ndaki Hidrolojik Bileşenlerin Yıllar Arası Değişimi Üzerine Etkisi. Ege Coğrafya Dergisi, 26/1, 35-46.
  • Paskyabi, M.B. (2017). Statistical Characteristics of Ocean Currents: Measurements from Fixed and Moving Platforms. Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering OMAE2017, June 25-30, 2017, Trondheim, Norway.
  • Ring, M., Rodríguez-Ocampo, P.E., Rodolfo, S. ve Edgar, M. (2022) Extreme Value Analysis of Ocean Currents in the Mexican Caribbean Based on HYCOM Numerical Model Data. Frontiers in Marine Science, 9, https://doi.org/10.3389/fmars.2022.866874.
  • Ross, S.M. (2004) Introduction to Probability and Statistics for Engineers and Scientists, Third Edition, Elsevier Academic Press, A.B.D.
  • Ross, S.M. (2023) Simulation, Sixth Edition, Elsevier Academic Press, Birleşik Krallık.
  • Shamji, V.R., Aboobacker, V.M. ve Vineesh, T.C. (2020) Extreme value analysis of wave climate around Farasan Islands, southern Red Sea. Ocean Engineering, 207, 107395. https://doi.org/10.1016/j.oceaneng.2020.107395.
  • Sorensen, R.M. (2006) Basic Coastal Engineering, Third Edition, Springer, New York.
  • Vieira, B.F.V., Pinho, J.L.S., Barros, J.A.O. (2021) Extreme wave value analysis under uncertainty of climate change scenarios off Iberian Peninsula coast. Ocean Engineering, 229, 109018. https://doi.org/10.1016/j.oceaneng.2021.109018.
  • Wang, J., Liu, J., Wang, Y., Liao, Z. ve Sun, P. (2021) Spatiotemporal variations and extreme value analysis of significant wave height in the South China Sea based on 71-year long ERA5 wave reanalysis. Applied Ocean Research, 113, 102750. https://doi.org/10.1016/J.APOR.2021.102750.
  • Wu, Y., Tang, C.C.L., Li, M.Z. ve Prescott, R.H. (2011) Modelling Extreme Storm-Induced Currents over the Grand Banks. Atmosphere-Ocean, 49(3), 259–268. https://doi.org/10.1080/07055900.2011.605271.
  • Yang, Z., Wang, J., Liu, L., Miao, H., Miao, X., Zhang, Q. (2024) Estimating effects of wind and waves on the Doppler centroid frequency shift for the SAR retrieval of ocean currents. Remote Sensing of Environment, 311, 1 September 2024, 114312. https://doi.org/10.1016/j.rse.2024.114312.
  • Yüksel, Y., Ayat, B., Öztürk, M.N., Aydoğan, B., Güler, I., Çevik, E.O. ve Yalçıner, A.C. (2008). Responses of the stratified flows to their driving conditions—A field study. Ocean Engineering, 35, 1304-1321. https://doi.org/10.1016/j.oceaneng.2008.06.006.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Tahsin Görmüş 0000-0003-4323-1610

Gönderilme Tarihi 23 Kasım 2024
Kabul Tarihi 27 Ocak 2025
Erken Görünüm Tarihi 11 Nisan 2025
Yayımlanma Tarihi 28 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 30 Sayı: 1

Kaynak Göster

APA Görmüş, T. (2025). DOĞU AKDENİZ YÜZEY AKINTILARININ UÇ DEĞER ANALİZİ, YÖNSELLİĞİ VE ZAMANSAL KARAKTERİSTİKLERİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 30(1), 201-220. https://doi.org/10.17482/uumfd.1590330
AMA Görmüş T. DOĞU AKDENİZ YÜZEY AKINTILARININ UÇ DEĞER ANALİZİ, YÖNSELLİĞİ VE ZAMANSAL KARAKTERİSTİKLERİ. UUJFE. Nisan 2025;30(1):201-220. doi:10.17482/uumfd.1590330
Chicago Görmüş, Tahsin. “DOĞU AKDENİZ YÜZEY AKINTILARININ UÇ DEĞER ANALİZİ, YÖNSELLİĞİ VE ZAMANSAL KARAKTERİSTİKLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30, sy. 1 (Nisan 2025): 201-20. https://doi.org/10.17482/uumfd.1590330.
EndNote Görmüş T (01 Nisan 2025) DOĞU AKDENİZ YÜZEY AKINTILARININ UÇ DEĞER ANALİZİ, YÖNSELLİĞİ VE ZAMANSAL KARAKTERİSTİKLERİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30 1 201–220.
IEEE T. Görmüş, “DOĞU AKDENİZ YÜZEY AKINTILARININ UÇ DEĞER ANALİZİ, YÖNSELLİĞİ VE ZAMANSAL KARAKTERİSTİKLERİ”, UUJFE, c. 30, sy. 1, ss. 201–220, 2025, doi: 10.17482/uumfd.1590330.
ISNAD Görmüş, Tahsin. “DOĞU AKDENİZ YÜZEY AKINTILARININ UÇ DEĞER ANALİZİ, YÖNSELLİĞİ VE ZAMANSAL KARAKTERİSTİKLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30/1 (Nisan2025), 201-220. https://doi.org/10.17482/uumfd.1590330.
JAMA Görmüş T. DOĞU AKDENİZ YÜZEY AKINTILARININ UÇ DEĞER ANALİZİ, YÖNSELLİĞİ VE ZAMANSAL KARAKTERİSTİKLERİ. UUJFE. 2025;30:201–220.
MLA Görmüş, Tahsin. “DOĞU AKDENİZ YÜZEY AKINTILARININ UÇ DEĞER ANALİZİ, YÖNSELLİĞİ VE ZAMANSAL KARAKTERİSTİKLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 30, sy. 1, 2025, ss. 201-20, doi:10.17482/uumfd.1590330.
Vancouver Görmüş T. DOĞU AKDENİZ YÜZEY AKINTILARININ UÇ DEĞER ANALİZİ, YÖNSELLİĞİ VE ZAMANSAL KARAKTERİSTİKLERİ. UUJFE. 2025;30(1):201-20.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr