Derleme
BibTex RIS Kaynak Göster

Dijital Çağda Kültürel Mirasın Korunması: Dijital İkiz ve 3D Baskı Uygulamaları Üzerine Bir Derleme

Yıl 2025, Cilt: 30 Sayı: 3, 1027 - 1046, 19.12.2025
https://doi.org/10.17482/uumfd.1604638

Öz

Dijital İkiz ve 3D Baskı teknolojileri, dijital modelleme, simülasyon ve otomatik fabrikasyonu entegre eden ve çeşitli sektörlerde devrim yaratan gelişmiş yöntemlerdir. Bu teknolojiler hassas, verimli ve sürdürülebilir çözümler sunmakta ve kültürel mirasın korunması uygulamalarını geliştirmek için önemli bir potansiyel barındırmaktadır. Dijital İkiz teknolojisi, gerçek zamanlı izleme, öngörücü bakım ve bilinçli restorasyon planlamasını destekleyen ayrıntılı dijital modellerin oluşturulmasını sağlar. Üç Boyutlu Baskı ise karmaşık mimari unsurların ve eserlerin doğru bir şekilde yeniden üretilmesini sağlayarak dijital dokümantasyon ve fiziksel restorasyon arasındaki boşluğu etkili bir şekilde doldurmaktadır. Bu derleme, yapısal olmayan eserlerin kopyalanması, yapısal rehabilitasyon ve malzeme dayanıklılık değerlendirmeleri de dahil olmak üzere önemli araştırma alanlarını incelemektedir. Toplamda, pratik uygulamaları içeren ve bu derlemenin kapsamıyla ilgili olan 31 çalışma derlendi. Sayısız faydalarına rağmen, yüksek maliyet, uzmanlık gerektiren teknik beceriler ve mirasın korunmasında etik hususlar gibi güçlükler bulunmaktadır. Çalışma aynı zamanda otonom restorasyon için akıllı malzemeler, artırılmış gerçeklik ve robotik entegrasyonu gibi gelecekteki gelişmeleri de öngörmektedir. Bu çalışma, mevcut uygulamaları ve zorlukları değerlendirerek Dijital İkiz ve 3D Baskı teknolojilerinin dijital çağda daha etkili, sürdürülebilir koruma uygulamalarını nasıl teşvik edebileceğine dair içgörüler sunmaktadır.

Kaynakça

  • Altadonna, A., Cucinotta, F., Raffaele, M., Salmeri, F., and Sfravara, F. (2023). Environmental Impact Assessment of Different Manufacturing Technologies Oriented to Architectonic Recovery and Conservation of Cultural Heritage. Sustainability (Switzerland), 15(18). doi:10.3390/su151813487
  • Attaran, M. (2017). The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business Horizons, 60(5), 677–688. doi:10.1016/j.bushor.2017.05.011
  • Baeriswyl, M. V. C., Palacios, G. T., Lannefranque, J. A., Tagliabue, L., and Rinaldi, S. (2023). Regeneration of a former prison in melipilla, Chile: use of digital technology in a heritage restoration project. Proceedings of the European Conference on Computing in Construction, 4. doi:10.35490/EC3.2023.318
  • Barazzetti, L., and Banfi, F. (2017). Historic BIM for Mobile VR/AR Applications. In Mixed Reality and Gamification for Cultural Heritage (pp. 271–290). Springer, Cham. doi:10.1007/978-3-319-49607-8_10
  • Barsanti, G., Mousavi, Y., Gharineiat, Z., Agha Karimi, A., McDougall, K., Rossi, A., and Gonizzi Barsanti, S. (2024). Digital Twin Technology in Built Environment: A Review of Applications, Capabilities and Challenges. Smart Cities 2024, 7(5), 2594–2615. doi:10.3390/SMARTCITIES7050101
  • Bekele, M. K., Pierdicca, R., Frontoni, E., Malinverni, E. S., and Gain, J. (2018). A Survey of Augmented, Virtual, and Mixed Reality for Cultural Heritage. Journal on Computing and Cultural Heritage (JOCCH), 11(2). doi:10.1145/3145534
  • Boje, C., Guerriero, A., Kubicki, S., and Rezgui, Y. (2020). Towards a semantic Construction Digital Twin: Directions for future research. Automation in Construction, 114, 103179. doi:10.1016/J.AUTCON.2020.103179
  • Bourgeois, I., Ascensão, G., Ferreira, V., and Rodrigues, H. (2024). Methodology for the Application of 3D Technologies for the Conservation and Recovery of Built Heritage Elements. International Journal of Architectural Heritage. doi:10.1080/15583058.2024.2341327
  • Bruno, S., De Fino, M., and Fatiguso, F. (2018). Historic Building Information Modelling: performance assessment for diagnosis-aided information modeling and management. Automation in Construction, 86, 256–276. doi:10.1016/J.AUTCON.2017.11.009
  • Camacho, D. D., Clayton, P., O’Brien, W. J., Seepersad, C., Juenger, M., Ferron, R., and Salamone, S. (2018). Applications of additive manufacturing in the construction industry – A forward-looking review. Automation in Construction, 89, 110–119. doi:10.1016/J.AUTCON.2017.12.031
  • Cascone, S., Parisi, G., and Caponetto, R. (2024). BIM-Based Strategies for the Revitalization and Automated Management of Buildings: A Case Study. Sustainability 2024, 16(16), 6720. doi:10.3390/SU16166720
  • Chaves, E., Aguilar, J., Barontini, A., Mendes, N., and Compán, V. (2024). Digital Tools for the Preventive Conservation of Built Heritage: The Church of Santa Ana in Seville. Heritage 2024, 7(7), 3470–3494. doi:10.3390/HERITAGE7070164
  • Chiabrando, F., Lo Turco, M., and Santagati, C. (2017). Digital invasions: from point clouds to historical building object modeling (h-bom) of a unesco whl site. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2-W3(2W3), 171–178. doi:10.5194/ISPRS-ARCHIVES-XLII-2-W3-171-2017
  • Codarin, S. (2020). Additive Manufacturing Technologies in Restoration: An Innovative Workflow for Interventions on Cultural Heritage. Cubic Journal, (3), 32-55. doi:10.31182/cubic.2020.3.023
  • Codarin, S., and Daubmann, K. (2021). Robotic Fabrication in Conservation: Digital Workflows and Skills Evaluation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12642 LNCS, 241–253. doi:10.1007/978-3-030-73043-7_20
  • Comes, R, Grec, C., Neamțu, C., Găzdac, C., and Mateescu-suciu, l. (2021). Intangible heritage?...not anymore, from photo to 3d printed cultural heritage assets replicas. The two missing iron discs from the dacian hillfort of piatra roșie (romania). Journal of ancıent hıstory and archaeology, 8(1). doi:10.14795/j.v8i1.622
  • Dang, X., Liu, W., Hong, Q., Wang, Y., and Chen, X. (2023). Digital twin applications on cultural world heritage sites in China: A state-of-the-art overview. Journal of Cultural Heritage, 64, 228–243. doi:10.1016/J.CULHER.2023.10.005
  • Di Paola, F., Milazzo, G., and Spatafora, F. (2017). Computer aided restoration tools to assist the conservation of an ancient sculpture, The colossal statue of zeus enthroned. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2W5), 177–184. doi:10.5194/isprs-archives-XLII-2-W5-177-2017
  • Dore, C., and Murphy, M. (2017). Current state of the art historic building information modelling. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 185–192. doi:10.5194/isprs-archives-XLII-2-W5-185-2017
  • Echavarria, K. R., Song, R., Few, D., and E Sáy, A. M. (2016). Restoration of Architectural Ornament for Historic Buildings. GraDiFab 2016 - Eurographics Workshop on Graphics for Digital Fabrication, 39–48. doi:10.2312/gdf.20161077
  • El-Sayegh, S., Romdhane, L., and Manjikian, S. (2020). A critical review of 3D printing in construction: benefits, challenges, and risks. Archives of Civil and Mechanical Engineering, 20(2), 1–25. doi:10.1007/S43452-020-00038-W
  • Falcone, M., Origlia, A., Campi, M., and DI Martino, S. (2021). From architectural survey to continuous monitoring: graph-based data management for cultural heritage conservation with digital twins. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B4-2021(B4-2021), 47–53. doi:10.5194/ISPRS-ARCHIVES-XLIII-B4-2021-47-2021
  • Fico, D., Rizzo, D., Montagna, F., and Esposito Corcione, C. (2023). Fused Filament Fabrication and Computer Numerical Control Milling in Cultural Heritage Conservation. Materials, 16(8). doi:10.3390/ma16083038
  • Fragkos, S., Tzimtzimis, E., Tzetzis, D., Dodun, O., and Kyratsis, P. (2018). 3D laser scanning and digital restoration of an archaeological find. MATEC Web of Conferences, 178. doi:10.1051/matecconf/201817803013
  • Funari, M. F., Hajjat, A. E., Masciotta, M. G., Oliveira, D. V., and Lourenço, P. B. (2021). A Parametric Scan-to-FEM Framework for the Digital Twin Generation of Historic Masonry Structures. Sustainability 2021, 13(19), 11088. doi:10.3390/SU131911088
  • Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C. B., Wang, C. C. L., Shin, Y. C., Zhang, S., and Zavattieri, P. D. (2015). The status, challenges, and future of additive manufacturing in engineering. Computer-Aided Design, 69, 65–89. doi:10.1016/J.CAD.2015.04.001
  • Garcia-Leon, J., Murrieri, P., and Collado-Espejo, P. E. (2023). Hbim as a tool for the analysis and conservation of architectural heritage. Case study: the rame tower’s digital twin. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-M-2–2023(M-2–2023), 637–644. doi:10.5194/ISPRS-ARCHIVES-XLVIII-M-2-2023-637-2023
  • Higueras, M., Carrasco-Huertas, A., Calero-Castillo, A. I., Moreno Alcaide, M., and Collado Montero, F. J. (2024). Study of liquid photopolymer 3D printing resins exposed to accelerated aging for cultural heritage purposes. Rapid Prototyping Journal, 30(7), 1476–1485. doi:10.1108/RPJ-01-2024-0015
  • Huang, L., Krigsvoll, G., Johansen, F., Liu, Y., and Zhang, X. (2018). Carbon emission of global construction sector. Renewable and Sustainable Energy Reviews, 81, 1906–1916. doi:10.1016/J.RSER.2017.06.001
  • Kantaros, A., Ganetsos, T., and Petrescu, F. I. T. (2023). Three-Dimensional Printing and 3D Scanning: Emerging Technologies Exhibiting High Potential in the Field of Cultural Heritage. Applied Sciences 2023, 13(8), 4777. doi:10.3390/APP13084777
  • Kantaros, A., Soulis, E., and Alysandratou, E. (2023). Digitization of Ancient Artefacts and Fabrication of Sustainable 3D-Printed Replicas for Intended Use by Visitors with Disabilities: The Case of Piraeus Archaeological Museum. Sustainability (Switzerland), 15(17). doi:10.3390/su151712689
  • Khajavi, S. H., Motlagh, N. H., Jaribion, A., Werner, L. C., and Holmstrom, J. (2019). Digital Twin: Vision, benefits, boundaries, and creation for buildings. IEEE Access, 7, 147406–147419. doi:10.1109/ACCESS.2019.2946515
  • Khan, S. A., Koç, M., and Al-Ghamdi, S. G. (2021). Sustainability assessment, potentials and challenges of 3D printed concrete structures: A systematic review for built environmental applications. Journal of Cleaner Production, 303, 127027. doi:10.1016/J.JCLEPRO.2021.127027
  • La Russa, F. M., and Santagati, C. (2020). Historical sentient – building information model: a digital twin for the management of museum collections in historical architectures. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B4-2020(B4), 755–762. doi:10.5194/ISPRS-ARCHIVES-XLIII-B4-2020-755-2020
  • Liu, B., Guo, Y., Wang, Y., Liu, Q., Hu, Y., Wang, L., and Qian, K. (2024). Study on the compression performance of 3D printing concrete permanent formwork composite columns. Journal of Building Engineering, 98, 111245. doi:10.1016/j.jobe.2024.111245
  • Liu, S., Tu, Y., Wang, X., Qin, B., Xie, Z., Zhang, Y., Zhang, H., and Hu, D. (2022). Transparent reversible prosthesis, a new way to complete the conservation–restoration of a Black Ding bowl with application of 3D technologies. Heritage Science, 10(1). doi:10.1186/s40494-022-00646-0
  • Luca, D. De, Giudice, M. Del, Grasso, N., Matrone, F., Osello, A., and Piras, M. (2019). Handheld volumetric scanner for 3D printed integrations of historical elements: comparison and results. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2/W15), 381–388. doi:10.5194/isprs-archives-XLII-2-W15-381-2019
  • Ma, X., Zhao, J., Wang, P., Du, J., Liu, J., and Zhao, D. (2024). Digital twin of wooden heritage through multidimensional model construction and integration. Structural Health Monitoring, 14759217241262969. doi:10.1177/14759217241262969
  • Mahmoodian, M., Shahrivar, F., Setunge, S., and Mazaheri, S. (2022). Development of Digital Twin for Intelligent Maintenance of Civil Infrastructure. Sustainability, 14(14), 8664. doi:10.3390/su14148664
  • Mansi, E., Terranova, G., Linardi, D., Marfia, S., Monaldo, E., Ricci, M., Imbimbo, M., Pelliccio, A., Brunetin, A., and D’Amato, R. (2023). Development of 3D printed nanomaterials for restoration of exterior artworks. Journal of Physics: Conference Series, 2579(1). doi:10.1088/1742-6596/2579/1/012004
  • Marienkov, M., Kaliukh, I., and Trofymchuk, O. (2024). The digital twin use for modeling the multi‐storey building response to seismic impacts. Structural Concrete, 25(3), 2079–2096. doi:10.1002/suco.202300695
  • Moyano, J., Carreño, E., Nieto-Julián, J. E., Gil-Arizón, I., and Bruno, S. (2022). Systematic approach to generate Historical Building Information Modelling (HBIM) in architectural restoration project. Automation in Construction, 143, 104551. doi:10.1016/j.autcon.2022.104551
  • Munoz-Pandiella, I., Bosch, C., Guardia, M., Cayuela, B., Pogliani, P., Bordi, G., Paschali, M., Andujar, C., and Charalambous, P. (2022). Digital Twins for Medieval Monuments: Requirements from Art Historians and Technical Challenges for Analysis and Restoration. 2022 International Conference on Interactive Media, Smart Systems and Emerging Technologies, IMET 2022 - Proceedings. doi:10.1109/IMET54801.2022.9929510
  • Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., and Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172–196. doi:10.1016/J.COMPOSITESB.2018.02.012
  • Parfenov, V., Igoshin, S., Masaylo, D., Orlov, A., and Kuliashou, D. (2022). Use of 3D Laser Scanning and Additive Technologies for Reconstruction of Damaged and Destroyed Cultural Heritage Objects. Quantum Beam Science, 6(1). doi:10.3390/qubs6010011
  • Perrot, A., Rangeard, D., and Courteille, E. (2018). 3D printing of earth-based materials: Processing aspects. Construction and Building Materials, 172, 670–676. doi:10.1016/j.conbuildmat.2018.04.017
  • Puzatova, A., Shakor, P., Laghi, V., and Dmitrieva, M. (2022). Large-Scale 3D Printing for Construction Application by Means of Robotic Arm and Gantry 3D Printer: A Review. Buildings 2022, 12(11), 2023. doi:10.3390/BUILDINGS12112023
  • Rizzo, D., Fico, D., Montagna, F., Casciaro, R., and Esposito Corcione, C. (2023). From Virtual Reconstruction to Additive Manufacturing: Application of Advanced Technologies for the Integration of a 17th-Century Wooden Ciborium. Materials, 16(4). doi:10.3390/ma16041424
  • Rocca, I., Forti, I., D’Acunto, G., and Saetta, A. (2023). Survey, diagnostics, monitoring methodology and digital twin for the conservation of the facade of the church of santa maria di nazareth in venice. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-M-2–2023(M-2–2023), 1331–1336. doi:10.5194/ISPRS-ARCHIVES-XLVIII-M-2-2023-1331-2023
  • Sacks, R., Brilakis, I., Pikas, E., Xie, H. S., and Girolami, M. (2020). Construction with digital twin information systems. Data-Centric Engineering, 1(6), e14. doi:10.1017/DCE.2020.16
  • Sakin, M., and Kiroglu, Y. C. (2017). 3D Printing of Buildings: Construction of the Sustainable Houses of the Future by BIM. Energy Procedia, 134, 702–711. doi:10.1016/J.EGYPRO.2017.09.562
  • Segreto, T., Bottillo, A., Teti, R., Galantucci, L. M., Lavecchia, F., and Galantucci, M. B. (2017). Non-contact Reverse Engineering Modeling for Additive Manufacturing of Down Scaled Cultural Artefacts. Procedia CIRP, 62, 481–486.doi:10.1016/j.procir.2017.03.042
  • Sherratt, F., Dowsett, R., and Sherratt, S. (2020). Construction 4.0 and its potential impact on people working in the construction industry. Proceedings of the Institution of Civil Engineers-Management, Procurement and Law, 173(4), 145–152. doi:10.1680/JMAPL.19.00053
  • Tarhan, Y., and Perrot, A. (2023). Reinforcement of 3D printable earth-based mortar with natural textile material. Materials Today: Proceedings. doi:10.1016/J.MATPR.2023.08.056
  • Tarhan, Y., and Şahin, R. (2019). Developments of 3D concrete printing process. International Civil Engineering and Architecture Conference. https://www.researchgate.net/publication/333673859
  • Tarhan, Y., and Şahin, R. (2021). Fresh and Rheological Performances of Air-Entrained 3D Printable Mortars. Materials 2021, 14(9), 2409. doi:10.3390/MA14092409
  • Tarhan, Y., Tarhan, İ. H., Jacquet, Y., and Perrot, A. (2024). Mechanical behaviour of 3D printed and textile-reinforced eco-friendly composites. Journal of Sustainable Cement-Based Materials, 1–19. doi:10.1080/21650373.2024.2396420
  • Tarhan, İ. H., and Tarhan, Y. (2025). Nonlinear in-plane response of 3D-printed concrete walls with varied infill patterns: Experimental mix design and numerical structural assessment, Challenge Journal of Structural Mechanics, 11(3), 160-173. doi:10.20528/cjsmec.2025.03.005
  • Themistocleous, K., Evagorou, E., Mettas, C., and Hadjimitsis, D. G. (2022). The use of digital twin models to document cultural heritage monuments. In Earth Resources and Environmental Remote Sensing/GIS Applications XIII, Vol. 12268, pp. 55-64). SPIE. doi:10.1117/12.2636332
  • Tucci, G., Bonora, V., Tesi, V., and Pagnini, B. (2019, December). Additive manufacturing of marble statues: 3D replicas for the preservation of the originals. IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage, 288-293.
  • Wu, P., Wang, J., and Wang, X. (2016). A critical review of the use of 3-D printing in the construction industry. Automation in Construction, 68, 21–31. doi:10.1016/J.AUTCON.2016.04.005
  • Xu, J., Ding, L., and Love, P. E. D. (2017). Digital reproduction of historical building ornamental components: From 3D scanning to 3D printing. Automation in Construction, 76, 85–96. doi:10.1016/J.AUTCON.2017.01.010
  • Yastikli, N. (2007). Documentation of cultural heritage using digital photogrammetry and laser scanning. Journal of Cultural Heritage, 8(4), 423–427. doi:10.1016/j.culher.2007.06.003
  • You, Z., and Feng, L. (2020). Integration of Industry 4.0 Related Technologies in Construction Industry: A Framework of Cyber-Physical System. IEEE Access, 8, 122908–122922. doi:10.1109/ACCESS.2020.3007206
  • Zhang, J., Poon, K. H., Kwok, H. H. L., Hou, F., and Cheng, J. C. P. (2023). Predictive control of HVAC by multiple output GRU - CFD integration approach to manage multiple IAQ for commercial heritage building preservation. Building and Environment, 245, 110802. doi:10.1016/j.buildenv.2023.110802
  • Zuo, Z., De Corte, W., Huang, Y., Chen, X., Zhang, Y., Li, J., Zhang, L., Xiao, J., Yuan, Y., Zhang, K., Zhang, L., and Mechtcherine, V. (2024). Strategies towards large-scale 3D printing without size constraints. Virtual and Physical Prototyping, 19(1). doi:10.1080/17452759.2024.2346821

CULTURAL HERITAGE CONSERVATION IN DIGITAL ERA: A REVIEW OF DIGITAL TWIN AND 3D PRINTING APPLICATIONS

Yıl 2025, Cilt: 30 Sayı: 3, 1027 - 1046, 19.12.2025
https://doi.org/10.17482/uumfd.1604638

Öz

Digital Twin and 3D Printing technologies are advanced methods that integrate digital modeling, simulation, and automated fabrication and revolutionize various sectors. These technologies offer precise, efficient, and sustainable solutions, holding significant potential for enhancing preservation practices. Digital Twin technology enables the creation of detailed digital models, supporting real-time monitoring, predictive maintenance, and informed restoration planning. Meanwhile, 3D Printing allows the accurate reproduction of intricate architectural elements and artifacts, effectively bridging the gap between digital documentation and physical restoration. This review explores key research areas, including the replication of non-structural artifacts, structural rehabilitation, and material durability assessments. In total, 31 studies that included practical applications relevant to this study's scope were reviewed. Despite their numerous benefits, challenges such as high costs, specialized technical skills, and ethical considerations in heritage preservation remain. The study also anticipates future advancements, such as integrating smart materials, augmented reality, and robotics for autonomous restoration. This study provides insights into how Digital Twin and 3D Printing technologies can promote more effective, sustainable conservation practices in the digital age by evaluating current applications and challenges.

Kaynakça

  • Altadonna, A., Cucinotta, F., Raffaele, M., Salmeri, F., and Sfravara, F. (2023). Environmental Impact Assessment of Different Manufacturing Technologies Oriented to Architectonic Recovery and Conservation of Cultural Heritage. Sustainability (Switzerland), 15(18). doi:10.3390/su151813487
  • Attaran, M. (2017). The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business Horizons, 60(5), 677–688. doi:10.1016/j.bushor.2017.05.011
  • Baeriswyl, M. V. C., Palacios, G. T., Lannefranque, J. A., Tagliabue, L., and Rinaldi, S. (2023). Regeneration of a former prison in melipilla, Chile: use of digital technology in a heritage restoration project. Proceedings of the European Conference on Computing in Construction, 4. doi:10.35490/EC3.2023.318
  • Barazzetti, L., and Banfi, F. (2017). Historic BIM for Mobile VR/AR Applications. In Mixed Reality and Gamification for Cultural Heritage (pp. 271–290). Springer, Cham. doi:10.1007/978-3-319-49607-8_10
  • Barsanti, G., Mousavi, Y., Gharineiat, Z., Agha Karimi, A., McDougall, K., Rossi, A., and Gonizzi Barsanti, S. (2024). Digital Twin Technology in Built Environment: A Review of Applications, Capabilities and Challenges. Smart Cities 2024, 7(5), 2594–2615. doi:10.3390/SMARTCITIES7050101
  • Bekele, M. K., Pierdicca, R., Frontoni, E., Malinverni, E. S., and Gain, J. (2018). A Survey of Augmented, Virtual, and Mixed Reality for Cultural Heritage. Journal on Computing and Cultural Heritage (JOCCH), 11(2). doi:10.1145/3145534
  • Boje, C., Guerriero, A., Kubicki, S., and Rezgui, Y. (2020). Towards a semantic Construction Digital Twin: Directions for future research. Automation in Construction, 114, 103179. doi:10.1016/J.AUTCON.2020.103179
  • Bourgeois, I., Ascensão, G., Ferreira, V., and Rodrigues, H. (2024). Methodology for the Application of 3D Technologies for the Conservation and Recovery of Built Heritage Elements. International Journal of Architectural Heritage. doi:10.1080/15583058.2024.2341327
  • Bruno, S., De Fino, M., and Fatiguso, F. (2018). Historic Building Information Modelling: performance assessment for diagnosis-aided information modeling and management. Automation in Construction, 86, 256–276. doi:10.1016/J.AUTCON.2017.11.009
  • Camacho, D. D., Clayton, P., O’Brien, W. J., Seepersad, C., Juenger, M., Ferron, R., and Salamone, S. (2018). Applications of additive manufacturing in the construction industry – A forward-looking review. Automation in Construction, 89, 110–119. doi:10.1016/J.AUTCON.2017.12.031
  • Cascone, S., Parisi, G., and Caponetto, R. (2024). BIM-Based Strategies for the Revitalization and Automated Management of Buildings: A Case Study. Sustainability 2024, 16(16), 6720. doi:10.3390/SU16166720
  • Chaves, E., Aguilar, J., Barontini, A., Mendes, N., and Compán, V. (2024). Digital Tools for the Preventive Conservation of Built Heritage: The Church of Santa Ana in Seville. Heritage 2024, 7(7), 3470–3494. doi:10.3390/HERITAGE7070164
  • Chiabrando, F., Lo Turco, M., and Santagati, C. (2017). Digital invasions: from point clouds to historical building object modeling (h-bom) of a unesco whl site. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2-W3(2W3), 171–178. doi:10.5194/ISPRS-ARCHIVES-XLII-2-W3-171-2017
  • Codarin, S. (2020). Additive Manufacturing Technologies in Restoration: An Innovative Workflow for Interventions on Cultural Heritage. Cubic Journal, (3), 32-55. doi:10.31182/cubic.2020.3.023
  • Codarin, S., and Daubmann, K. (2021). Robotic Fabrication in Conservation: Digital Workflows and Skills Evaluation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12642 LNCS, 241–253. doi:10.1007/978-3-030-73043-7_20
  • Comes, R, Grec, C., Neamțu, C., Găzdac, C., and Mateescu-suciu, l. (2021). Intangible heritage?...not anymore, from photo to 3d printed cultural heritage assets replicas. The two missing iron discs from the dacian hillfort of piatra roșie (romania). Journal of ancıent hıstory and archaeology, 8(1). doi:10.14795/j.v8i1.622
  • Dang, X., Liu, W., Hong, Q., Wang, Y., and Chen, X. (2023). Digital twin applications on cultural world heritage sites in China: A state-of-the-art overview. Journal of Cultural Heritage, 64, 228–243. doi:10.1016/J.CULHER.2023.10.005
  • Di Paola, F., Milazzo, G., and Spatafora, F. (2017). Computer aided restoration tools to assist the conservation of an ancient sculpture, The colossal statue of zeus enthroned. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2W5), 177–184. doi:10.5194/isprs-archives-XLII-2-W5-177-2017
  • Dore, C., and Murphy, M. (2017). Current state of the art historic building information modelling. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 185–192. doi:10.5194/isprs-archives-XLII-2-W5-185-2017
  • Echavarria, K. R., Song, R., Few, D., and E Sáy, A. M. (2016). Restoration of Architectural Ornament for Historic Buildings. GraDiFab 2016 - Eurographics Workshop on Graphics for Digital Fabrication, 39–48. doi:10.2312/gdf.20161077
  • El-Sayegh, S., Romdhane, L., and Manjikian, S. (2020). A critical review of 3D printing in construction: benefits, challenges, and risks. Archives of Civil and Mechanical Engineering, 20(2), 1–25. doi:10.1007/S43452-020-00038-W
  • Falcone, M., Origlia, A., Campi, M., and DI Martino, S. (2021). From architectural survey to continuous monitoring: graph-based data management for cultural heritage conservation with digital twins. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B4-2021(B4-2021), 47–53. doi:10.5194/ISPRS-ARCHIVES-XLIII-B4-2021-47-2021
  • Fico, D., Rizzo, D., Montagna, F., and Esposito Corcione, C. (2023). Fused Filament Fabrication and Computer Numerical Control Milling in Cultural Heritage Conservation. Materials, 16(8). doi:10.3390/ma16083038
  • Fragkos, S., Tzimtzimis, E., Tzetzis, D., Dodun, O., and Kyratsis, P. (2018). 3D laser scanning and digital restoration of an archaeological find. MATEC Web of Conferences, 178. doi:10.1051/matecconf/201817803013
  • Funari, M. F., Hajjat, A. E., Masciotta, M. G., Oliveira, D. V., and Lourenço, P. B. (2021). A Parametric Scan-to-FEM Framework for the Digital Twin Generation of Historic Masonry Structures. Sustainability 2021, 13(19), 11088. doi:10.3390/SU131911088
  • Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C. B., Wang, C. C. L., Shin, Y. C., Zhang, S., and Zavattieri, P. D. (2015). The status, challenges, and future of additive manufacturing in engineering. Computer-Aided Design, 69, 65–89. doi:10.1016/J.CAD.2015.04.001
  • Garcia-Leon, J., Murrieri, P., and Collado-Espejo, P. E. (2023). Hbim as a tool for the analysis and conservation of architectural heritage. Case study: the rame tower’s digital twin. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-M-2–2023(M-2–2023), 637–644. doi:10.5194/ISPRS-ARCHIVES-XLVIII-M-2-2023-637-2023
  • Higueras, M., Carrasco-Huertas, A., Calero-Castillo, A. I., Moreno Alcaide, M., and Collado Montero, F. J. (2024). Study of liquid photopolymer 3D printing resins exposed to accelerated aging for cultural heritage purposes. Rapid Prototyping Journal, 30(7), 1476–1485. doi:10.1108/RPJ-01-2024-0015
  • Huang, L., Krigsvoll, G., Johansen, F., Liu, Y., and Zhang, X. (2018). Carbon emission of global construction sector. Renewable and Sustainable Energy Reviews, 81, 1906–1916. doi:10.1016/J.RSER.2017.06.001
  • Kantaros, A., Ganetsos, T., and Petrescu, F. I. T. (2023). Three-Dimensional Printing and 3D Scanning: Emerging Technologies Exhibiting High Potential in the Field of Cultural Heritage. Applied Sciences 2023, 13(8), 4777. doi:10.3390/APP13084777
  • Kantaros, A., Soulis, E., and Alysandratou, E. (2023). Digitization of Ancient Artefacts and Fabrication of Sustainable 3D-Printed Replicas for Intended Use by Visitors with Disabilities: The Case of Piraeus Archaeological Museum. Sustainability (Switzerland), 15(17). doi:10.3390/su151712689
  • Khajavi, S. H., Motlagh, N. H., Jaribion, A., Werner, L. C., and Holmstrom, J. (2019). Digital Twin: Vision, benefits, boundaries, and creation for buildings. IEEE Access, 7, 147406–147419. doi:10.1109/ACCESS.2019.2946515
  • Khan, S. A., Koç, M., and Al-Ghamdi, S. G. (2021). Sustainability assessment, potentials and challenges of 3D printed concrete structures: A systematic review for built environmental applications. Journal of Cleaner Production, 303, 127027. doi:10.1016/J.JCLEPRO.2021.127027
  • La Russa, F. M., and Santagati, C. (2020). Historical sentient – building information model: a digital twin for the management of museum collections in historical architectures. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B4-2020(B4), 755–762. doi:10.5194/ISPRS-ARCHIVES-XLIII-B4-2020-755-2020
  • Liu, B., Guo, Y., Wang, Y., Liu, Q., Hu, Y., Wang, L., and Qian, K. (2024). Study on the compression performance of 3D printing concrete permanent formwork composite columns. Journal of Building Engineering, 98, 111245. doi:10.1016/j.jobe.2024.111245
  • Liu, S., Tu, Y., Wang, X., Qin, B., Xie, Z., Zhang, Y., Zhang, H., and Hu, D. (2022). Transparent reversible prosthesis, a new way to complete the conservation–restoration of a Black Ding bowl with application of 3D technologies. Heritage Science, 10(1). doi:10.1186/s40494-022-00646-0
  • Luca, D. De, Giudice, M. Del, Grasso, N., Matrone, F., Osello, A., and Piras, M. (2019). Handheld volumetric scanner for 3D printed integrations of historical elements: comparison and results. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2/W15), 381–388. doi:10.5194/isprs-archives-XLII-2-W15-381-2019
  • Ma, X., Zhao, J., Wang, P., Du, J., Liu, J., and Zhao, D. (2024). Digital twin of wooden heritage through multidimensional model construction and integration. Structural Health Monitoring, 14759217241262969. doi:10.1177/14759217241262969
  • Mahmoodian, M., Shahrivar, F., Setunge, S., and Mazaheri, S. (2022). Development of Digital Twin for Intelligent Maintenance of Civil Infrastructure. Sustainability, 14(14), 8664. doi:10.3390/su14148664
  • Mansi, E., Terranova, G., Linardi, D., Marfia, S., Monaldo, E., Ricci, M., Imbimbo, M., Pelliccio, A., Brunetin, A., and D’Amato, R. (2023). Development of 3D printed nanomaterials for restoration of exterior artworks. Journal of Physics: Conference Series, 2579(1). doi:10.1088/1742-6596/2579/1/012004
  • Marienkov, M., Kaliukh, I., and Trofymchuk, O. (2024). The digital twin use for modeling the multi‐storey building response to seismic impacts. Structural Concrete, 25(3), 2079–2096. doi:10.1002/suco.202300695
  • Moyano, J., Carreño, E., Nieto-Julián, J. E., Gil-Arizón, I., and Bruno, S. (2022). Systematic approach to generate Historical Building Information Modelling (HBIM) in architectural restoration project. Automation in Construction, 143, 104551. doi:10.1016/j.autcon.2022.104551
  • Munoz-Pandiella, I., Bosch, C., Guardia, M., Cayuela, B., Pogliani, P., Bordi, G., Paschali, M., Andujar, C., and Charalambous, P. (2022). Digital Twins for Medieval Monuments: Requirements from Art Historians and Technical Challenges for Analysis and Restoration. 2022 International Conference on Interactive Media, Smart Systems and Emerging Technologies, IMET 2022 - Proceedings. doi:10.1109/IMET54801.2022.9929510
  • Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., and Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172–196. doi:10.1016/J.COMPOSITESB.2018.02.012
  • Parfenov, V., Igoshin, S., Masaylo, D., Orlov, A., and Kuliashou, D. (2022). Use of 3D Laser Scanning and Additive Technologies for Reconstruction of Damaged and Destroyed Cultural Heritage Objects. Quantum Beam Science, 6(1). doi:10.3390/qubs6010011
  • Perrot, A., Rangeard, D., and Courteille, E. (2018). 3D printing of earth-based materials: Processing aspects. Construction and Building Materials, 172, 670–676. doi:10.1016/j.conbuildmat.2018.04.017
  • Puzatova, A., Shakor, P., Laghi, V., and Dmitrieva, M. (2022). Large-Scale 3D Printing for Construction Application by Means of Robotic Arm and Gantry 3D Printer: A Review. Buildings 2022, 12(11), 2023. doi:10.3390/BUILDINGS12112023
  • Rizzo, D., Fico, D., Montagna, F., Casciaro, R., and Esposito Corcione, C. (2023). From Virtual Reconstruction to Additive Manufacturing: Application of Advanced Technologies for the Integration of a 17th-Century Wooden Ciborium. Materials, 16(4). doi:10.3390/ma16041424
  • Rocca, I., Forti, I., D’Acunto, G., and Saetta, A. (2023). Survey, diagnostics, monitoring methodology and digital twin for the conservation of the facade of the church of santa maria di nazareth in venice. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-M-2–2023(M-2–2023), 1331–1336. doi:10.5194/ISPRS-ARCHIVES-XLVIII-M-2-2023-1331-2023
  • Sacks, R., Brilakis, I., Pikas, E., Xie, H. S., and Girolami, M. (2020). Construction with digital twin information systems. Data-Centric Engineering, 1(6), e14. doi:10.1017/DCE.2020.16
  • Sakin, M., and Kiroglu, Y. C. (2017). 3D Printing of Buildings: Construction of the Sustainable Houses of the Future by BIM. Energy Procedia, 134, 702–711. doi:10.1016/J.EGYPRO.2017.09.562
  • Segreto, T., Bottillo, A., Teti, R., Galantucci, L. M., Lavecchia, F., and Galantucci, M. B. (2017). Non-contact Reverse Engineering Modeling for Additive Manufacturing of Down Scaled Cultural Artefacts. Procedia CIRP, 62, 481–486.doi:10.1016/j.procir.2017.03.042
  • Sherratt, F., Dowsett, R., and Sherratt, S. (2020). Construction 4.0 and its potential impact on people working in the construction industry. Proceedings of the Institution of Civil Engineers-Management, Procurement and Law, 173(4), 145–152. doi:10.1680/JMAPL.19.00053
  • Tarhan, Y., and Perrot, A. (2023). Reinforcement of 3D printable earth-based mortar with natural textile material. Materials Today: Proceedings. doi:10.1016/J.MATPR.2023.08.056
  • Tarhan, Y., and Şahin, R. (2019). Developments of 3D concrete printing process. International Civil Engineering and Architecture Conference. https://www.researchgate.net/publication/333673859
  • Tarhan, Y., and Şahin, R. (2021). Fresh and Rheological Performances of Air-Entrained 3D Printable Mortars. Materials 2021, 14(9), 2409. doi:10.3390/MA14092409
  • Tarhan, Y., Tarhan, İ. H., Jacquet, Y., and Perrot, A. (2024). Mechanical behaviour of 3D printed and textile-reinforced eco-friendly composites. Journal of Sustainable Cement-Based Materials, 1–19. doi:10.1080/21650373.2024.2396420
  • Tarhan, İ. H., and Tarhan, Y. (2025). Nonlinear in-plane response of 3D-printed concrete walls with varied infill patterns: Experimental mix design and numerical structural assessment, Challenge Journal of Structural Mechanics, 11(3), 160-173. doi:10.20528/cjsmec.2025.03.005
  • Themistocleous, K., Evagorou, E., Mettas, C., and Hadjimitsis, D. G. (2022). The use of digital twin models to document cultural heritage monuments. In Earth Resources and Environmental Remote Sensing/GIS Applications XIII, Vol. 12268, pp. 55-64). SPIE. doi:10.1117/12.2636332
  • Tucci, G., Bonora, V., Tesi, V., and Pagnini, B. (2019, December). Additive manufacturing of marble statues: 3D replicas for the preservation of the originals. IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage, 288-293.
  • Wu, P., Wang, J., and Wang, X. (2016). A critical review of the use of 3-D printing in the construction industry. Automation in Construction, 68, 21–31. doi:10.1016/J.AUTCON.2016.04.005
  • Xu, J., Ding, L., and Love, P. E. D. (2017). Digital reproduction of historical building ornamental components: From 3D scanning to 3D printing. Automation in Construction, 76, 85–96. doi:10.1016/J.AUTCON.2017.01.010
  • Yastikli, N. (2007). Documentation of cultural heritage using digital photogrammetry and laser scanning. Journal of Cultural Heritage, 8(4), 423–427. doi:10.1016/j.culher.2007.06.003
  • You, Z., and Feng, L. (2020). Integration of Industry 4.0 Related Technologies in Construction Industry: A Framework of Cyber-Physical System. IEEE Access, 8, 122908–122922. doi:10.1109/ACCESS.2020.3007206
  • Zhang, J., Poon, K. H., Kwok, H. H. L., Hou, F., and Cheng, J. C. P. (2023). Predictive control of HVAC by multiple output GRU - CFD integration approach to manage multiple IAQ for commercial heritage building preservation. Building and Environment, 245, 110802. doi:10.1016/j.buildenv.2023.110802
  • Zuo, Z., De Corte, W., Huang, Y., Chen, X., Zhang, Y., Li, J., Zhang, L., Xiao, J., Yuan, Y., Zhang, K., Zhang, L., and Mechtcherine, V. (2024). Strategies towards large-scale 3D printing without size constraints. Virtual and Physical Prototyping, 19(1). doi:10.1080/17452759.2024.2346821
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapı Teknolojisi, Yapı (Diğer), İnşaat Mühendisliği (Diğer)
Bölüm Derleme
Yazarlar

İsmail Hakkı Tarhan 0000-0002-5161-3718

Yeşim Tarhan 0000-0002-3901-9070

Gönderilme Tarihi 20 Aralık 2024
Kabul Tarihi 1 Ağustos 2025
Erken Görünüm Tarihi 11 Aralık 2025
Yayımlanma Tarihi 19 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 30 Sayı: 3

Kaynak Göster

APA Tarhan, İ. H., & Tarhan, Y. (2025). CULTURAL HERITAGE CONSERVATION IN DIGITAL ERA: A REVIEW OF DIGITAL TWIN AND 3D PRINTING APPLICATIONS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 30(3), 1027-1046. https://doi.org/10.17482/uumfd.1604638
AMA Tarhan İH, Tarhan Y. CULTURAL HERITAGE CONSERVATION IN DIGITAL ERA: A REVIEW OF DIGITAL TWIN AND 3D PRINTING APPLICATIONS. UUJFE. Aralık 2025;30(3):1027-1046. doi:10.17482/uumfd.1604638
Chicago Tarhan, İsmail Hakkı, ve Yeşim Tarhan. “CULTURAL HERITAGE CONSERVATION IN DIGITAL ERA: A REVIEW OF DIGITAL TWIN AND 3D PRINTING APPLICATIONS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30, sy. 3 (Aralık 2025): 1027-46. https://doi.org/10.17482/uumfd.1604638.
EndNote Tarhan İH, Tarhan Y (01 Aralık 2025) CULTURAL HERITAGE CONSERVATION IN DIGITAL ERA: A REVIEW OF DIGITAL TWIN AND 3D PRINTING APPLICATIONS. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30 3 1027–1046.
IEEE İ. H. Tarhan ve Y. Tarhan, “CULTURAL HERITAGE CONSERVATION IN DIGITAL ERA: A REVIEW OF DIGITAL TWIN AND 3D PRINTING APPLICATIONS”, UUJFE, c. 30, sy. 3, ss. 1027–1046, 2025, doi: 10.17482/uumfd.1604638.
ISNAD Tarhan, İsmail Hakkı - Tarhan, Yeşim. “CULTURAL HERITAGE CONSERVATION IN DIGITAL ERA: A REVIEW OF DIGITAL TWIN AND 3D PRINTING APPLICATIONS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30/3 (Aralık2025), 1027-1046. https://doi.org/10.17482/uumfd.1604638.
JAMA Tarhan İH, Tarhan Y. CULTURAL HERITAGE CONSERVATION IN DIGITAL ERA: A REVIEW OF DIGITAL TWIN AND 3D PRINTING APPLICATIONS. UUJFE. 2025;30:1027–1046.
MLA Tarhan, İsmail Hakkı ve Yeşim Tarhan. “CULTURAL HERITAGE CONSERVATION IN DIGITAL ERA: A REVIEW OF DIGITAL TWIN AND 3D PRINTING APPLICATIONS”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 30, sy. 3, 2025, ss. 1027-46, doi:10.17482/uumfd.1604638.
Vancouver Tarhan İH, Tarhan Y. CULTURAL HERITAGE CONSERVATION IN DIGITAL ERA: A REVIEW OF DIGITAL TWIN AND 3D PRINTING APPLICATIONS. UUJFE. 2025;30(3):1027-46.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr