Araştırma Makalesi
BibTex RIS Kaynak Göster

SİNTİNE SUYU ARITMA ÇAMURLARININ YÖNETİMİNDE ULTRASONİK DESTEKLİ SUSUZLAŞTIRMA: ÇEVRESEL VE EKONOMİK PERSPEKTİF

Yıl 2025, Cilt: 30 Sayı: 2, 321 - 338, 20.08.2025
https://doi.org/10.17482/uumfd.1670675

Öz

Bu çalışma, liman atık kabul tesislerinde sintine suyu arıtımı sonucunda oluşan tehlikeli nitelikteki çamurların bertaraf maliyetlerinin azaltılmasına yönelik olarak mevcut ve alternatif susuzlaştırma teknolojilerinin performans ve maliyet açısından karşılaştırmalı analizini amaçlamaktadır. Bu kapsamda, mevcut filtre pres sistemi (Senaryo 1), ultrason (US) destekli filtre pres (Senaryo 2) ve US + koagülan destekli filtre pres (Senaryo 3) olmak üzere üç farklı senaryo pilot ölçekli deneyler ile değerlendirilmiştir. Deneylerde, gerçek sintine çamuru kullanılarak 5000 mL hacminde örneklerle çalışılmış; US uygulamaları 500–2000 W aralığında ve 10–60 dakika süreyle gerçekleştirilmiş, koagülasyon aşamasında ise polialüminyum klorür, demir (III) klorür ve demülsifier gibi farklı kimyasal gruplar test edilmiştir. Elde edilen sonuçlara göre, US ve US + koagülan destekli sistemler çamur hacmini sırasıyla %10 ve %15 oranında azaltmıştır. Ancak bu fiziksel iyileşmeye rağmen, enerji ve kimyasal girdilerdeki artış nedeniyle toplam yıllık işletme maliyetleri artış göstermiştir. Senaryo 2’de yıllık maliyet, mevcut yönteme göre %69,6 oranında artarken; Senaryo 3’te bu oran %65,2 olarak hesaplanmıştır. Ayrıca, her üç senaryoda da çamur içerisindeki toplam organik karbon (TOC), kızdırma kaybı (LOI) ve su içeriği gibi parametrelerde önemli değişiklikler gözlenmiştir. Bu sonuçlar, ultrason tabanlı ön işlemlerin çamur karakteristiği üzerinde pozitif etkiler yarattığını, ancak mevcut ekonomik koşullarda bu sistemlerin tek başına bertaraf maliyetini azaltmak açısından yeterli olmadığını ortaya koymaktadır. Bu nedenle, tam ölçekli uygulamalarda sistem verimliliği, enerji maliyetleri ve olası çevresel teşvikler göz önünde bulundurularak yeniden değerlendirme yapılması önerilmektedir. Ayrıca, çamur hacmini daha da azaltabilecek hibrit teknolojilerin veya ileri susuzlaştırma tekniklerinin araştırılması, bertaraf stratejilerinin uzun vadeli sürdürülebilirliği açısından önem taşımaktadır.

Etik Beyan

Bu çalışma, etik kurul onayı gerektiren herhangi bir uygulama içermemektedir.

Destekleyen Kurum

Bursa Uludağ Üniversitesi, İBB İSTAÇ A.Ş.

Proje Numarası

FDK-2022-833

Teşekkür

Bu çalışma, FDK-2022-833 numaralı proje kapsamında desteklenmiş olup, Bursa Uludağ Üniversitesi Bilimsel Araştırma Projeleri Birimi ile çalışmanın yürütülmesine katkı sağlayan İBB İSTAÇ A.Ş.’ye destekleri için teşekkür ederiz.

Kaynakça

  • Akbarzadeh Yazdi, D., Yilmaz, A. E., Güler, S., and Komesli, O. T. (2024). The investigation of parameters affecting the treatment of synthetic bilge water by continuous electrooxidation/flotation process. Water and Environment Journal, 38(2), 292-300. https://doi.org/10.1111/WEJ.12921;REQUESTEDJOURNAL:JOURNAL:17476593;WGROUP:STRING:PUBLICATION.
  • Antes, F.G., Diehl, L. O., Pereira, J.S.F., Guimarães, R.CL., Guarnieri, R.A.,, Ferreira, B.M.S., Dressler and V.L., Flores, E.M.M. (2015). Feasibility of low frequency ultrasound for water removal from crude oil emulsions. Ultrasonics Sonochemistry, 25(1), 70-75. https://doi.org/10.1016/J.ULTSONCH.2015.01.003.
  • Duan, J., Oba, K., Hori, T., Fujiwara, T., Lackner, S., and Terada, A. (2024). Modeling of an aerobic granular sludge process for ammonia retention: Insights into granule size, dissolved oxygen concentration, and solids retention time. Journal of Environmental Chemical Engineering, 12(2), 112245. https://doi.org/10.1016/J.JECE.2024.112245.
  • Emadian, S. M., Hosseini, M., Rahimnejad, M., Shahavi, M. H., and Khoshandam, B. (2015). Treatment of a low-strength bilge water of Caspian Sea ships by HUASB technique. Ecological Engineering, 82, 272-275. https://doi.org/10.1016/J.ECOLENG.2015.04.055.
  • EU Legislation. (2019). Port reception facilities for ship waste Collecting waste from ships in ports.
  • Fellah Jahromi, A., and Elektorowicz, M. (2018). Electrokinetically assisted oil-water phase separation in oily sludge with implementing novel controller system. Journal of Hazardous Materials, 358, 434-440. https://doi.org/10.1016/J.JHAZMAT.2018.07.032.
  • Fletcher, L.M., Zaiko, A., Atalah, J., Richter, I., Dufour, C.M., Pochon, X., Wood, SA. and Hopkins, GA. (2017). Bilge water as a vector for the spread of marine pests: a morphological, metabarcoding and experimental assessment. Biological Invasions, 19(10), 2851-2867. https://doi.org/10.1007/S10530-017-1489-Y/FIGURES/6.
  • Gidudu, B., and Chirwa, E. M. N. (2022). The Role of pH, Electrodes, Surfactants, and Electrolytes in Electrokinetic Remediation of Contaminated Soil. Molecules 2022, Vol. 27, Page 7381, 27(21), 7381. https://doi.org/10.3390/MOLECULES27217381.
  • Golbabaei Kootenaei, F., Mehrdadi, N., Nabi Bidhendi, G., Amini Rad, H., Hasanlou, H., and Mahmoudnia, A. (2022). Improvement of Sludge Dewatering by Ultrasonic Pretreatment. International Journal of Environmental Research, 16(4), 1-11. https://doi.org/10.1007/S41742-022-00434-5/FIGURES/7.
  • Hu, G., Li, J., and Zeng, G. (2013). Recent development in the treatment of oily sludge from petroleum industry: A review. Journal of Hazardous Materials, 261, 470-490. https://doi.org/10.1016/J.JHAZMAT.2013.07.069.
  • Karakulski, K., and Gryta, M. (2017). The application of ultrafiltration for treatment of ships generated oily wastewater. Chemical Papers, 71(6), 1165-1173. https://doi.org/10.1007/S11696-016-0108-1/FIGURES/11.
  • Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., and Christensen, T. H. (2002). Present and long-term composition of MSW landfill leachate: A review. Critical Reviews in Environmental Science and Technology. https://doi.org/10.1080/10643380290813462.
  • Magnusson, K., Jalkanen, J. P., Johansson, L., Smailys, V., Telemo, P., and Winnes, H. (2018). Risk assessment of bilge water discharges in two Baltic shipping lanes. Marine Pollution Bulletin, 126, 575-584. https://doi.org/10.1016/j.marpolbul.2017.09.035.
  • Martínez, E. J., Rosas, J. G., Morán, A., and Gómez, X. (2015). Effect of Ultrasound Pretreatment on Sludge Digestion and Dewatering Characteristics: Application of Particle Size Analysis. Water 2015, Vol. 7, Pages 6483-6495, 7(11), 6483-6495. https://doi.org/10.3390/W7116483.
  • Myltykbayeva, Z., Mussabayeva, B., Ongarbayev, Y., Imanbayev, Y., and Muktaly, D. (2024, Ekim 1). Ultrasonic Technology for Hydrocarbon Raw Recovery and Processing. Processes. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/pr12102162.
  • Özbay, İ., Aksoy, C., Özbay, B., and Sayın, F. E. (2024). Port waste reception facilities in iron-steel industry: A case study from Türkiye. Sigma Journal of Engineering and Natural Sciences, 42(3), 845-853. https://doi.org/10.14744/sigma.2024.00000
  • Özdoğan, N., Albahnasawi, A.M., Ağır,ü H., Arslan, S, Gunaydin, O., Gürbulak, E., Eyvaz, M., Yüksel, E. (2021). Demulsifying of waste oils in a port reception facility by ultrasound with a new coagulant: techno-economic evaluation. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2021.1958956;WGROUP:STRING:PUBLICATION.
  • Özdoğan, N., Albahnasawi, A. M., Eyvaz, M., Yüksel, E., & Topaç, F. O. (2023). Improving properties of bilge water’s treatment sludge in a port reception facility by novel continuous ultrasonic reactor. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 45(4), 12295-12311. https://doi.org/10.1080/15567036.2023.2273411;SUBPAGE:STRING:ACCESS.
  • Özdoğan, N., Liman atık kabul tesislerinde sintine suyu arıtma çamuru özelliklerinin iyileştirilmesi için yeni yaklaşımlar, Doktora Tezi, Bursa Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Bursa, 2024. (t.y.).
  • Paolini, V., Petracchini, F., Segreto, M., Tomassetti, L., Naja, N., and Cecinato, A. (2018). Environmental impact of biogas: A short review of current knowledge. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 53(10), 899-906. https://doi.org/10.1080/10934529.2018.1459076.
  • Pinar, O., and Rodríguez-Couto, S. (2024). Biologically active secondary metabolites from white-rot fungi. Frontiers in Chemistry, 12, 1363354. https://doi.org/10.3389/FCHEM.2024.1363354/XML/NLM.
  • Raza, Z. A., Abid, S., and Banat, I. M. (2018, Ocak 1). Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. International Biodeterioration and Biodegradation. Elsevier Ltd. https://doi.org/10.1016/j.ibiod.2017.10.001
  • Satır, T., Alkan, G., Can, S., and Bak, O. (2007). Port reception facilities: using multi criteria decision making (ss. 25-28). Napoly, Italy: 2nd International Conference on Marine Research and Transportation, Napoli, İtalya.
  • Schaerer, L. G., Ghannam, R. B., Butler, T. M., and Techtmanna, S. M. (2019). Global comparison of the bacterial communities of bilge water, boat surfaces, and external port water. Applied and Environmental Microbiology, 85(24). https://doi.org/10.1128/AEM.01804-19.
  • TC Çevre ve Orman Bakanlığı. (2010). Atıkların düzenli depolanmasına dair yönetmelik. 26 Mart 2010 tarihli ve 27533 sayılı Resmi Gazete. Geliş tarihi gönderen https://resmigazete.gov.tr/eskiler/2010/03/20100326-13.htm.
  • Tiselius, P., and Magnusson, K. (2017). Toxicity of treated bilge water: The need for revised regulatory control. Marine Pollution Bulletin, 114(2), 860-866. https://doi.org/10.1016/j.marpolbul.2016.11.010.
  • TOCPRO. (2015). International Convention for the Prevention of Pollution from Ships (MARPOL 73/78) PRACTICAL GUIDE.
  • Tyagi, V. K., Lo, S. L., Appels, L., and Dewil, R. (2014). Ultrasonic treatment of waste sludge: A review on mechanisms and applications. Critical Reviews in Environmental Science and Technology, 44(11), 1220-1288. https://doi.org/10.1080/10643389.2013.763587.
  • Ulucan, K., and Kurt, U. (2015). Comparative study of electrochemical wastewater treatment processes for bilge water as oily wastewater: A kinetic approach. Journal of Electroanalytical Chemistry, 747, 104-111. https://doi.org/10.1016/J.JELECHEM.2015.04.005.
  • Wang, J., Lai, Y., Wang, X., and Ji, H. (2024). Advances in ultrasonic treatment of oily sludge: mechanisms, industrial applications, and integration with combined treatment technologies. Environmental Science and Pollution Research 2024 31:10, 31(10), 14466-14483. https://doi.org/10.1007/S11356-024-32089-4
  • Yang, S. S. Guo, W.Q., Chen, Y.D., Wu, Q. L, Luo, H.C., Peng, S.M., Zheng, H.S., Feng, X.C., Zhou, X., Ren N.Q. (2015). Economical evaluation of sludge reduction and characterization of effluent organic matter in an alternating aeration activated sludge system combining ozone/ultrasound pretreatment. Bioresource Technology, 177, 194-203. https://doi.org/10.1016/j.biortech.2014.11.009.
  • Zhang, G., Yang, J., Liu, H., and Zhang, J. (2009). Sludge ozonation: Disintegration, supernatant changes and mechanisms. Bioresource Technology, 100(3), 1505-1509. https://doi.org/10.1016/j.biortech.2008.08.041.

Ultrasound-Assisted Dewatering in the Management of Bilge Water Treatment Sludge: An Environmental and Economic Perspective

Yıl 2025, Cilt: 30 Sayı: 2, 321 - 338, 20.08.2025
https://doi.org/10.17482/uumfd.1670675

Öz

This study aims to conduct a comparative analysis of the performance and cost efficiency of conventional and alternative dewatering technologies for the disposal of hazardous sludge generated from bilge water treatment in port waste reception facilities. In this context, three scenarios were evaluated through pilot-scale experiments: the conventional filter press system (Scenario 1), filter press supported by ultrasound (US) (Scenario 2), and filter press supported by US and coagulants (Scenario 3). Experiments were performed using real bilge sludge samples with a volume of 5000 mL. US applications were conducted within a power range of 500–2000 W for durations of 10–60 minutes, while the coagulation phase tested different chemical groups, including polyaluminum chloride, ferric chloride, and demulsifiers. According to the results, US- and US + coagulant-assisted systems reduced sludge volume by approximately 10% and 15%, respectively. However, despite the physical improvements, the increases in energy and chemical inputs resulted in higher total annual operating costs. Compared to the conventional method, Scenario 2 exhibited a 69.6% cost increase, while Scenario 3 showed a 65.2% increase. Furthermore, significant changes were observed in parameters such as total organic carbon (TOC), loss on ignition (LOI), and moisture content across all three scenarios. These findings suggest that while ultrasonic pretreatment positively influences sludge characteristics, under current economic conditions, such systems alone are not sufficient to reduce disposal costs effectively. Therefore, for full-scale applications, it is recommended that system efficiency, energy pricing, and potential environmental incentives be taken into account. Additionally, investigating hybrid technologies or advanced dewatering techniques that could further reduce sludge volume is critical for ensuring the long-term sustainability of disposal strategies.

Proje Numarası

FDK-2022-833

Kaynakça

  • Akbarzadeh Yazdi, D., Yilmaz, A. E., Güler, S., and Komesli, O. T. (2024). The investigation of parameters affecting the treatment of synthetic bilge water by continuous electrooxidation/flotation process. Water and Environment Journal, 38(2), 292-300. https://doi.org/10.1111/WEJ.12921;REQUESTEDJOURNAL:JOURNAL:17476593;WGROUP:STRING:PUBLICATION.
  • Antes, F.G., Diehl, L. O., Pereira, J.S.F., Guimarães, R.CL., Guarnieri, R.A.,, Ferreira, B.M.S., Dressler and V.L., Flores, E.M.M. (2015). Feasibility of low frequency ultrasound for water removal from crude oil emulsions. Ultrasonics Sonochemistry, 25(1), 70-75. https://doi.org/10.1016/J.ULTSONCH.2015.01.003.
  • Duan, J., Oba, K., Hori, T., Fujiwara, T., Lackner, S., and Terada, A. (2024). Modeling of an aerobic granular sludge process for ammonia retention: Insights into granule size, dissolved oxygen concentration, and solids retention time. Journal of Environmental Chemical Engineering, 12(2), 112245. https://doi.org/10.1016/J.JECE.2024.112245.
  • Emadian, S. M., Hosseini, M., Rahimnejad, M., Shahavi, M. H., and Khoshandam, B. (2015). Treatment of a low-strength bilge water of Caspian Sea ships by HUASB technique. Ecological Engineering, 82, 272-275. https://doi.org/10.1016/J.ECOLENG.2015.04.055.
  • EU Legislation. (2019). Port reception facilities for ship waste Collecting waste from ships in ports.
  • Fellah Jahromi, A., and Elektorowicz, M. (2018). Electrokinetically assisted oil-water phase separation in oily sludge with implementing novel controller system. Journal of Hazardous Materials, 358, 434-440. https://doi.org/10.1016/J.JHAZMAT.2018.07.032.
  • Fletcher, L.M., Zaiko, A., Atalah, J., Richter, I., Dufour, C.M., Pochon, X., Wood, SA. and Hopkins, GA. (2017). Bilge water as a vector for the spread of marine pests: a morphological, metabarcoding and experimental assessment. Biological Invasions, 19(10), 2851-2867. https://doi.org/10.1007/S10530-017-1489-Y/FIGURES/6.
  • Gidudu, B., and Chirwa, E. M. N. (2022). The Role of pH, Electrodes, Surfactants, and Electrolytes in Electrokinetic Remediation of Contaminated Soil. Molecules 2022, Vol. 27, Page 7381, 27(21), 7381. https://doi.org/10.3390/MOLECULES27217381.
  • Golbabaei Kootenaei, F., Mehrdadi, N., Nabi Bidhendi, G., Amini Rad, H., Hasanlou, H., and Mahmoudnia, A. (2022). Improvement of Sludge Dewatering by Ultrasonic Pretreatment. International Journal of Environmental Research, 16(4), 1-11. https://doi.org/10.1007/S41742-022-00434-5/FIGURES/7.
  • Hu, G., Li, J., and Zeng, G. (2013). Recent development in the treatment of oily sludge from petroleum industry: A review. Journal of Hazardous Materials, 261, 470-490. https://doi.org/10.1016/J.JHAZMAT.2013.07.069.
  • Karakulski, K., and Gryta, M. (2017). The application of ultrafiltration for treatment of ships generated oily wastewater. Chemical Papers, 71(6), 1165-1173. https://doi.org/10.1007/S11696-016-0108-1/FIGURES/11.
  • Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., and Christensen, T. H. (2002). Present and long-term composition of MSW landfill leachate: A review. Critical Reviews in Environmental Science and Technology. https://doi.org/10.1080/10643380290813462.
  • Magnusson, K., Jalkanen, J. P., Johansson, L., Smailys, V., Telemo, P., and Winnes, H. (2018). Risk assessment of bilge water discharges in two Baltic shipping lanes. Marine Pollution Bulletin, 126, 575-584. https://doi.org/10.1016/j.marpolbul.2017.09.035.
  • Martínez, E. J., Rosas, J. G., Morán, A., and Gómez, X. (2015). Effect of Ultrasound Pretreatment on Sludge Digestion and Dewatering Characteristics: Application of Particle Size Analysis. Water 2015, Vol. 7, Pages 6483-6495, 7(11), 6483-6495. https://doi.org/10.3390/W7116483.
  • Myltykbayeva, Z., Mussabayeva, B., Ongarbayev, Y., Imanbayev, Y., and Muktaly, D. (2024, Ekim 1). Ultrasonic Technology for Hydrocarbon Raw Recovery and Processing. Processes. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/pr12102162.
  • Özbay, İ., Aksoy, C., Özbay, B., and Sayın, F. E. (2024). Port waste reception facilities in iron-steel industry: A case study from Türkiye. Sigma Journal of Engineering and Natural Sciences, 42(3), 845-853. https://doi.org/10.14744/sigma.2024.00000
  • Özdoğan, N., Albahnasawi, A.M., Ağır,ü H., Arslan, S, Gunaydin, O., Gürbulak, E., Eyvaz, M., Yüksel, E. (2021). Demulsifying of waste oils in a port reception facility by ultrasound with a new coagulant: techno-economic evaluation. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2021.1958956;WGROUP:STRING:PUBLICATION.
  • Özdoğan, N., Albahnasawi, A. M., Eyvaz, M., Yüksel, E., & Topaç, F. O. (2023). Improving properties of bilge water’s treatment sludge in a port reception facility by novel continuous ultrasonic reactor. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 45(4), 12295-12311. https://doi.org/10.1080/15567036.2023.2273411;SUBPAGE:STRING:ACCESS.
  • Özdoğan, N., Liman atık kabul tesislerinde sintine suyu arıtma çamuru özelliklerinin iyileştirilmesi için yeni yaklaşımlar, Doktora Tezi, Bursa Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Bursa, 2024. (t.y.).
  • Paolini, V., Petracchini, F., Segreto, M., Tomassetti, L., Naja, N., and Cecinato, A. (2018). Environmental impact of biogas: A short review of current knowledge. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 53(10), 899-906. https://doi.org/10.1080/10934529.2018.1459076.
  • Pinar, O., and Rodríguez-Couto, S. (2024). Biologically active secondary metabolites from white-rot fungi. Frontiers in Chemistry, 12, 1363354. https://doi.org/10.3389/FCHEM.2024.1363354/XML/NLM.
  • Raza, Z. A., Abid, S., and Banat, I. M. (2018, Ocak 1). Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. International Biodeterioration and Biodegradation. Elsevier Ltd. https://doi.org/10.1016/j.ibiod.2017.10.001
  • Satır, T., Alkan, G., Can, S., and Bak, O. (2007). Port reception facilities: using multi criteria decision making (ss. 25-28). Napoly, Italy: 2nd International Conference on Marine Research and Transportation, Napoli, İtalya.
  • Schaerer, L. G., Ghannam, R. B., Butler, T. M., and Techtmanna, S. M. (2019). Global comparison of the bacterial communities of bilge water, boat surfaces, and external port water. Applied and Environmental Microbiology, 85(24). https://doi.org/10.1128/AEM.01804-19.
  • TC Çevre ve Orman Bakanlığı. (2010). Atıkların düzenli depolanmasına dair yönetmelik. 26 Mart 2010 tarihli ve 27533 sayılı Resmi Gazete. Geliş tarihi gönderen https://resmigazete.gov.tr/eskiler/2010/03/20100326-13.htm.
  • Tiselius, P., and Magnusson, K. (2017). Toxicity of treated bilge water: The need for revised regulatory control. Marine Pollution Bulletin, 114(2), 860-866. https://doi.org/10.1016/j.marpolbul.2016.11.010.
  • TOCPRO. (2015). International Convention for the Prevention of Pollution from Ships (MARPOL 73/78) PRACTICAL GUIDE.
  • Tyagi, V. K., Lo, S. L., Appels, L., and Dewil, R. (2014). Ultrasonic treatment of waste sludge: A review on mechanisms and applications. Critical Reviews in Environmental Science and Technology, 44(11), 1220-1288. https://doi.org/10.1080/10643389.2013.763587.
  • Ulucan, K., and Kurt, U. (2015). Comparative study of electrochemical wastewater treatment processes for bilge water as oily wastewater: A kinetic approach. Journal of Electroanalytical Chemistry, 747, 104-111. https://doi.org/10.1016/J.JELECHEM.2015.04.005.
  • Wang, J., Lai, Y., Wang, X., and Ji, H. (2024). Advances in ultrasonic treatment of oily sludge: mechanisms, industrial applications, and integration with combined treatment technologies. Environmental Science and Pollution Research 2024 31:10, 31(10), 14466-14483. https://doi.org/10.1007/S11356-024-32089-4
  • Yang, S. S. Guo, W.Q., Chen, Y.D., Wu, Q. L, Luo, H.C., Peng, S.M., Zheng, H.S., Feng, X.C., Zhou, X., Ren N.Q. (2015). Economical evaluation of sludge reduction and characterization of effluent organic matter in an alternating aeration activated sludge system combining ozone/ultrasound pretreatment. Bioresource Technology, 177, 194-203. https://doi.org/10.1016/j.biortech.2014.11.009.
  • Zhang, G., Yang, J., Liu, H., and Zhang, J. (2009). Sludge ozonation: Disintegration, supernatant changes and mechanisms. Bioresource Technology, 100(3), 1505-1509. https://doi.org/10.1016/j.biortech.2008.08.041.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Nurullah Özdoğan 0000-0002-3357-0240

Murat Eyvaz 0000-0003-2964-9586

Fatma Olcay Topaç 0000-0002-6364-4087

Proje Numarası FDK-2022-833
Gönderilme Tarihi 6 Nisan 2025
Kabul Tarihi 2 Haziran 2025
Erken Görünüm Tarihi 30 Temmuz 2025
Yayımlanma Tarihi 20 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 30 Sayı: 2

Kaynak Göster

APA Özdoğan, N., Eyvaz, M., & Topaç, F. O. (2025). SİNTİNE SUYU ARITMA ÇAMURLARININ YÖNETİMİNDE ULTRASONİK DESTEKLİ SUSUZLAŞTIRMA: ÇEVRESEL VE EKONOMİK PERSPEKTİF. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 30(2), 321-338. https://doi.org/10.17482/uumfd.1670675
AMA Özdoğan N, Eyvaz M, Topaç FO. SİNTİNE SUYU ARITMA ÇAMURLARININ YÖNETİMİNDE ULTRASONİK DESTEKLİ SUSUZLAŞTIRMA: ÇEVRESEL VE EKONOMİK PERSPEKTİF. UUJFE. Ağustos 2025;30(2):321-338. doi:10.17482/uumfd.1670675
Chicago Özdoğan, Nurullah, Murat Eyvaz, ve Fatma Olcay Topaç. “SİNTİNE SUYU ARITMA ÇAMURLARININ YÖNETİMİNDE ULTRASONİK DESTEKLİ SUSUZLAŞTIRMA: ÇEVRESEL VE EKONOMİK PERSPEKTİF”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30, sy. 2 (Ağustos 2025): 321-38. https://doi.org/10.17482/uumfd.1670675.
EndNote Özdoğan N, Eyvaz M, Topaç FO (01 Ağustos 2025) SİNTİNE SUYU ARITMA ÇAMURLARININ YÖNETİMİNDE ULTRASONİK DESTEKLİ SUSUZLAŞTIRMA: ÇEVRESEL VE EKONOMİK PERSPEKTİF. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30 2 321–338.
IEEE N. Özdoğan, M. Eyvaz, ve F. O. Topaç, “SİNTİNE SUYU ARITMA ÇAMURLARININ YÖNETİMİNDE ULTRASONİK DESTEKLİ SUSUZLAŞTIRMA: ÇEVRESEL VE EKONOMİK PERSPEKTİF”, UUJFE, c. 30, sy. 2, ss. 321–338, 2025, doi: 10.17482/uumfd.1670675.
ISNAD Özdoğan, Nurullah vd. “SİNTİNE SUYU ARITMA ÇAMURLARININ YÖNETİMİNDE ULTRASONİK DESTEKLİ SUSUZLAŞTIRMA: ÇEVRESEL VE EKONOMİK PERSPEKTİF”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 30/2 (Ağustos2025), 321-338. https://doi.org/10.17482/uumfd.1670675.
JAMA Özdoğan N, Eyvaz M, Topaç FO. SİNTİNE SUYU ARITMA ÇAMURLARININ YÖNETİMİNDE ULTRASONİK DESTEKLİ SUSUZLAŞTIRMA: ÇEVRESEL VE EKONOMİK PERSPEKTİF. UUJFE. 2025;30:321–338.
MLA Özdoğan, Nurullah vd. “SİNTİNE SUYU ARITMA ÇAMURLARININ YÖNETİMİNDE ULTRASONİK DESTEKLİ SUSUZLAŞTIRMA: ÇEVRESEL VE EKONOMİK PERSPEKTİF”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 30, sy. 2, 2025, ss. 321-38, doi:10.17482/uumfd.1670675.
Vancouver Özdoğan N, Eyvaz M, Topaç FO. SİNTİNE SUYU ARITMA ÇAMURLARININ YÖNETİMİNDE ULTRASONİK DESTEKLİ SUSUZLAŞTIRMA: ÇEVRESEL VE EKONOMİK PERSPEKTİF. UUJFE. 2025;30(2):321-38.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr