Araştırma Makalesi
BibTex RIS Kaynak Göster

The effects of elastic supports on nonlinear vibrations of a slightly curved beam

Yıl 2018, , 255 - 274, 31.08.2018
https://doi.org/10.17482/uumfd.315108

Öz

In this study, nonlinear vibrations of a slightly
curved beam having arbitrary rising function are handled. The beam is
restricted in longitudinal direction using elastic supports on both ends.
Sag-to-span ratio of the beam, which is assumed to have sinusoidal curvature
function at the beginning, is taken as 1/10. Beam being of Euler-Bernoulli type
rests on Winkler elastic foundation and carries an arbitrarily placed
concentrated mass. Equations of motion are obtained by using Hamilton
Principle. Cubic and quadratic nonlinear terms have been aroused at the
mathematical model because of the foundation and the beam's elongation. The
Method of Multiple Scales (MMS), a perturbation technique, is used to solve the
equations of motion analytically. The primary resonance case is taken into
account during steady-state vibrations. The natural frequencies are obtained
exactly for different control parameters such as supports' types, locations of
the masses and linear coefficient of foundation. Frequency-amplitude and frequency-response
graphs are drawn by using amplitude-phase modulation equations.

Kaynakça

  • Abe, A. (2006) On non-linear analyses of continuous systems with quadratic and cubic non-linearities, Non-linear Mechanics, 41, 873-879.
  • Adessi, D., Lacarbonara, W. and Paolone, A. (2005) Free in-plane vibrations of highly buckled beams carrying a lumped mass, Acta Mechanica. doi: 10.1007/s00707-005-0259-6
  • Bayat, R., Jafari, A.A. and Rahmani, O. (2015) Analytical solution for free vibration of laminated curved beam with magnetostrictive Layers, International Journal of Applied Mechanics, 7(3). doi: 10.1142/S1758825115500507
  • Carrera, E., Giunta, G. and Petrolo, M. (2011) Beam structures: Classical and advanced theories, Wiley.
  • Chen, L.W., Shen, G.S. (1998) Vibration and buckling of initially stressed curved beams, Journal of Sound and Vibrations, 215 (3), 511-526.
  • Chidamparam, P., Leissa,A.W. (1993) Vibrations of planar curved beams, rings, and arches, Applied Mechanics Reviews, 46(9), 467-483. doi:10.1115/1.3120374
  • Ecsedi, I. and Dluhi, K. (2005) A linear model for the static and dynamic analysis of non-homogeneous curved beams, Applied Mathematical Modelling, 29, 1211-1231.
  • Ghayesh, M.H. (2012) Nonlinear dynamic response of a simply supported Kelvin-Voigt viscoelastic beam, additionally supported by a nonlinear spring, Nonlinear Analysis Real World Applications, 13, 1319-1333.
  • Goncalves, P.J.P., Brennan, M.J. and Elliott, S.J. (2007) Numerical evaluation of high-order modes of vibration in uniform Euler–Bernoulli beams, Journal of Sound and Vibrations, 301, 1035–1039.
  • Hajianmaleki, M. and Qatu, M.S. (2013) Vibrations of straight and curved composite beams: A review, Composite Structures, 100, 218-232.
  • Huang, D.T., Chen, D.K. (2007) Dynamic characteristics of a structure with multiple attachments: A receptance approach, Journal of Sound and Vibrations, 307, 941-952.
  • Jin, G., Ye ,T. and Su, Z. (2017) Elasticity solution for vibration of 2-D curved beams with variable curvatures using a spectral-sampling surface method, International Journal of Numerical Methods in Engineering. doi: 10.1002/nme.5501
  • Kelly, S.G. and Srinivas, S. (2009) Free vibrations of elastically connected stretched beams, Journal of Sound and Vibrations, 326, 883-893.
  • Kiani, K. (2010) A meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect, International Journal of Mechanical Sciences, 52, 1343–1356.
  • Kil, H.-G., Seo, S., Hong, S.-Y., Lee, C. (2014) Energy flow models for the out-of-plane vibration of horizontally curved beams, The Journal of the Acoustical Society of America, 136, 2141, doi: 10.1121/1.4899727
  • Kumar, A., Patel, B.P. (2016) Experimental study on nonlinear vibrations of fixed-fixed curved beams, Curved and Layered Structures, 3(1),189–201.
  • Lacarbonara, W., Arafat, H. N., Nayfeh, A. H. (2005) Nonlinear interactions in imperfect beams at veering, Non-Linear Mechanics, 40, 987-1003.
  • Lee, B.K., Park, K.K., Lee, T.E., Yoon, H.M.(2014) Free vibrations of horizontally curved beams with constant volume, KSCE Journal of Civil Engineering, 18(1), 199-212. doi:10.1007/s12205-014-0356-y
  • Lee, Y.Y., Poon, W.Y. and Ng, C.F. (2006) Anti-symmetric mode vibration of a curved beam subject to auto parametric excitation, Journal of Sound and Vibrations, 290, 48-64.
  • Librescu, L. and Song, O. (2006) Thin-walled composite beams: Theory and application (Solid Mechanics and Its Applications), Springer.
  • Lin, S.M.(1998) Exact solutions for extensible circular curved Timoshenko beams with nonhomogeneous elastic boundary conditions, Acta Mechanica, 130, 67-79.
  • Leissa, A.W. and Qatu, M.S.(2011) Vibrations of Continuous Systems, McGraw-Hill.
  • Lestari, W. and Hanagud, S.(2001) Nonlinear vibration of buckled beams: some exact solutions, International Journal of Solids and Structures, 38, 4741-4757.
  • Motaghian, S.E., Mofid, M. and Alanjari, P. (2011) Exact solution to free vibration of beams partially supported by an elastic foundation, Scientia Iranica A., 18 (4), 861-866.
  • Nayfeh, A.H. and Mook, D.T. (1979), Nonlinear Oscillations, Willey, New-York.
  • Nayfeh, A.H., Lacarbonara, W. and Chin, C.-H. (1999) Nonlinear normal modes of buckled beams:Three-to-one and one-to-one Internal Resonances, Nonlinear Dynamics, 18,253-273.
  • Oz, H.R., Pakdemirli, M., Ozkaya, E. and Yılmaz, M. (1998) Nonlinear vibrations of a slightly curved beam resting on a nonlinear elastic foundation, Journal of Sound and Vibrations, 212(2), 295-309.
  • Ozkaya, E., Pakdemirli, M. and Oz, H.R. (1997) Nonlinear vibrations of beam-mass system under different boundary conditions,Journal of Sound and Vibrations, 199(4), 679-696.
  • Ozkaya, E., Sarigul, M. and Boyaci H. (2009) Nonlinear transverse vibrations of a slightly curved beam carrying a concentrated mass, Acta Mechanica Sinica, 25(6), 871-882.
  • Ozkaya, E., Sarigul, M. and Boyaci H. (2010) Nonlinear transverse vibrations of a slightly curved beam carrying multiple concentrated masses: primary resonance, 2nd International Symposium on Sustainable Development, Sarajevo, Bosnia and Herzegovina.
  • Ozkaya, E., Sarigül, M. and Boyaci, H. (2016) Nonlinear transverse vibrations of a slightly curved beam resting on multiple springs, International Journal of Acoustic and Vibrations, 21(4), 379-391.
  • Ozyigit, H.A., Yetmez, M.,and Uzun, U. (2017) Out-of-Plane Vibration of Curved Uniform and Tapered Beams with Additional Mass, Mathematical Problems in Engineering, Article ID 8178703, doi: 10.1155/2017/8178703
  • Rao, G.V., Saheb, K.M. and Janardhan, G.R.(2006) Fundamental frequency for large amplitude vibrations of uniform timoshenko beams with central point concentrated mass using coupled displacement field method, Journal of Sound and Vibrations, 298, 221-232.
  • Rao, S.S.(2007) Vibration of Continuous Systems, New Jersey: John Wiley & Sons.
  • Reis,M. and Iida, F. (2014) An energy-efficient hopping robot based on free vibration of a curved beam, IEEE/ASME Transactions on Mechatronics, 19(1), 300-311. doi: 10.1109/TMECH.2012.2234759
  • Rehfield, L.W. (1974) Nonlinear flexural oscillation of shallow arches, American Institute of Aeronautics and Astronautics Journal, 12, 91-93.
  • Sari, G. and Pakdemirli, M. (2013) Vibrations of a slightly curved microbeam resting on an elastic foundation with nonideal boundary conditions, Mathematical Problems in Engineering. doi: 10.1155/2013/736148
  • Sathyamoorthy, M. (1997) Nonlinear Analysis of Structures, CRC Press.
  • Sato, M., Kanie, S. and Mikami, T. (2008) Mathematical analogy of a beam on elastic supports as a beam on elastic foundation, Applied Mathematical Modelling, 32, 688-699.
  • Shi, Z., Yao, X. , Pang, F., and Wang, Q. (2017) An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with arbitrary boundary conditions, Science Reports; 7: 12909.
  • Singh, P.N., Ali, S.M.J. (1975) Nonlinear vibration of a moderately thick shallow arches, Journal of Sound and Vibrations, 41, 275-282.
  • Tadi Beni, Y., Koochi, A. and Abadyan, M. (2011) Theoretical study of the effect of Casimir force, elastic boundary conditions and size dependency on the pull-in instability of beam-type NEMS, Physica E.
  • Tien, W.M., Sri Namachchivaya, N. and Bajaj, A.K. (1994) Non-linear dynamics of a shallow arch under periodic excitation-I. 1:2 internal resonance, International Journal of Mechanics, 29, 349-366.
  • Ugural, A.C. (2010), Stresses in Beams, Plates, and Shells, 3rd Edition ,CRC Press.
  • Wang, D., Zhijun, S. ,Wei, L., Meilong, C., Siyuan, L., Shidan, L. (2016) In-plane vibration analysis of phononic crystal curved beams,Noise Control Engineering Journal, 64(5), 658-667
  • Wang, L., Ma, J., Li, L., and Peng, J. (2013) Three-to-one resonant responses of inextensional beams on the elastic foundation, Journal of Vibration and Acoustics, 135(1). doi: 10.1115/1.40079
  • Wiedemann, S.M.(2007) Natural frequencies and mode shapes of arbitrary beam structures with arbitrary boundary conditions, Journal of Sound and Vibrations, 300, 280–291.
  • Wu, J.-S., Chen, C.-T. (2008) A continuous-mass TMM for free vibration analysis of a non-uniform beam with various boundary conditions and carrying multiple concentrated elements, Journal of Sound and Vibrations, 311, 1420-1430.
  • Wu, J.-S. and Chiang, L.-K. (2004) Dynamic analysis of an arch due to a moving load, Journal of Sound and Vibration, 269, 511–534
  • Xiuchang, H., Hongxing, H., Yu, W. and Zhipeng, D. (2013) Research on wave mode conversion of curved beam structures by the Wave approach, Journal of Vibration and Acoustics, 135 (3). doi:10.1115/1.4023817

ELASTİK MESNETLERİN HAFİFÇE EĞRİ BİR KİRİŞİN NONLİNEER TİTREŞİMLERİNE ETKİLERİ

Yıl 2018, , 255 - 274, 31.08.2018
https://doi.org/10.17482/uumfd.315108

Öz

 Bu çalışmada, keyfi başlangıç
fonksiyonuna sahip hafifçe eğri bir kirişin lineer olmayan titreşimleri ele
alınmaktadır. Her iki ucundan elastik mesnetler kullanılarak kiriş, boyuna
yönünde kısıtlanmıştır. Başlangıçta sinüsoidal eğrilik fonksiyonuna sahip olduğu
varsayılan kiriş için, ulaşılan eğrilik yüksekliğinin izdüşüme oranı 1/10
alınmaktadır. Euler-Bernoulli tipinde olan kiriş Winkler elastik zemini üzerine
oturmakta ve üzerinde keyfi olarak yerleştirilmiş kütleler taşımaktadır.
Hamilton prensibi kullanılarak hareket denklemleri elde edilmiştir. Zeminden ve
kiriş uzamasından dolayı matematiksel modelde kübik ve quadratik lineer olmayan
terimler ortaya çıkmaktadır. Hareket denklemlerini analitik olarak çözümlemek
için bir Pertürbasyon tekniği olan Çok Ölçekli Metod(MMS) kullanılmaktadır.
Geçici-durum titreşimleri süresince baskın rezonans durumu dikkate
alınmaktadır. Mesnetlerin tipleri, kütlelerin konumları ve zeminin lineer
bileşeni gibi farklı mukayese parametreleri için doğal frekanslar elde edilmektedir.
Genlik-faz modülasyon denklemleri kullanılarak frekans-genlik ve frekans-cevap
grafikleri çizilmiştir. 

Kaynakça

  • Abe, A. (2006) On non-linear analyses of continuous systems with quadratic and cubic non-linearities, Non-linear Mechanics, 41, 873-879.
  • Adessi, D., Lacarbonara, W. and Paolone, A. (2005) Free in-plane vibrations of highly buckled beams carrying a lumped mass, Acta Mechanica. doi: 10.1007/s00707-005-0259-6
  • Bayat, R., Jafari, A.A. and Rahmani, O. (2015) Analytical solution for free vibration of laminated curved beam with magnetostrictive Layers, International Journal of Applied Mechanics, 7(3). doi: 10.1142/S1758825115500507
  • Carrera, E., Giunta, G. and Petrolo, M. (2011) Beam structures: Classical and advanced theories, Wiley.
  • Chen, L.W., Shen, G.S. (1998) Vibration and buckling of initially stressed curved beams, Journal of Sound and Vibrations, 215 (3), 511-526.
  • Chidamparam, P., Leissa,A.W. (1993) Vibrations of planar curved beams, rings, and arches, Applied Mechanics Reviews, 46(9), 467-483. doi:10.1115/1.3120374
  • Ecsedi, I. and Dluhi, K. (2005) A linear model for the static and dynamic analysis of non-homogeneous curved beams, Applied Mathematical Modelling, 29, 1211-1231.
  • Ghayesh, M.H. (2012) Nonlinear dynamic response of a simply supported Kelvin-Voigt viscoelastic beam, additionally supported by a nonlinear spring, Nonlinear Analysis Real World Applications, 13, 1319-1333.
  • Goncalves, P.J.P., Brennan, M.J. and Elliott, S.J. (2007) Numerical evaluation of high-order modes of vibration in uniform Euler–Bernoulli beams, Journal of Sound and Vibrations, 301, 1035–1039.
  • Hajianmaleki, M. and Qatu, M.S. (2013) Vibrations of straight and curved composite beams: A review, Composite Structures, 100, 218-232.
  • Huang, D.T., Chen, D.K. (2007) Dynamic characteristics of a structure with multiple attachments: A receptance approach, Journal of Sound and Vibrations, 307, 941-952.
  • Jin, G., Ye ,T. and Su, Z. (2017) Elasticity solution for vibration of 2-D curved beams with variable curvatures using a spectral-sampling surface method, International Journal of Numerical Methods in Engineering. doi: 10.1002/nme.5501
  • Kelly, S.G. and Srinivas, S. (2009) Free vibrations of elastically connected stretched beams, Journal of Sound and Vibrations, 326, 883-893.
  • Kiani, K. (2010) A meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect, International Journal of Mechanical Sciences, 52, 1343–1356.
  • Kil, H.-G., Seo, S., Hong, S.-Y., Lee, C. (2014) Energy flow models for the out-of-plane vibration of horizontally curved beams, The Journal of the Acoustical Society of America, 136, 2141, doi: 10.1121/1.4899727
  • Kumar, A., Patel, B.P. (2016) Experimental study on nonlinear vibrations of fixed-fixed curved beams, Curved and Layered Structures, 3(1),189–201.
  • Lacarbonara, W., Arafat, H. N., Nayfeh, A. H. (2005) Nonlinear interactions in imperfect beams at veering, Non-Linear Mechanics, 40, 987-1003.
  • Lee, B.K., Park, K.K., Lee, T.E., Yoon, H.M.(2014) Free vibrations of horizontally curved beams with constant volume, KSCE Journal of Civil Engineering, 18(1), 199-212. doi:10.1007/s12205-014-0356-y
  • Lee, Y.Y., Poon, W.Y. and Ng, C.F. (2006) Anti-symmetric mode vibration of a curved beam subject to auto parametric excitation, Journal of Sound and Vibrations, 290, 48-64.
  • Librescu, L. and Song, O. (2006) Thin-walled composite beams: Theory and application (Solid Mechanics and Its Applications), Springer.
  • Lin, S.M.(1998) Exact solutions for extensible circular curved Timoshenko beams with nonhomogeneous elastic boundary conditions, Acta Mechanica, 130, 67-79.
  • Leissa, A.W. and Qatu, M.S.(2011) Vibrations of Continuous Systems, McGraw-Hill.
  • Lestari, W. and Hanagud, S.(2001) Nonlinear vibration of buckled beams: some exact solutions, International Journal of Solids and Structures, 38, 4741-4757.
  • Motaghian, S.E., Mofid, M. and Alanjari, P. (2011) Exact solution to free vibration of beams partially supported by an elastic foundation, Scientia Iranica A., 18 (4), 861-866.
  • Nayfeh, A.H. and Mook, D.T. (1979), Nonlinear Oscillations, Willey, New-York.
  • Nayfeh, A.H., Lacarbonara, W. and Chin, C.-H. (1999) Nonlinear normal modes of buckled beams:Three-to-one and one-to-one Internal Resonances, Nonlinear Dynamics, 18,253-273.
  • Oz, H.R., Pakdemirli, M., Ozkaya, E. and Yılmaz, M. (1998) Nonlinear vibrations of a slightly curved beam resting on a nonlinear elastic foundation, Journal of Sound and Vibrations, 212(2), 295-309.
  • Ozkaya, E., Pakdemirli, M. and Oz, H.R. (1997) Nonlinear vibrations of beam-mass system under different boundary conditions,Journal of Sound and Vibrations, 199(4), 679-696.
  • Ozkaya, E., Sarigul, M. and Boyaci H. (2009) Nonlinear transverse vibrations of a slightly curved beam carrying a concentrated mass, Acta Mechanica Sinica, 25(6), 871-882.
  • Ozkaya, E., Sarigul, M. and Boyaci H. (2010) Nonlinear transverse vibrations of a slightly curved beam carrying multiple concentrated masses: primary resonance, 2nd International Symposium on Sustainable Development, Sarajevo, Bosnia and Herzegovina.
  • Ozkaya, E., Sarigül, M. and Boyaci, H. (2016) Nonlinear transverse vibrations of a slightly curved beam resting on multiple springs, International Journal of Acoustic and Vibrations, 21(4), 379-391.
  • Ozyigit, H.A., Yetmez, M.,and Uzun, U. (2017) Out-of-Plane Vibration of Curved Uniform and Tapered Beams with Additional Mass, Mathematical Problems in Engineering, Article ID 8178703, doi: 10.1155/2017/8178703
  • Rao, G.V., Saheb, K.M. and Janardhan, G.R.(2006) Fundamental frequency for large amplitude vibrations of uniform timoshenko beams with central point concentrated mass using coupled displacement field method, Journal of Sound and Vibrations, 298, 221-232.
  • Rao, S.S.(2007) Vibration of Continuous Systems, New Jersey: John Wiley & Sons.
  • Reis,M. and Iida, F. (2014) An energy-efficient hopping robot based on free vibration of a curved beam, IEEE/ASME Transactions on Mechatronics, 19(1), 300-311. doi: 10.1109/TMECH.2012.2234759
  • Rehfield, L.W. (1974) Nonlinear flexural oscillation of shallow arches, American Institute of Aeronautics and Astronautics Journal, 12, 91-93.
  • Sari, G. and Pakdemirli, M. (2013) Vibrations of a slightly curved microbeam resting on an elastic foundation with nonideal boundary conditions, Mathematical Problems in Engineering. doi: 10.1155/2013/736148
  • Sathyamoorthy, M. (1997) Nonlinear Analysis of Structures, CRC Press.
  • Sato, M., Kanie, S. and Mikami, T. (2008) Mathematical analogy of a beam on elastic supports as a beam on elastic foundation, Applied Mathematical Modelling, 32, 688-699.
  • Shi, Z., Yao, X. , Pang, F., and Wang, Q. (2017) An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with arbitrary boundary conditions, Science Reports; 7: 12909.
  • Singh, P.N., Ali, S.M.J. (1975) Nonlinear vibration of a moderately thick shallow arches, Journal of Sound and Vibrations, 41, 275-282.
  • Tadi Beni, Y., Koochi, A. and Abadyan, M. (2011) Theoretical study of the effect of Casimir force, elastic boundary conditions and size dependency on the pull-in instability of beam-type NEMS, Physica E.
  • Tien, W.M., Sri Namachchivaya, N. and Bajaj, A.K. (1994) Non-linear dynamics of a shallow arch under periodic excitation-I. 1:2 internal resonance, International Journal of Mechanics, 29, 349-366.
  • Ugural, A.C. (2010), Stresses in Beams, Plates, and Shells, 3rd Edition ,CRC Press.
  • Wang, D., Zhijun, S. ,Wei, L., Meilong, C., Siyuan, L., Shidan, L. (2016) In-plane vibration analysis of phononic crystal curved beams,Noise Control Engineering Journal, 64(5), 658-667
  • Wang, L., Ma, J., Li, L., and Peng, J. (2013) Three-to-one resonant responses of inextensional beams on the elastic foundation, Journal of Vibration and Acoustics, 135(1). doi: 10.1115/1.40079
  • Wiedemann, S.M.(2007) Natural frequencies and mode shapes of arbitrary beam structures with arbitrary boundary conditions, Journal of Sound and Vibrations, 300, 280–291.
  • Wu, J.-S., Chen, C.-T. (2008) A continuous-mass TMM for free vibration analysis of a non-uniform beam with various boundary conditions and carrying multiple concentrated elements, Journal of Sound and Vibrations, 311, 1420-1430.
  • Wu, J.-S. and Chiang, L.-K. (2004) Dynamic analysis of an arch due to a moving load, Journal of Sound and Vibration, 269, 511–534
  • Xiuchang, H., Hongxing, H., Yu, W. and Zhipeng, D. (2013) Research on wave mode conversion of curved beam structures by the Wave approach, Journal of Vibration and Acoustics, 135 (3). doi:10.1115/1.4023817
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Murat Sarıgül

Yayımlanma Tarihi 31 Ağustos 2018
Gönderilme Tarihi 20 Mayıs 2017
Kabul Tarihi 2 Temmuz 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Sarıgül, M. (2018). The effects of elastic supports on nonlinear vibrations of a slightly curved beam. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23(2), 255-274. https://doi.org/10.17482/uumfd.315108
AMA Sarıgül M. The effects of elastic supports on nonlinear vibrations of a slightly curved beam. UUJFE. Ağustos 2018;23(2):255-274. doi:10.17482/uumfd.315108
Chicago Sarıgül, Murat. “The Effects of Elastic Supports on Nonlinear Vibrations of a Slightly Curved Beam”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23, sy. 2 (Ağustos 2018): 255-74. https://doi.org/10.17482/uumfd.315108.
EndNote Sarıgül M (01 Ağustos 2018) The effects of elastic supports on nonlinear vibrations of a slightly curved beam. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23 2 255–274.
IEEE M. Sarıgül, “The effects of elastic supports on nonlinear vibrations of a slightly curved beam”, UUJFE, c. 23, sy. 2, ss. 255–274, 2018, doi: 10.17482/uumfd.315108.
ISNAD Sarıgül, Murat. “The Effects of Elastic Supports on Nonlinear Vibrations of a Slightly Curved Beam”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23/2 (Ağustos 2018), 255-274. https://doi.org/10.17482/uumfd.315108.
JAMA Sarıgül M. The effects of elastic supports on nonlinear vibrations of a slightly curved beam. UUJFE. 2018;23:255–274.
MLA Sarıgül, Murat. “The Effects of Elastic Supports on Nonlinear Vibrations of a Slightly Curved Beam”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 23, sy. 2, 2018, ss. 255-74, doi:10.17482/uumfd.315108.
Vancouver Sarıgül M. The effects of elastic supports on nonlinear vibrations of a slightly curved beam. UUJFE. 2018;23(2):255-74.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr