In Bu çalışmada hali hazırda farklı sistemler için kullanılmakta olan
hibrit yapıdaki doğrusal adım motorunun aktif süspansiyon sisteminde
kullanılması incelenmiştir. Süspansiyon sistemi için doğrusal adım motoru tasarlanmış
ve modellenmiştir. Modelleme sonuçlarına göre motorun akım ve mıknatıs itme
kuvveti karakteristiği belirlenerek, bu ilişki kazanç elemanı şeklinde çeyrek
taşıt modeli için hazırlanan MATLAB/Simulink modeline aktarılmıştır. Sistemin
davranışı zaman ve frekans cevapları elde edilerek pasif ve aktif süspansiyon
sistemleri için karşılaştırmalı olarak incelenmiştir. Elde edilen sonuçlardan
öngörülen aktif süspansiyon taşıt sisteminin titreşim sönümleme performansı
açısından pasif süspansiyon sistemine göre daha iyi yanıt verdiği gözlemlenmiştir.
Abraham , J. (1997) Modeling and simulation of a linear motor system, Massachusetts Institute of Technology, M.Sc. Thesis. Massachusetts.
Abreu, J.A. (1993) Dynamics modeling and analysis of a sawyer linear stepper motor, Massachusetts Institute of Technology, B.Sc. Thesis. Massachusetts.
Allen, J.A. (2008) Design of active suspension control based upon use of tubular linear motor and quarter-car model, Texas A&M University, Mechanical Engineering Department, M.Sc. Thesis. Texas.
Aly, A.A. and Salem F.A. (2013) Vehicle suspension systems control: A Review, International Journal of Control, Automation and Systems, 2(2), 46-54.
Atef, M.M., Soliman, M.S. and Sharkawy, A.B. (2015) Vehicle active suspension system performance using different control strategies, International Journal of Engineering Trends and Technology (IJETT), 30(2), 106-114. doi: 10.14445/22315381/IJETT-V30P220
Delen, G. ve Taşkın, Y. (2013) İki serbestlik dereceli aktif süspansiyon sistemi için benzetim modeli doğrulaması ve PID kontrolcü uygulaması, Türkiye Otomatik Kontrol Ulusal Toplantısı, Malatya, 811-816.
Dridi, S., Salem, I.B. and Amraoui, L.E. (2017) Bond Graph modeling of automotive suspension system using a linear actuator, International Journal of Scientific & Engineering Research, 8(1), 1837-1844.
Ebrahimi, B., Bolandhemmat, H., Khamesee, M.B. and Golnaraghi, F. (2011) A hybrid electromagnetic shock absorber for active vehicle suspension systems, Vehicle System Dynamics, 49(1–2), 311–332. doi: 10.1080/00423111003602400
Giears, J.F. and Piech, Z.J. (2000) Linear Synchronous Motors, CRC Press, USA.
Hyniova, K. (2016) On testing of vehicle active suspension robust control on an one-quarter-car test stand, International Journal of Mechanical Engineering, 1, 1-7.
Jiongkang, L. (2013) Design and advanced control of active suspension system with linear actuator, Hong Kong Polytechnic University, Ph.D Thesis, Hong Kong.
Kabil , S.G. (2012) Alternative control strategies for an electromechanical active suspension system, Istanbul Technical University, M.Sc. Thesis, İstanbul.
Kamış Kocabıçak, Z. ve Topçu E.E. (2018) Aktif süspansiyon sistemlerinde doğrusal adım motorunun uygulanabilirliğinin araştırılması, 9th International Automotive Technologies Congress, Bursa, 1097-1105.
Kashem, S. B.A., Chowdhury, M.A., Choudhury, T.A., Shabrin, N., Ektesabi, M. and Nagarajah, R. (2015) Study and comparison on linear electromagnetic shock absorbers among other available intelligent vibration dampers, International Journal of Science and Research, 4(6), 2394-2401.
Klimenko, Y.I., Batishchev, D.V., Pavlenko, A.V. and Grinchenkov, P. (2015) Design of a linear electromechanical actuator with an active vehicle suspension system”, Russian Electrical Engineering, 86(10), 588–593. doi: 10.3103/S1068371215100090
Kruczek A., Stříbrský A., Honců J. and Hlinovský M. (2011) Active suspension -case study on robust control, International Journal of Computer, Electrical, Automation, Control and Information Engineering, 5(6), 605-610.
Kruczek, A. and Stříbrský, A. (2004) H control of automotive active suspension with linear motor, IFAC Proceedings, 37(14), 365-370. doi: 10.1016/S1474-6670(17)31131-X
Lee, S. and Kim, W. (2010) Active suspension control with direct-drive tubular linear brushless permanent-magnet motor, IEEE Transactions on Vehicular Technology, 18(4), 859-870. doi: 10.1109/TCST.2009.2030413
Loránd, S., Viorel, I.A. and János, J. (2015) Dynamic simulation of a novel hybrid linear stepper motor by means of MATLAB/Simulink, https://www.researchgate.net/publication/239565131. Erişim tarihi: 23.08.2018
Martins, I., Esteve, J., Marques, G. D. and Silva, F.P., (2006) Permanent-magnets linear actuators applicability in automobile active suspensions, IEEE Transactions on Vehicular Technology, 55(1), 86-94. doi: 10.1109/TVT.2005.861167
Onat, C., Yüksek, İ. ve Sivrioğlu, S. (2006) Bir aktif süspansiyon sistemi için H_∞ kontrol temeline dayalı doğrusal olmayan kontrolcü tasarımı, Mühendis ve Makine, 47(552), 36-43.
Otten, G., Vries, T.J.A., Amerongen, J., Rankers, A.M.R. and Gaal, E.W. (1997) Linear motor motion control using a learning feedforward controller, IEEE/ASME Transactions on Mechatronics, 2(3), 179-187. doi: 10.1109/3516.622970
Sun, W., Zhao, Y., Li, J., Zhang, L. and Gao, H. (2012) Active suspension control with frequency band constraints and actuator input delay, IEEE Transactions on Industrial Electronics, 59(1), 530-537. doi: 10.1109/TIE.2011.2134057
Thul, A., Eggers, D., Riemer, B. and Hameyer, K. (2015) Active suspension system with integrated electrical tubular linear motor: design, control strategy and validation, Archives of Electrical Engineering, 64(4), 605-616. doi: 10.1515/aee-2015-0045
Ting, C. S. and Chang Y. N., (2013) Observer-based backstepping control of linear stepping motor, Control Engineering Practice, 21, 930-939. doi: 10.1016/j.conengprac.2013.02.018
Topçu, E. E., Yüksel, İ. ve Kamış, Z. (2002) Taşıt Süspansiyon Sistemlerindeki Gelişmeler, 2. Otomotiv Teknolojileri Kongresi, Bursa, 313-321.
Van der Sande T.P.J., Gysen, B.L.J., Besselink, I.J.M. , Paulides, J.J.H. , Lomonova, E.A. and Nijmeijer, H. (2013) A robust control of an electromagnetic active suspension system: Simulations and measurements, Mechatronics 23, 204–212. doi: 10.1016/j.mechatronics.2012.07.002
Wang, J., Wang, W. and Atallah, K. (2011) A linear permanent-magnet motor for active vehicle suspension, IEEE Transactions on Vehicular Technology, 60(1), 55-63. doi: 10.1109/TVT.2010.2089546
The Design and Modeling of an Active Suspension System with Linear Stepping Motor
In this study, using of the hybrid linear stepping motor structure which is currently being used for different systems in the active suspension system is investigated theoretically. The linear stepper motor for the suspension system is designed and modeled. Current and magnet thrust force characteristics were determined and this relation was transferred to MATLAB / Simulink model which is prepared for quarter model as a gain element. The behavior of the system has been examined comparatively for passive and active suspension systems by obtaining time and frequency responses. From results, it has been observed that the active suspension vehicle system showed better vibration damping performance than the passive suspension system.
Abraham , J. (1997) Modeling and simulation of a linear motor system, Massachusetts Institute of Technology, M.Sc. Thesis. Massachusetts.
Abreu, J.A. (1993) Dynamics modeling and analysis of a sawyer linear stepper motor, Massachusetts Institute of Technology, B.Sc. Thesis. Massachusetts.
Allen, J.A. (2008) Design of active suspension control based upon use of tubular linear motor and quarter-car model, Texas A&M University, Mechanical Engineering Department, M.Sc. Thesis. Texas.
Aly, A.A. and Salem F.A. (2013) Vehicle suspension systems control: A Review, International Journal of Control, Automation and Systems, 2(2), 46-54.
Atef, M.M., Soliman, M.S. and Sharkawy, A.B. (2015) Vehicle active suspension system performance using different control strategies, International Journal of Engineering Trends and Technology (IJETT), 30(2), 106-114. doi: 10.14445/22315381/IJETT-V30P220
Delen, G. ve Taşkın, Y. (2013) İki serbestlik dereceli aktif süspansiyon sistemi için benzetim modeli doğrulaması ve PID kontrolcü uygulaması, Türkiye Otomatik Kontrol Ulusal Toplantısı, Malatya, 811-816.
Dridi, S., Salem, I.B. and Amraoui, L.E. (2017) Bond Graph modeling of automotive suspension system using a linear actuator, International Journal of Scientific & Engineering Research, 8(1), 1837-1844.
Ebrahimi, B., Bolandhemmat, H., Khamesee, M.B. and Golnaraghi, F. (2011) A hybrid electromagnetic shock absorber for active vehicle suspension systems, Vehicle System Dynamics, 49(1–2), 311–332. doi: 10.1080/00423111003602400
Giears, J.F. and Piech, Z.J. (2000) Linear Synchronous Motors, CRC Press, USA.
Hyniova, K. (2016) On testing of vehicle active suspension robust control on an one-quarter-car test stand, International Journal of Mechanical Engineering, 1, 1-7.
Jiongkang, L. (2013) Design and advanced control of active suspension system with linear actuator, Hong Kong Polytechnic University, Ph.D Thesis, Hong Kong.
Kabil , S.G. (2012) Alternative control strategies for an electromechanical active suspension system, Istanbul Technical University, M.Sc. Thesis, İstanbul.
Kamış Kocabıçak, Z. ve Topçu E.E. (2018) Aktif süspansiyon sistemlerinde doğrusal adım motorunun uygulanabilirliğinin araştırılması, 9th International Automotive Technologies Congress, Bursa, 1097-1105.
Kashem, S. B.A., Chowdhury, M.A., Choudhury, T.A., Shabrin, N., Ektesabi, M. and Nagarajah, R. (2015) Study and comparison on linear electromagnetic shock absorbers among other available intelligent vibration dampers, International Journal of Science and Research, 4(6), 2394-2401.
Klimenko, Y.I., Batishchev, D.V., Pavlenko, A.V. and Grinchenkov, P. (2015) Design of a linear electromechanical actuator with an active vehicle suspension system”, Russian Electrical Engineering, 86(10), 588–593. doi: 10.3103/S1068371215100090
Kruczek A., Stříbrský A., Honců J. and Hlinovský M. (2011) Active suspension -case study on robust control, International Journal of Computer, Electrical, Automation, Control and Information Engineering, 5(6), 605-610.
Kruczek, A. and Stříbrský, A. (2004) H control of automotive active suspension with linear motor, IFAC Proceedings, 37(14), 365-370. doi: 10.1016/S1474-6670(17)31131-X
Lee, S. and Kim, W. (2010) Active suspension control with direct-drive tubular linear brushless permanent-magnet motor, IEEE Transactions on Vehicular Technology, 18(4), 859-870. doi: 10.1109/TCST.2009.2030413
Loránd, S., Viorel, I.A. and János, J. (2015) Dynamic simulation of a novel hybrid linear stepper motor by means of MATLAB/Simulink, https://www.researchgate.net/publication/239565131. Erişim tarihi: 23.08.2018
Martins, I., Esteve, J., Marques, G. D. and Silva, F.P., (2006) Permanent-magnets linear actuators applicability in automobile active suspensions, IEEE Transactions on Vehicular Technology, 55(1), 86-94. doi: 10.1109/TVT.2005.861167
Onat, C., Yüksek, İ. ve Sivrioğlu, S. (2006) Bir aktif süspansiyon sistemi için H_∞ kontrol temeline dayalı doğrusal olmayan kontrolcü tasarımı, Mühendis ve Makine, 47(552), 36-43.
Otten, G., Vries, T.J.A., Amerongen, J., Rankers, A.M.R. and Gaal, E.W. (1997) Linear motor motion control using a learning feedforward controller, IEEE/ASME Transactions on Mechatronics, 2(3), 179-187. doi: 10.1109/3516.622970
Sun, W., Zhao, Y., Li, J., Zhang, L. and Gao, H. (2012) Active suspension control with frequency band constraints and actuator input delay, IEEE Transactions on Industrial Electronics, 59(1), 530-537. doi: 10.1109/TIE.2011.2134057
Thul, A., Eggers, D., Riemer, B. and Hameyer, K. (2015) Active suspension system with integrated electrical tubular linear motor: design, control strategy and validation, Archives of Electrical Engineering, 64(4), 605-616. doi: 10.1515/aee-2015-0045
Ting, C. S. and Chang Y. N., (2013) Observer-based backstepping control of linear stepping motor, Control Engineering Practice, 21, 930-939. doi: 10.1016/j.conengprac.2013.02.018
Topçu, E. E., Yüksel, İ. ve Kamış, Z. (2002) Taşıt Süspansiyon Sistemlerindeki Gelişmeler, 2. Otomotiv Teknolojileri Kongresi, Bursa, 313-321.
Van der Sande T.P.J., Gysen, B.L.J., Besselink, I.J.M. , Paulides, J.J.H. , Lomonova, E.A. and Nijmeijer, H. (2013) A robust control of an electromagnetic active suspension system: Simulations and measurements, Mechatronics 23, 204–212. doi: 10.1016/j.mechatronics.2012.07.002
Wang, J., Wang, W. and Atallah, K. (2011) A linear permanent-magnet motor for active vehicle suspension, IEEE Transactions on Vehicular Technology, 60(1), 55-63. doi: 10.1109/TVT.2010.2089546
Erzan Topçu, E., & Kamış Kocabıçak, Z. (2019). DOĞRUSAL ADIM MOTORUNA SAHİP BİR AKTİF SÜSPANSİYON SİSTEMİNİN TASARIMI ve MODELLENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(1), 137-150. https://doi.org/10.17482/uumfd.455052
AMA
Erzan Topçu E, Kamış Kocabıçak Z. DOĞRUSAL ADIM MOTORUNA SAHİP BİR AKTİF SÜSPANSİYON SİSTEMİNİN TASARIMI ve MODELLENMESİ. UUJFE. Nisan 2019;24(1):137-150. doi:10.17482/uumfd.455052
Chicago
Erzan Topçu, Elif, ve Zeliha Kamış Kocabıçak. “DOĞRUSAL ADIM MOTORUNA SAHİP BİR AKTİF SÜSPANSİYON SİSTEMİNİN TASARIMI Ve MODELLENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, sy. 1 (Nisan 2019): 137-50. https://doi.org/10.17482/uumfd.455052.
EndNote
Erzan Topçu E, Kamış Kocabıçak Z (01 Nisan 2019) DOĞRUSAL ADIM MOTORUNA SAHİP BİR AKTİF SÜSPANSİYON SİSTEMİNİN TASARIMI ve MODELLENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 1 137–150.
IEEE
E. Erzan Topçu ve Z. Kamış Kocabıçak, “DOĞRUSAL ADIM MOTORUNA SAHİP BİR AKTİF SÜSPANSİYON SİSTEMİNİN TASARIMI ve MODELLENMESİ”, UUJFE, c. 24, sy. 1, ss. 137–150, 2019, doi: 10.17482/uumfd.455052.
ISNAD
Erzan Topçu, Elif - Kamış Kocabıçak, Zeliha. “DOĞRUSAL ADIM MOTORUNA SAHİP BİR AKTİF SÜSPANSİYON SİSTEMİNİN TASARIMI Ve MODELLENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/1 (Nisan 2019), 137-150. https://doi.org/10.17482/uumfd.455052.
JAMA
Erzan Topçu E, Kamış Kocabıçak Z. DOĞRUSAL ADIM MOTORUNA SAHİP BİR AKTİF SÜSPANSİYON SİSTEMİNİN TASARIMI ve MODELLENMESİ. UUJFE. 2019;24:137–150.
MLA
Erzan Topçu, Elif ve Zeliha Kamış Kocabıçak. “DOĞRUSAL ADIM MOTORUNA SAHİP BİR AKTİF SÜSPANSİYON SİSTEMİNİN TASARIMI Ve MODELLENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 24, sy. 1, 2019, ss. 137-50, doi:10.17482/uumfd.455052.
Vancouver
Erzan Topçu E, Kamış Kocabıçak Z. DOĞRUSAL ADIM MOTORUNA SAHİP BİR AKTİF SÜSPANSİYON SİSTEMİNİN TASARIMI ve MODELLENMESİ. UUJFE. 2019;24(1):137-50.
30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir). Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.
Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr