Araştırma Makalesi
BibTex RIS Kaynak Göster

SAYISAL İMGELER İÇİN PRNU VE CNN TABANLI BÖLGESEL MÜDAHALE TESPİTİ

Yıl 2019, , 311 - 324, 30.08.2019
https://doi.org/10.17482/uumfd.516224

Öz

Sayısal resimler üzerinde yapılan çeşitli
oynamaları tespit edebilmek, gelişen yazılımların karmaşıklığından ötürü
oldukça zorlaşmaktadır. Bu karmaşıklığa çözüm olarak klasik müdahale tespiti
yöntemlerine ek olarak son yıllarda evrişimsel sinir ağı tabanlı yöntemler
geliştirilmiştir. Böylelikle çok karmaşık müdahaleleri bile tespit edebilen
ağlar eğitilebilmiştir. Bu makalede, küçük boyutlarda pencere kullanarak
bölgesel müdahale tespiti yapabilen klasik yöntemlerden olan, kameranın
kendisine ait olan sensörlerinden elde edilen parmakizini kullanan sensör
tabanlı PRNU(Photo Response Non Uniformity) yöntemi ile yeni bir yaklaşım olan evrişimsel
sinir ağı(CNN) tabanlı kamera model sınıflandırıcısı yöntemi
karşılaştırılmıştır. Böylelikle hangi yöntemin daha başarılı olduğu detaylıca
ortaya koyulmuştur. Toplamda 26 adet kamera modeli ve bu kamera modellerinden
seçilen 96 x 96’lık piksel blokları ile eğitilen CNN modeli, hem 96 hem de
128’lik pencere boyutu kullanılarak çalışan PRNU yöntemi ile kıyaslanmıştır. Bu
kıyaslama sonucunda bölgesel müdahale tespiti probleminde CNN tabanlı kamera
model sınıflandırıcısının PRNU yöntemine göre daha başarılı olduğu
gösterilmiştir. 

Kaynakça

  • 1. Bayar, B., & Stamm, M. C. (2016, June). A deep learning approach to universal image manipulation detection using a new convolutional layer. In Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security (pp. 5-10). ACM. DOI:10.1145/2909827.2930786
  • 2. Bondi, L., Güera, D., Baroffio, L., Bestagini, P., Delp, E. J., & Tubaro, S. (2017). A preliminary study on convolutional neural networks for camera model identification. Electronic Imaging, 2017(7), 67-76. DOI: https://doi.org/10.2352/ISSN.2470-1173.2017.7.MWSF-327
  • 3. Bondi, L., Lameri, S., Güera, D., Bestagini, P., Delp, E. J., & Tubaro, S. (2017, July). Tampering detection and localization through clustering of camera-based CNN features. In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (pp. 1855-1864). IEEE. DOI: 10.1109/CVPRW.2017.232
  • 4. Bondi, L., Baroffio, L., Güera, D., Bestagini, P., Delp, E. J., & Tubaro, S. (2017). First steps toward camera model identification with convolutional neural networks. IEEE Signal Processing Letters, 24(3), 259-263. DOI: 10.1109/LSP.2016.2641006
  • 5. Dirik, A. E., & Memon, N. (2009, November). Image tamper detection based on demosaicing artifacts. In Image Processing (ICIP), 2009 16th IEEE International Conference on (pp. 1497-1500). IEEE. DOI: 10.1109/ICIP.2009.5414611
  • 6. Farid, H. (2009). Exposing digital forgeries from JPEG ghosts. IEEE transactions on information forensics and security, 4(1), 154-160. DOI: 10.1109/TIFS.2008.2012215
  • 7. Ferrara, P., Bianchi, T., De Rosa, A., & Piva, A. (2012). Image forgery localization via fine-grained analysis of CFA artifacts. IEEE Transactions on Information Forensics and Security, 7(5), 1566-1577. DOI: 10.1109/TIFS.2012.2202227
  • 8. Gloe, T., & Böhme, R. (2010, March). The'Dresden Image Database'for benchmarking digital image forensics. In Proceedings of the 2010 ACM Symposium on Applied Computing (pp. 1584-1590). ACM. Doi:10.1145/1774088.1774427
  • 9. Goljan, M., Fridrich, J., & Filler, T. (2009, February). Large scale test of sensor fingerprint camera identification. In Media Forensics and Security (Vol. 7254, p. 72540I). International Society for Optics and Photonics. Doi: 10.1117/12.805701
  • 10. Krawetz, N., & Solutions, H. F. (2007). A Picture’s Worth... Hacker Factor Solutions, 6.
  • 11. Lin, Z., He, J., Tang, X., & Tang, C. K. (2009). Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis. Pattern Recognition, 42(11), 2492-2501. Doi:https://doi.org/10.1016/j.patcog.2009.03.019
  • 12. Lukas, J., Fridrich, J., & Goljan, M. (2006). Digital camera identification from sensor pattern noise. IEEE Transactions on Information Forensics and Security, 1(2), 205-214. DOI: 10.1109/TIFS.2006.873602
  • 13. Tuama, A., Comby, F., & Chaumont, M. (2016, December). Camera model identification with the use of deep convolutional neural networks. In Information Forensics and Security (WIFS), 2016 IEEE International Workshop on (pp. 1-6). IEEE. DOI: 10.1109/WIFS.2016.7823908
  • 14. Vedaldi, A., & Lenc, K. (2015, October). Matconvnet: Convolutional neural networks for matlab. In Proceedings of the 23rd ACM international conference on Multimedia (pp. 689-692). ACM. Doi:10.1145/2733373.2807412
  • 15. Liu, Y., Guan, Q., Zhao, X., & Cao, Y. (2018, June). Image forgery localization based on multi-scale convolutional neural networks. In Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security (pp. 85-90). ACM. Doi:10.1145/3206004.3206010
  • 16. Ye, S., Sun, Q., & Chang, E. C. (2007, July). Detecting digital image forgeries by measuring inconsistencies of blocking artifact. In Multimedia and Expo, 2007 IEEE International Conference on (pp. 12-15). IEEE. DOI: 10.1109/ICME.2007.4284574

PRNU and CNN Based Local Tamper Detection For Digital Images

Yıl 2019, , 311 - 324, 30.08.2019
https://doi.org/10.17482/uumfd.516224

Öz

Detecting various forgeries on digital images is
becoming more difficult due to the complexity of developing software. As a
solution to this complexity, in addition to conventional detection methods,
convolutional neural network (CNN) based methods have been developed in recent
years. Thus, networks capable of detecting even very complex interventions
could be trained. In this paper, a new approach to the convolutional neural
network (CNN) based camera model classifier method is compared with the
sensor-based PRNU (Photo Response Non Uniformity) method, which is one of the
classical methods that can detect local detection using small-scale windows.
Thus, which method is more successful is revealed in detail. A total of 26
camera models and the CNN model, which was trained with 96 x 96 pixel blocks
selected from these camera models, was compared with the PRNU method using both
the 96 and 128 window size. As a result of this comparison, CNN based camera
model classifier has been shown to be more successful than PRNU method in the
local tamper detection problem.

Kaynakça

  • 1. Bayar, B., & Stamm, M. C. (2016, June). A deep learning approach to universal image manipulation detection using a new convolutional layer. In Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security (pp. 5-10). ACM. DOI:10.1145/2909827.2930786
  • 2. Bondi, L., Güera, D., Baroffio, L., Bestagini, P., Delp, E. J., & Tubaro, S. (2017). A preliminary study on convolutional neural networks for camera model identification. Electronic Imaging, 2017(7), 67-76. DOI: https://doi.org/10.2352/ISSN.2470-1173.2017.7.MWSF-327
  • 3. Bondi, L., Lameri, S., Güera, D., Bestagini, P., Delp, E. J., & Tubaro, S. (2017, July). Tampering detection and localization through clustering of camera-based CNN features. In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (pp. 1855-1864). IEEE. DOI: 10.1109/CVPRW.2017.232
  • 4. Bondi, L., Baroffio, L., Güera, D., Bestagini, P., Delp, E. J., & Tubaro, S. (2017). First steps toward camera model identification with convolutional neural networks. IEEE Signal Processing Letters, 24(3), 259-263. DOI: 10.1109/LSP.2016.2641006
  • 5. Dirik, A. E., & Memon, N. (2009, November). Image tamper detection based on demosaicing artifacts. In Image Processing (ICIP), 2009 16th IEEE International Conference on (pp. 1497-1500). IEEE. DOI: 10.1109/ICIP.2009.5414611
  • 6. Farid, H. (2009). Exposing digital forgeries from JPEG ghosts. IEEE transactions on information forensics and security, 4(1), 154-160. DOI: 10.1109/TIFS.2008.2012215
  • 7. Ferrara, P., Bianchi, T., De Rosa, A., & Piva, A. (2012). Image forgery localization via fine-grained analysis of CFA artifacts. IEEE Transactions on Information Forensics and Security, 7(5), 1566-1577. DOI: 10.1109/TIFS.2012.2202227
  • 8. Gloe, T., & Böhme, R. (2010, March). The'Dresden Image Database'for benchmarking digital image forensics. In Proceedings of the 2010 ACM Symposium on Applied Computing (pp. 1584-1590). ACM. Doi:10.1145/1774088.1774427
  • 9. Goljan, M., Fridrich, J., & Filler, T. (2009, February). Large scale test of sensor fingerprint camera identification. In Media Forensics and Security (Vol. 7254, p. 72540I). International Society for Optics and Photonics. Doi: 10.1117/12.805701
  • 10. Krawetz, N., & Solutions, H. F. (2007). A Picture’s Worth... Hacker Factor Solutions, 6.
  • 11. Lin, Z., He, J., Tang, X., & Tang, C. K. (2009). Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis. Pattern Recognition, 42(11), 2492-2501. Doi:https://doi.org/10.1016/j.patcog.2009.03.019
  • 12. Lukas, J., Fridrich, J., & Goljan, M. (2006). Digital camera identification from sensor pattern noise. IEEE Transactions on Information Forensics and Security, 1(2), 205-214. DOI: 10.1109/TIFS.2006.873602
  • 13. Tuama, A., Comby, F., & Chaumont, M. (2016, December). Camera model identification with the use of deep convolutional neural networks. In Information Forensics and Security (WIFS), 2016 IEEE International Workshop on (pp. 1-6). IEEE. DOI: 10.1109/WIFS.2016.7823908
  • 14. Vedaldi, A., & Lenc, K. (2015, October). Matconvnet: Convolutional neural networks for matlab. In Proceedings of the 23rd ACM international conference on Multimedia (pp. 689-692). ACM. Doi:10.1145/2733373.2807412
  • 15. Liu, Y., Guan, Q., Zhao, X., & Cao, Y. (2018, June). Image forgery localization based on multi-scale convolutional neural networks. In Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security (pp. 85-90). ACM. Doi:10.1145/3206004.3206010
  • 16. Ye, S., Sun, Q., & Chang, E. C. (2007, July). Detecting digital image forgeries by measuring inconsistencies of blocking artifact. In Multimedia and Expo, 2007 IEEE International Conference on (pp. 12-15). IEEE. DOI: 10.1109/ICME.2007.4284574
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Ahmet Gökhan Poyraz

Yayımlanma Tarihi 30 Ağustos 2019
Gönderilme Tarihi 22 Ocak 2019
Kabul Tarihi 30 Mayıs 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Poyraz, A. G. (2019). SAYISAL İMGELER İÇİN PRNU VE CNN TABANLI BÖLGESEL MÜDAHALE TESPİTİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), 311-324. https://doi.org/10.17482/uumfd.516224
AMA Poyraz AG. SAYISAL İMGELER İÇİN PRNU VE CNN TABANLI BÖLGESEL MÜDAHALE TESPİTİ. UUJFE. Ağustos 2019;24(2):311-324. doi:10.17482/uumfd.516224
Chicago Poyraz, Ahmet Gökhan. “SAYISAL İMGELER İÇİN PRNU VE CNN TABANLI BÖLGESEL MÜDAHALE TESPİTİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, sy. 2 (Ağustos 2019): 311-24. https://doi.org/10.17482/uumfd.516224.
EndNote Poyraz AG (01 Ağustos 2019) SAYISAL İMGELER İÇİN PRNU VE CNN TABANLI BÖLGESEL MÜDAHALE TESPİTİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24 2 311–324.
IEEE A. G. Poyraz, “SAYISAL İMGELER İÇİN PRNU VE CNN TABANLI BÖLGESEL MÜDAHALE TESPİTİ”, UUJFE, c. 24, sy. 2, ss. 311–324, 2019, doi: 10.17482/uumfd.516224.
ISNAD Poyraz, Ahmet Gökhan. “SAYISAL İMGELER İÇİN PRNU VE CNN TABANLI BÖLGESEL MÜDAHALE TESPİTİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/2 (Ağustos 2019), 311-324. https://doi.org/10.17482/uumfd.516224.
JAMA Poyraz AG. SAYISAL İMGELER İÇİN PRNU VE CNN TABANLI BÖLGESEL MÜDAHALE TESPİTİ. UUJFE. 2019;24:311–324.
MLA Poyraz, Ahmet Gökhan. “SAYISAL İMGELER İÇİN PRNU VE CNN TABANLI BÖLGESEL MÜDAHALE TESPİTİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 24, sy. 2, 2019, ss. 311-24, doi:10.17482/uumfd.516224.
Vancouver Poyraz AG. SAYISAL İMGELER İÇİN PRNU VE CNN TABANLI BÖLGESEL MÜDAHALE TESPİTİ. UUJFE. 2019;24(2):311-24.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr