Araştırma Makalesi
BibTex RIS Kaynak Göster

PROBABILISTIC RUNOFF MODELING APPROACH IN MOUNTAINOUS BASINS BASED ON SATELLITE SNOW DATA AND WAVELET NEURAL NETWORK

Yıl 2020, , 1139 - 1154, 31.12.2020
https://doi.org/10.17482/uumfd.787147

Öz

Streamflow prediction is often a challenging issue for snow dominated basins where proper in-situ snow data might be limited and the snow physics is highly complex. The main aim of this study is to propose an alternative modeling solution by considering both accessibility of the inputs and simplicity of the model structure. We propose Wavelet Neural Network (WNN) model approach which takes probabilistic snow cover area in order to produce probabilistic streamflow in the mountainous basins. For the sake of the accessibility of the input data, snow probability maps are produced from cloud-free images of MODIS. The WNN model is trained and tested with observed hydro-meteorological data. Also, MultiLayer Perceptron Model (MLP) is used as a benchmark model. The approach is tested in a snow-dominated headwater (in altitude from 1559 to 3508 m) of Murat River which has a great importance as being one of the main tributaries of Euphrates River. According to the results, the approach is capable of detecting snow distribution in the area of interest and WNN is promising to generate probabilistic streamflow predictions. 

Destekleyen Kurum

TÜBİTAK

Proje Numarası

113Y075

Teşekkür

This study was partly funded by TÜBİTAK (The Scientific and Technical Research Council of Turkey) (Project No: 113Y075). The authors wish to thank General Directorate of Meteorology (MGM) and State Hydraulic Works (DSI) for data contribution.

Kaynakça

  • 1. Adamowski, J., Chan, H.F. (2011) A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407(1-4), 28-40. doi:10.1016/j.jhydrol.2011.06.013
  • 2. Adeli, H., Jiang, X. (2006) Dynamic fuzzy wavelet neural network model for structural system identification. Journal of Structural Engineering, 132(1), 102-111. doi: 10.1061/(ASCE)0733-9445(2006)132:1(102)
  • 3. Al-geelani, N.A., Piah, M.A.M., Shaddad, R.Q. (2012) Characterization of acoustic signals due to surface discharges on HV glass insulators using wavelet radial basis function neural networks, Applied Soft Computing, 12(4), 1239-1246. doi:10.1016/j.asoc.2011.12.018
  • 4. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. (2000) Artificial neural networks in hydrology. I: Preliminary concepts, Journal of Hydrologic Engineering, 5(2), 115-123. doi:10.1061/(ASCE)1084-0699(2000)5:2(115)
  • 5. Chen, Y., Yang, B., Dong, J. (2006). Time-series prediction using a local linear wavelet neural network. Neurocomputing, 69(4-6), 449-465. doi:10.1016/j.neucom.2005.02.006
  • 6. Dale, M., Wicks, J., Mylne, K., Pappenberger, F., Laeger, S., Taylor, S. (2014) Probabilistic flood forecasting and decision-making: an innovative risk-based approach, Natural Hazards, 70(1), 159-172. doi:10.1007/s11069-012-0483-z
  • 7. Daliakopoulos, I.N., Tsanis, I.K. (2016) Comparison of an artificial neural network and a conceptual rainfall–runoff model in the simulation of ephemeral streamflow, Hydrological Sciences Journal, 61(15), 2763-2774. doi:10.1080/02626667.2016.1154151
  • 8. Daubechies, I. (1992) Ten lectures on wavelets. Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania.
  • 9. Jiang, X., Adeli, H. (2005) Dynamic wavelet neural network model for traffic flow forecasting. Journal of Transportation Engineering, 131(10), 771-779. doi:10.1061/(ASCE)0733-947X(2005)131:10(771)
  • 10. Graf, R., Zhu, S., Sivakumar, B. (2019) Forecasting river water temperature time series using a wavelet–neural network hybrid modelling approach. Journal of Hydrology, 578, 124115. doi:10.1016/j.jhydrol.2019.124115
  • 11. Fahimi, F., Yaseen, Z.M., El-shafie, A. (2017) Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review, Theoretical and Applied Climatology, 128(3-4), 875-903. doi: 10.1007/s00704-016-1735-8
  • 12. Finger, D., Vis, M., Huss, M., Seibert, J. (2015) The value of multiple data set calibration versus model complexity for improving the performance of hydrological models in mountain catchments, Water Resources Research, 51(4), 1939–1958. doi:10.1002/2014WR015712
  • 13. Fundel, F., Zappa, M. (2011) Hydrological ensemble forecasting in mesoscale catchments: Sensitivity to initial conditions and value of reforecasts, Water Resources Research, 47(9), W09520. doi:10.1029/2010WR009996
  • 14. Hagan, M.T., Menhaj, M.B. (1994) Training feedforward networks with the Marquardt algorithm, IEEE Transactions on Neural Networks, 5(6), 989-993. doi:10.1109/72.329697
  • 15. Hall, D.K., Riggs, G.A., Salomonson, V.V., DiGirolamo, N.E., Bayr, K.J. (2002) MODIS snow-cover products, Remote Sensing of Environment, 83(1-2), 181-194. doi:10.1016/S0034-4257(02)00095-0
  • 16. Hall, D.K., Riggs, G.A., Salomonson, V.V. (2006) MODIS snow and sea ice products. Editors: Qu JJ, Gao W, Kafatos M, Murphy RE, Salomonson VV. Earth Science Satellite Remote Sensing, 154-181, Springer-Verlag Press, Berlin, Heidelberg, Germany.
  • 17. Hall, D.K., Riggs, G.A. (2007) Accuracy assessment of the MODIS snow products, Hydrological Processes, 21(12), 1534-1547. doi:10.1002/hyp.6715
  • 18. Haykins, S. (2009) Neural Networks and Learning Machines. 3rd Ed., Pearson Prentice Hall USA.
  • 19. Jörg-Hess, S., Griessinger, N., Zappa, M. (2015) Probabilistic forecasts of snow water equivalent and runoff in mountainous areas, Journal of Hydrometeorology, 16(5), 2169-2186. doi:10.1175/JHM-D-14-0193.1
  • 20. Krajčí, P., Holko, L., Perdigão, R.A., Parajka, J. (2014) Estimation of regional snowline elevation (RSLE) from MODIS images for seasonally snow covered mountain basins, Journal of Hydrology, 519, 1769–1778. doi:10.1016/j.jhydrol.2014.08.064
  • 21. Maier, H.R., Dandy, G.C. (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications, Environmental Modelling & Software, 15(1), 101-124. doi:10.1016/S1364-8152(99)00007-9
  • 22. Maier, H.R., Jain, A., Dandy, G.C., Sudheer, K.P. (2010) Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions, Environmental Modelling & Software, 25(8), 891-909. doi:10.1016/j.envsoft.2010.02.003
  • 23. Pappenberger, F., Beven, K.J., Hunter, N.M., Bates, P.D., Gouweleeuw, B.T., Thielen, J., De Roo, A.P.J. (2005) Cascading model uncertainty from medium range weather forecasts (10 days) through a rainfall-runoff model to flood inundation predictions within the European Flood Forecasting System (EFFS), Hydrology & Earth System Sciences, 9, 381–393. doi:10.5194/hess-9-381-2005
  • 24. Parajka, J., Blöschl, G. (2008) The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models, Journal of Hydrology, 358(3-4), 240-258. doi:10.1016/j.jhydrol.2008.06.006
  • 25. Parisi, R., Di Claudio, E.D., Orlandi, G., Rao, B.D. (1996) A generalized learning paradigm exploiting the structure of feedforward neural networks, IEEE Transactions on Neural Networks, 7(6), 1450-1460. doi:10.1109/72.548172
  • 26. Ramos, M.H., van Andel, S.J., Pappenberger, F. (2013) Do probabilistic forecasts lead to better decisions?, Hydrology & Earth System Sciences, 17, 2219–2232. doi:10.5194/hess-17-2219-2013
  • 27. Ritter, A., Muñoz-Carpena, R. (2013) Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments, Journal of Hydrology, 480, 33-45. doi:10.1016/j.jhydrol.2012.12.004
  • 28. Solomatine, D.P. (2002) Data-driven modelling: paradigm, methods, experiences, 5th International Conference on Hydroinformatics, 01-05 July, Cardiff, United Kingdom.
  • 29. Şensoy, A., Uysal, G. (2012) The value of snow depletion forecasting methods towards operational snowmelt runoff estimation using MODIS and Numerical Weather Prediction Data, Water Resources Management, 26(12), 3415-3440. doi:10.1007/s11269-012-0079-0
  • 30. Şorman, A.A., Şensoy, A., Tekeli, A.E., Şorman, A.Ü., Akyürek, Z. (2009) Modelling and forecasting snowmelt runoff process using the HBV model in the eastern part of Turkey, Hydrological Processes, 23(7), 1031-1040. doi:10.1002/hyp.7204
  • 31. Şorman, A.A., Uysal, G., Şensoy, A. (2019) Probabilistic snow cover and ensemble streamflow estimations in the Upper Euphrates Basin, Journal of Hydrology and Hydromechanics, 67(1), 82-92. doi:10.2478/johh-2018-0025
  • 32. Şorman, A.A., Yamankurt, E. (2011) Modified satellite products on snow covered area in upper Euphrates basin, Turkey, European Geosciences Union General Assembly 2011, 03 – 08 April, Vienna, Austria.
  • 33. Tekeli, A.E., Akyürek, Z., Şorman, A.A., Şensoy, A., Şorman, A.Ü. (2005) Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey, Remote Sensing of Environment, 97(2), 216-230. doi:10.1016/j.rse.2005.03.013
  • 34. Uysal, G., Şensoy, A., Şorman, A.A. (2016) Improving daily streamflow forecasts in mountainous Upper Euphrates basin by multi-layer perceptron model with satellite snow products, Journal of Hydrology, 543, 630-650. doi:10.1016/j.jhydrol.2016.10.037
  • 35. Verbunt, M., Walser, A., Gurtz, J., Montani, A., Schär, C. (2007) Probabilistic flood forecasting with a limited-area ensemble prediction system: Selected case studies, Journal of Hydrometeorology, 8(4), 897-909. doi:0.1175/JHM594.1
  • 36. World Meteorological Organization (2008) Guide to Hydrological Practices. Volume I: Hydrology–From Measurement to Hydrological Information, WMO-No. 168, Geneva, Switzerland.
  • 37. Zhao, Y., Taylor, J.S., Chellam, S. (2005) Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks, Journal of Membrane Science, 263(1-2), 38-46. doi:10.1016/j.memsci.2005.04.004

Dağlık Havzalarda Uydu Kar Verisi ve Dalgacık Sinir Ağı Tabanlı Olasılıklı Akım Modelleme Yaklaşımı

Yıl 2020, , 1139 - 1154, 31.12.2020
https://doi.org/10.17482/uumfd.787147

Öz

Kar baskın havzalardaki akarsu akım tahminleri, uygun arazi kar verilerinin sınırlı oluşu ve kar fiziğinin oldukça karmaşık olması nedeniyle genellikle zorlayıcı bir konudur. Bu çalışmanın temel amacı hem girdilerin erişilebilirliğini hem de model yapısının basitliğini göz önünde bulundurarak alternatif bir modelleme çözümü önermektir. Önerilen Dalgacık Sinir Ağı (DSA) modeli yaklaşımı, nehir akımları üretmek için olasılıklı karla kaplı alanları girdi alarak dağlık havzalarda olasılıklı akım tahminleri üretebilmektedir. Girdi verilerinin erişilebilirliği adına, MODIS'in bulutsuz görüntülerinden kar olasılığı haritaları üretilmektedir. DSA modeli, gözlenmiş hidro-meteorolojik verilerle eğitilmiş ve test edilmiştir. Ayrıca, Çok-Katmanlı Perseptron Modeli (ÇKPM) de kıyaslama modeli olarak kullanılmıştır. Yaklaşım, Fırat Nehri'nin ana kolu olarak büyük önem taşıyan Murat Nehri'nin kar baskın üst havzasında (1559 ila 3508 m yükseklikte) test edilmiştir. Sonuçlara göre, DSA yaklaşımı ilgi alanındaki kar dağılımını tespit ederek olasılıklı akım tahminleri üretme imkânı sağlamaktadır.

Proje Numarası

113Y075

Kaynakça

  • 1. Adamowski, J., Chan, H.F. (2011) A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407(1-4), 28-40. doi:10.1016/j.jhydrol.2011.06.013
  • 2. Adeli, H., Jiang, X. (2006) Dynamic fuzzy wavelet neural network model for structural system identification. Journal of Structural Engineering, 132(1), 102-111. doi: 10.1061/(ASCE)0733-9445(2006)132:1(102)
  • 3. Al-geelani, N.A., Piah, M.A.M., Shaddad, R.Q. (2012) Characterization of acoustic signals due to surface discharges on HV glass insulators using wavelet radial basis function neural networks, Applied Soft Computing, 12(4), 1239-1246. doi:10.1016/j.asoc.2011.12.018
  • 4. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. (2000) Artificial neural networks in hydrology. I: Preliminary concepts, Journal of Hydrologic Engineering, 5(2), 115-123. doi:10.1061/(ASCE)1084-0699(2000)5:2(115)
  • 5. Chen, Y., Yang, B., Dong, J. (2006). Time-series prediction using a local linear wavelet neural network. Neurocomputing, 69(4-6), 449-465. doi:10.1016/j.neucom.2005.02.006
  • 6. Dale, M., Wicks, J., Mylne, K., Pappenberger, F., Laeger, S., Taylor, S. (2014) Probabilistic flood forecasting and decision-making: an innovative risk-based approach, Natural Hazards, 70(1), 159-172. doi:10.1007/s11069-012-0483-z
  • 7. Daliakopoulos, I.N., Tsanis, I.K. (2016) Comparison of an artificial neural network and a conceptual rainfall–runoff model in the simulation of ephemeral streamflow, Hydrological Sciences Journal, 61(15), 2763-2774. doi:10.1080/02626667.2016.1154151
  • 8. Daubechies, I. (1992) Ten lectures on wavelets. Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania.
  • 9. Jiang, X., Adeli, H. (2005) Dynamic wavelet neural network model for traffic flow forecasting. Journal of Transportation Engineering, 131(10), 771-779. doi:10.1061/(ASCE)0733-947X(2005)131:10(771)
  • 10. Graf, R., Zhu, S., Sivakumar, B. (2019) Forecasting river water temperature time series using a wavelet–neural network hybrid modelling approach. Journal of Hydrology, 578, 124115. doi:10.1016/j.jhydrol.2019.124115
  • 11. Fahimi, F., Yaseen, Z.M., El-shafie, A. (2017) Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review, Theoretical and Applied Climatology, 128(3-4), 875-903. doi: 10.1007/s00704-016-1735-8
  • 12. Finger, D., Vis, M., Huss, M., Seibert, J. (2015) The value of multiple data set calibration versus model complexity for improving the performance of hydrological models in mountain catchments, Water Resources Research, 51(4), 1939–1958. doi:10.1002/2014WR015712
  • 13. Fundel, F., Zappa, M. (2011) Hydrological ensemble forecasting in mesoscale catchments: Sensitivity to initial conditions and value of reforecasts, Water Resources Research, 47(9), W09520. doi:10.1029/2010WR009996
  • 14. Hagan, M.T., Menhaj, M.B. (1994) Training feedforward networks with the Marquardt algorithm, IEEE Transactions on Neural Networks, 5(6), 989-993. doi:10.1109/72.329697
  • 15. Hall, D.K., Riggs, G.A., Salomonson, V.V., DiGirolamo, N.E., Bayr, K.J. (2002) MODIS snow-cover products, Remote Sensing of Environment, 83(1-2), 181-194. doi:10.1016/S0034-4257(02)00095-0
  • 16. Hall, D.K., Riggs, G.A., Salomonson, V.V. (2006) MODIS snow and sea ice products. Editors: Qu JJ, Gao W, Kafatos M, Murphy RE, Salomonson VV. Earth Science Satellite Remote Sensing, 154-181, Springer-Verlag Press, Berlin, Heidelberg, Germany.
  • 17. Hall, D.K., Riggs, G.A. (2007) Accuracy assessment of the MODIS snow products, Hydrological Processes, 21(12), 1534-1547. doi:10.1002/hyp.6715
  • 18. Haykins, S. (2009) Neural Networks and Learning Machines. 3rd Ed., Pearson Prentice Hall USA.
  • 19. Jörg-Hess, S., Griessinger, N., Zappa, M. (2015) Probabilistic forecasts of snow water equivalent and runoff in mountainous areas, Journal of Hydrometeorology, 16(5), 2169-2186. doi:10.1175/JHM-D-14-0193.1
  • 20. Krajčí, P., Holko, L., Perdigão, R.A., Parajka, J. (2014) Estimation of regional snowline elevation (RSLE) from MODIS images for seasonally snow covered mountain basins, Journal of Hydrology, 519, 1769–1778. doi:10.1016/j.jhydrol.2014.08.064
  • 21. Maier, H.R., Dandy, G.C. (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications, Environmental Modelling & Software, 15(1), 101-124. doi:10.1016/S1364-8152(99)00007-9
  • 22. Maier, H.R., Jain, A., Dandy, G.C., Sudheer, K.P. (2010) Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions, Environmental Modelling & Software, 25(8), 891-909. doi:10.1016/j.envsoft.2010.02.003
  • 23. Pappenberger, F., Beven, K.J., Hunter, N.M., Bates, P.D., Gouweleeuw, B.T., Thielen, J., De Roo, A.P.J. (2005) Cascading model uncertainty from medium range weather forecasts (10 days) through a rainfall-runoff model to flood inundation predictions within the European Flood Forecasting System (EFFS), Hydrology & Earth System Sciences, 9, 381–393. doi:10.5194/hess-9-381-2005
  • 24. Parajka, J., Blöschl, G. (2008) The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models, Journal of Hydrology, 358(3-4), 240-258. doi:10.1016/j.jhydrol.2008.06.006
  • 25. Parisi, R., Di Claudio, E.D., Orlandi, G., Rao, B.D. (1996) A generalized learning paradigm exploiting the structure of feedforward neural networks, IEEE Transactions on Neural Networks, 7(6), 1450-1460. doi:10.1109/72.548172
  • 26. Ramos, M.H., van Andel, S.J., Pappenberger, F. (2013) Do probabilistic forecasts lead to better decisions?, Hydrology & Earth System Sciences, 17, 2219–2232. doi:10.5194/hess-17-2219-2013
  • 27. Ritter, A., Muñoz-Carpena, R. (2013) Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments, Journal of Hydrology, 480, 33-45. doi:10.1016/j.jhydrol.2012.12.004
  • 28. Solomatine, D.P. (2002) Data-driven modelling: paradigm, methods, experiences, 5th International Conference on Hydroinformatics, 01-05 July, Cardiff, United Kingdom.
  • 29. Şensoy, A., Uysal, G. (2012) The value of snow depletion forecasting methods towards operational snowmelt runoff estimation using MODIS and Numerical Weather Prediction Data, Water Resources Management, 26(12), 3415-3440. doi:10.1007/s11269-012-0079-0
  • 30. Şorman, A.A., Şensoy, A., Tekeli, A.E., Şorman, A.Ü., Akyürek, Z. (2009) Modelling and forecasting snowmelt runoff process using the HBV model in the eastern part of Turkey, Hydrological Processes, 23(7), 1031-1040. doi:10.1002/hyp.7204
  • 31. Şorman, A.A., Uysal, G., Şensoy, A. (2019) Probabilistic snow cover and ensemble streamflow estimations in the Upper Euphrates Basin, Journal of Hydrology and Hydromechanics, 67(1), 82-92. doi:10.2478/johh-2018-0025
  • 32. Şorman, A.A., Yamankurt, E. (2011) Modified satellite products on snow covered area in upper Euphrates basin, Turkey, European Geosciences Union General Assembly 2011, 03 – 08 April, Vienna, Austria.
  • 33. Tekeli, A.E., Akyürek, Z., Şorman, A.A., Şensoy, A., Şorman, A.Ü. (2005) Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey, Remote Sensing of Environment, 97(2), 216-230. doi:10.1016/j.rse.2005.03.013
  • 34. Uysal, G., Şensoy, A., Şorman, A.A. (2016) Improving daily streamflow forecasts in mountainous Upper Euphrates basin by multi-layer perceptron model with satellite snow products, Journal of Hydrology, 543, 630-650. doi:10.1016/j.jhydrol.2016.10.037
  • 35. Verbunt, M., Walser, A., Gurtz, J., Montani, A., Schär, C. (2007) Probabilistic flood forecasting with a limited-area ensemble prediction system: Selected case studies, Journal of Hydrometeorology, 8(4), 897-909. doi:0.1175/JHM594.1
  • 36. World Meteorological Organization (2008) Guide to Hydrological Practices. Volume I: Hydrology–From Measurement to Hydrological Information, WMO-No. 168, Geneva, Switzerland.
  • 37. Zhao, Y., Taylor, J.S., Chellam, S. (2005) Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks, Journal of Membrane Science, 263(1-2), 38-46. doi:10.1016/j.memsci.2005.04.004
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Gökçen Uysal 0000-0003-0445-060X

Aynur Sensoy 0000-0003-3004-4912

Proje Numarası 113Y075
Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 28 Ağustos 2020
Kabul Tarihi 12 Kasım 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Uysal, G., & Sensoy, A. (2020). PROBABILISTIC RUNOFF MODELING APPROACH IN MOUNTAINOUS BASINS BASED ON SATELLITE SNOW DATA AND WAVELET NEURAL NETWORK. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(3), 1139-1154. https://doi.org/10.17482/uumfd.787147
AMA Uysal G, Sensoy A. PROBABILISTIC RUNOFF MODELING APPROACH IN MOUNTAINOUS BASINS BASED ON SATELLITE SNOW DATA AND WAVELET NEURAL NETWORK. UUJFE. Aralık 2020;25(3):1139-1154. doi:10.17482/uumfd.787147
Chicago Uysal, Gökçen, ve Aynur Sensoy. “PROBABILISTIC RUNOFF MODELING APPROACH IN MOUNTAINOUS BASINS BASED ON SATELLITE SNOW DATA AND WAVELET NEURAL NETWORK”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25, sy. 3 (Aralık 2020): 1139-54. https://doi.org/10.17482/uumfd.787147.
EndNote Uysal G, Sensoy A (01 Aralık 2020) PROBABILISTIC RUNOFF MODELING APPROACH IN MOUNTAINOUS BASINS BASED ON SATELLITE SNOW DATA AND WAVELET NEURAL NETWORK. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25 3 1139–1154.
IEEE G. Uysal ve A. Sensoy, “PROBABILISTIC RUNOFF MODELING APPROACH IN MOUNTAINOUS BASINS BASED ON SATELLITE SNOW DATA AND WAVELET NEURAL NETWORK”, UUJFE, c. 25, sy. 3, ss. 1139–1154, 2020, doi: 10.17482/uumfd.787147.
ISNAD Uysal, Gökçen - Sensoy, Aynur. “PROBABILISTIC RUNOFF MODELING APPROACH IN MOUNTAINOUS BASINS BASED ON SATELLITE SNOW DATA AND WAVELET NEURAL NETWORK”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25/3 (Aralık 2020), 1139-1154. https://doi.org/10.17482/uumfd.787147.
JAMA Uysal G, Sensoy A. PROBABILISTIC RUNOFF MODELING APPROACH IN MOUNTAINOUS BASINS BASED ON SATELLITE SNOW DATA AND WAVELET NEURAL NETWORK. UUJFE. 2020;25:1139–1154.
MLA Uysal, Gökçen ve Aynur Sensoy. “PROBABILISTIC RUNOFF MODELING APPROACH IN MOUNTAINOUS BASINS BASED ON SATELLITE SNOW DATA AND WAVELET NEURAL NETWORK”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 25, sy. 3, 2020, ss. 1139-54, doi:10.17482/uumfd.787147.
Vancouver Uysal G, Sensoy A. PROBABILISTIC RUNOFF MODELING APPROACH IN MOUNTAINOUS BASINS BASED ON SATELLITE SNOW DATA AND WAVELET NEURAL NETWORK. UUJFE. 2020;25(3):1139-54.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr