Derleme
BibTex RIS Kaynak Göster

LAZER KAPLAMA PROSESİ ve PROSES PARAMETRELERİ: DERLEME ÇALIŞMASI

Yıl 2021, , 723 - 736, 31.08.2021
https://doi.org/10.17482/uumfd.798666

Öz

Günümüz lider üretim teknolojilerinden biri olan lazer kaplama prototip, onarım ve imalat
uygulamalarında kullanılmakta olup havacılık, uzay, otomotiv, savunma sanayi, tıp vb. alanlarda geniş
uygulama alanına sahiptir. Üretim yöntemi, lazer ışını kullanılarak toz malzemenin ergimesi ve temel
malzeme ile nüfuziyetine dayanmaktadır. Lazer kaplama prosesinde, malzemenin nihai kalite özellikleri
işlem parametrelerinden doğrudan etkilenmektedir. Bu parametrelerin önemi, malzeme makro ve mikro
yapısının incelenmesi üzerine yapılan çalışmalarla ortaya konulmaktadır. Bu derleme çalışmada, lazer
kaplama prosesi detaylı olarak incelenerek lazer gücü, ilerleme hızı, toz besleme hızı ve koruyucu gaz
proses parametrelerinin kaynak bölgesine etkileri irdelenmiş olup literatürde yer alan sonuçlar
derlenmiştir.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

118 C 083

Teşekkür

Yapılan bu çalışmaya, TÜBİTAK 2244 sanayi doktora programı (118 C 083 nolu proje) katkıda bulunmuş olup TÜBİTAK kurumuna teşekkürlerimizi sunarız.

Kaynakça

  • Al-Hamdani, K. S., Murray, J. W., Hussain, T., Clare, A. T. (2020) Controlling ceramic-reinforcement distribution in laser cladding of MMCs, Surface and Coatings Technology, 381, 125128. https://doi.org/10.1016/j.surfcoat.2019.125128.
  • Barr, C., Da, S., Easton, M., Orchowski, N., Matthews, N. (2018) Influence of macrosegregation on solidification cracking in laser clad ultra-high strength steels, Surface & Coatings Technology, 340, 126–136. https://doi.org/10.1016/j.surfcoat.2018.02.052
  • Bartkowski, D., Młynarczak, A., Piasecki, A., Dudziak, B., Gos̈ciański, M., Bartkowska, A. (2015) Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding, Optics and Laser Technology, 68, 191–201. https://doi.org/10.1016/j.optlastec.2014.12.005
  • Bu, R., Jin, A., Sun, Q., Zan, W., He, R. (2020) Study on laser cladding and properties of AZ63-Er alloy for automobile engine, Journal of Materials Research and Technology, 1–7. https://doi.org/10.1016/j.jmrt.2020.03.032
  • Calleja, A., Tabernero, I., Fernández, A., Celaya, A., Lamikiz, A., López De Lacalle, L. N. (2014) Improvement of strategies and parameters for multi-axis laser cladding operations, Optics and Lasers in Engineering, 56, 113-120. https://doi.org/10.1016/j.optlaseng.2013.12.017
  • Cavaliere, P. (2021) Laser Cladding of Metals, Springer Nature. https://doi.org/10.1007/978-3-030-53195-9
  • Chen, C., Wang, Y., Ou, H., He, Y., Tang, X. (2014) A review on remanufacture of dies and moulds, Journal of Cleaner Production, 64, 13–23. https://doi.org/10.1016/j.jclepro.2013.09.014
  • Chen, H., Lu, Y., Sun, Y., Wei, Y., Wang, X., Liu, D. (2020) Coarse TiC particles reinforced H13 steel matrix composites produced by laser cladding, Surface and Coatings Technology, 125867. https://doi.org/10.1016/j.surfcoat.2020.125867
  • Chen, J., Wang, S. H., Xue, L. (2012) On the development of microstructures and residual stresses during laser cladding and post-heat treatments, Journal of Materials Science, 47(2), 779–792. https://doi.org/10.1007/s10853-011-5854-4
  • Chen, T., Wu, W., Li, W., Liu, D. (2019) Laser cladding of nanoparticle TiC ceramic powder: Effects of process parameters on the quality characteristics of the coatings and its prediction model, Optics and Laser Technology, 116, 345–355. https://doi.org/10.1016/j.optlastec.2019.03.048
  • Chew, Y., Pang, J. H. L., Bi, G., & Song, B. (2015). Thermo-mechanical model for simulating laser cladding induced residual stresses with single and multiple clad beads. Journal of Materials Processing Technology, 224, 89–101. https://doi.org/https://doi.org/10.1016/j.jmatprotec.2015.04.031
  • Davim, J. P., Oliveira, C., Cardoso, A. (2006) Laser cladding: An experimental study of geometric form and hardness of coating using statistical analysis, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220(9), 1549–1554. https://doi.org/10.1243/09544054JEM641
  • Devojno, O. G., Feldshtein, E., Kardapolava, M. A., Lutsko, N. I. (2018) On the formation features, microstructure and microhardness of single laser tracks formed by laser cladding of a NiCrBSi self-fluxing alloy, Optics and Lasers in Engineering, 106, 32–38. https://doi.org/https://doi.org/10.1016/j.optlaseng.2018.02.004
  • El Cheikh, H., Courant, B., Branchu, S., Hascoët, J.-Y., Guillén, R. (2012) Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process, Optics and Lasers in Engineering, 50(3), 413–422. https://doi.org/https://doi.org/10.1016/j.optlaseng.2011.10.014
  • Farahmand, P., Kovacevic, R. (2014) An experimental-numerical investigation of heat distribution and stress field in single- and multi-track laser cladding by a high-power direct diode laser, Optics and Laser Technology, 63, 154–168. https://doi.org/10.1016/j.optlastec.2014.04.016
  • Fu, Y., Guo, N., Cheng, Q., Zhang, D., Feng, J. (2020) In-situ formation of laser-cladded layer on Ti-6Al-4 V titanium alloy in underwater environment, Optics and Lasers in Engineering, 131(2). https://doi.org/10.1016/j.optlaseng.2020.106104
  • Gao, J., Wu, C., Hao, Y., Xu, X., Guo, L. (2020) Numerical simulation and experimental investigation on three-dimensional modelling of single-track geometry and temperature evolution by laser cladding, Optics and Laser Technology, 129, 106287. https://doi.org/10.1016/j.optlastec.2020.106287
  • Hemmati, I., Ocelík, V., De Hosson, J. T. M. (2011) The effect of cladding speed on phase constitution and properties of AISI 431 stainless steel laser deposited coatings, Surface and Coatings Technology, 205(21–22), 5235–5239. https://doi.org/10.1016/j.surfcoat.2011.05.035
  • Hofman, J. T., de Lange, D. F., Pathiraj, B., Meijer, J. (2011) FEM modeling and experimental verification for dilution control in laser cladding, Journal of Materials Processing Technology, 211(2), 187–196. https://doi.org/https://doi.org/10.1016/j.jmatprotec.2010.09.007
  • Huang, L., Zhou, J., Xu, J., Huo, K., He, W., Meng, X., Huang, S. (2020) Microstructure and wear resistance of electromagnetic field assisted multi-layer laser clad Fe901 coating, Surface and Coatings Technology, 125876. https://doi.org/10.1016/j.surfcoat.2020.125876
  • Huang, Y., Khamesee, M. B., Toyserkani, E. (2016) A comprehensive analytical model for laser powder-fed additive manufacturing, Additive Manufacturing, 12, 90–99. https://doi.org/10.1016/j.addma.2016.07.001
  • Jiang, Y., Cheng, Y., Zhang, X., Yang, J., Yang, X. (2020) Optik Simulation and experimental investigations on the e ff ect of Marangoni convection on thermal fi eld during laser cladding process, Optik - International Journal for Light and Electron Optics, 203, 164044. https://doi.org/10.1016/j.ijleo.2019.164044
  • Kaierle, S., Overmeyer, L., Alfred, I., Rottwinkel, B., Hermsdorf, J., Wesling, V., Weidlich, N. (2017) CIRP Journal of Manufacturing Science and Technology Single-crystal turbine blade tip repair by laser cladding and remelting, CIRP Journal of Manufacturing Science and Technology, 19, 196–199. https://doi.org/10.1016/j.cirpj.2017.04.001
  • Karşı, A. (2019). Otomotivde lazer dolgu kaynağı parametrelerinin etkilerinin araştırılması, Yüksek Lisans Tezi, U.Ü. Fen Bilimleri Enstitüsü, Bursa.
  • Kattire, P., Paul, S., Singh, R., Yan, W. (2015) Experimental characterization of laser cladding of CPM 9V on H13 tool steel for die repair applications, Journal of Manufacturing Processes, 20, 492–499. https://doi.org/10.1016/j.jmapro.2015.06.018
  • Li-Yan, L., Yu, Z., Yun-Jie, J., Yan, L., Hong-Fang, T., Yu-Jun, C., Cheng-Xin, L. (2020) High speed laser cladded Ti-Cu-NiCoCrAlTaY burn resistant coating and its oxidation behavior, Surface and Coatings Technology, 392, 125697. https://doi.org/10.1016/j.surfcoat.2020.125697
  • Li, C., Sun, S., Zhang, Y., Liu, C., Deng, P., Zeng, M., Wang, F., Ma, P., Li, W., Wang, Y. (2019) Effects of laser processing parameters on microstructure and mechanical properties of additively manufactured AlSi10Mg alloys reinforced by TiC, International Journal of Advanced Manufacturing Technology, 103(5–8), 3235–3246. https://doi.org/10.1007/s00170-019-04001-9
  • Li, X., Li, T., Shi, B., Wang, D., Adnan, M., Lu, H. (2020) The influence of substrate tilt angle on the morphology of laser cladding layer, Surface and Coatings Technology, 391, 125706. https://doi.org/10.1016/j.surfcoat.2020.125706
  • Liu, H., Hu, Z., Qin, X., Wang, Y., Zhang, J. (2017) Parameter optimization and experimental study of the sprocket repairing using laser cladding, Int J Adv Manuf Technology, 91:3967–3975. https://doi.org/10.1007/s00170-017-0066-y
  • Liu, J., Yu, H., Chen, C., Weng, F., Dai, J. (2017) Research and development status of laser cladding on magnesium alloys: A review, Optics and Lasers in Engineering, 93, 195–210. https://doi.org/10.1016/j.optlaseng.2017.02.007
  • Locs, S., Boiko, I., Leitans, A., Drozdovs, P. (2017) Experimental study of coaxial laser cladding of tool steel, Engineering for Rural Development, 16, 1038–1046. https://doi.org/10.22616/ERDev2017.16.N219
  • Lourenço, J. M., Sun, S. Da, Sharp, K., Luzin, V., Klein, A. N., Wang, C. H., Brandt, M. (2016) Fatigue and fracture behavior of laser clad repair of AerMet® 100 ultra-high strength steel, International Journal of Fatigue, 85, 18–30. https://doi.org/10.1016/j.ijfatigue.2015.11.021
  • Lu, J. Z., Cao, J., Lu, H. F., Zhang, L. Y., Luo, K. Y. (2019) Wear properties and microstructural analyses of Fe-based coatings with various WC contents on H13 die steel by laser cladding, Surface & Coatings Technology, 369, 228–237. https://doi.org/10.1016/j.surfcoat.2019.04.063
  • Ma, M., Xiong, W., Lian, Y., Han, D., Zhao, C., Zhang, J. (2020) Modeling and optimization for laser cladding via multi-objective quantum-behaved particle swarm optimization algorithm, Surface and Coatings Technology, 381, 125129. https://doi.org/10.1016/j.surfcoat.2019.125129
  • Marin, E., Zanocco, M., Boschetto, F., Santini, M., Zhu, W., Adachi, T., Ohgitani, E., McEntire, B. J., Bal, B. S., Pezzotti, G. (2020) Silicon nitride laser cladding: A feasible technique to improve the biological response of zirconia, Materials & Design, 191, 108649. https://doi.org/10.1016/j.matdes.2020.108649
  • Marques, M. J., Ramasamy, A., Batista, A. C., Nobre, J. P., Loureiro, A. (2015) Effect of heat treatment on microstructure and residual stress fields of a weld multilayer austenitic steel clad, Journal of Materials Processing Technology, 222, 52–60. https://doi.org/10.1016/j.jmatprotec.2015.03.004
  • Marzban, J., Ghaseminejad, P., Ahmadzadeh, M. H., Teimouri, R. (2014) Experimental investigation and statistical optimization of laser surface cladding parameters, International Journal of Advanced Manufacturing Technology, 76(5–8), 1163–1172. https://doi.org/10.1007/s00170-014-6338-x
  • Mondal, S., Paul, C. P., Kukreja, L. M., Bandyopadhyay, A., Pal, P. K. (2013) Application of Taguchi-based gray relational analysis for evaluating the optimal laser cladding parameters for AISI1040 steel plane surface, International Journal of Advanced Manufacturing Technology, 66(1–4), 91–96. https://doi.org/10.1007/s00170-012-4308-8
  • Moskal, G., Niemiec, D., Chmiela, B., Kałamarz, P., Durejko, T., Ziętala, M., Czujko, T. (2020) Microstructural characterization of laser-cladded NiCrAlY coatings on Inconel 625 Ni-based superalloy and 316L stainless steel, Surface and Coatings Technology, 387, 125317. https://doi.org/10.1016/j.surfcoat.2019.125317
  • Muvvala, G., Patra Karmakar, D., Nath, A. K. (2017) Online monitoring of thermo-cycles and its correlation with microstructure in laser cladding of nickel based super alloy, Optics and Lasers in Engineering, 88, 139–152. https://doi.org/https://doi.org/10.1016/j.optlaseng.2016.08.005
  • Quazi, M. M., Fazal, M. A., Haseeb, A. S. M. A., Yusof, F., Masjuki, H. H., Arslan, A. (2016) Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: A review, Journal of Rare Earths, 34(6), 549–564. https://doi.org/10.1016/S1002-0721(16)60061-3
  • Reddy, L., Preston, S. P., Shipway, P. H., Davis, C., Hussain, T. (2018) Process parameter optimisation of laser clad iron based alloy: Predictive models of deposition efficiency, porosity and dilution, Surface and Coatings Technology, 349, 198–207. https://doi.org/https://doi.org/10.1016/j.surfcoat.2018.05.054
  • Ren, H., Ren, J., Zhao, L., Wang, Q. (2013) Simulation Analysis on Selection of Laser Cladding Repair Material for the Diesel Engine Crankshaft Crack, Advanced Materials Research, 820, 175–179. https://doi.org/10.4028/www.scientific.net/AMR.820.175
  • Riveiro, A., Mejías, A., Lusquiños, F., del Val, J., Comesaña, R., Pardo, J., Pou, J. (2014) Laser cladding of aluminium on AISI 304 stainless steel with high-power diode lasers, Surface and Coatings Technology, 253, 214–220. https://doi.org/https://doi.org/10.1016/j.surfcoat.2014.05.039
  • Roy, T., Paradowska, A., Abrahams, R., Law, M., Mutton, P., Soodi, M., Yan, W. (2020) Residual stress in laser cladded heavy-haul rails investigated by neutron diffraction, Journal of Materials Processing Technology, 278, 116511. https://doi.org/10.1016/j.jmatprotec.2019.116511
  • Singh, S., Ramakrishna, S., Singh. R. (2017) Material issues in additive manufacturing A review, Journal of Manufacturing Processes, 25, 185–200. doi:10.1016/j.jmapro.2016.11.006
  • Shamsaei, N., Yadollahi, A., Bian, L., Thompson, S. M. (2015) An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control, Additive Manufacturing, 8, 12–35. https://doi.org/10.1016/j.addma.2015.07.002
  • Shi, J., Zhu, P., Fu, G., Shi, S. (2018) Geometry characteristics modeling and process optimization in coaxial laser inside wire cladding, Optics & Laser Technology, 101, 341–348. https://doi.org/https://doi.org/10.1016/j.optlastec.2017.10.035
  • Shi, Y., Jin, H., Wu, P. D., Lloyd, D. J. (2017) Acta Materialia Analysis of roping in an AA6111 T4P automotive sheet in 3D deformation states, Acta Materialia, 124, 598–607. https://doi.org/10.1016/j.actamat.2016.11.028
  • Şimşek, T., İzciler, M., Ozcan, Ş., Akkurt, A. (2019) Laser Cladding of Hot Work Tool Steel (H13) With Nano Tic Particles, Turkish Journal of Engineering, 3(1), 1–10. https://doi.org/10.31127/tuje.419531
  • Siva Prasad, H., Brueckner, F., Volpp, J., Kaplan, A. F. H. (2020) Laser metal deposition of copper on diverse metals using green laser sources, International Journal of Advanced Manufacturing Technology, 107(3–4), 1559–1568. https://doi.org/10.1007/s00170-020-05117-z
  • Sun, G., Tong, Z., Fang, X., Liu, X., Ni, Z., Zhang, W. (2016) Effect of scanning speeds on microstructure and wear behavior of laser-processed NiCr–Cr3C2–MoS2–CeO2 on 38CrMoAl steel, Optics & Laser Technology, 77, 80–90. https://doi.org/https://doi.org/10.1016/j.optlastec.2015.08.008
  • Tabernero, I., Lamikiz, A., Ukar, E., Arregi, B., Figueras, J., Soriano, C. (2009) Parameter optimization for mould and die recovering using laser cladding, AIP Conference Proceedings, 1181, 484–493. https://doi.org/10.1063/1.3273666
  • Tamanna, N., Crouch, R., Naher, S. (2019) Progress in numerical simulation of the laser cladding process, Optics and Lasers in Engineering, 122, 151–163. https://doi.org/10.1016/j.optlaseng.2019.05.026
  • Theron, M., Rooyen, C. Van, Malabi, K. (2020) Investigation into laser refurbishment and transformation hardening of cast iron forming dies for the automotive industry Investigation into laser refurbishment and transformation hardening of cast iron forming dies for the automotive industry, 022071. https://doi.org/10.2351/7.0000106
  • Toyserkani, E., Khajepour, A., Corbin, S. (2004) Laser Cladding, CRC Press, New York. https://doi.org/10.1201/9781420039177
  • Wang, Q., Chen, F. Q., Zhang, L., Li, J. D., Zhang, J. W. (2020) Microstructure evolution and high temperature corrosion behavior of FeCrBSi coatings prepared by laser cladding, Ceramics International, 46, 17233-17242. https://doi.org/10.1016/j.ceramint.2020.04.010
  • Weng, F., Chen, C., Yu, H. (2014) Research status of laser cladding on titanium and its alloys : A review, Journal of Materials&Design, 58, 412–425. https://doi.org/10.1016/j.matdes.2014.01.077
  • Xu, X., Mi, G., Xiong, L., Jiang, P., Shao, X., Wang, C. (2018) Morphologies, microstructures and properties of TiC particle reinforced Inconel 625 coatings obtained by laser cladding with wire, Journal of Alloys and Compounds, 740, 16–27. https://doi.org/10.1016/j.jallcom.2017.12.298
  • Yu, J., Rombouts, M., Maes, G. (2013) Cracking behavior and mechanical properties of austenitic stainless steel parts produced by laser metal deposition, Materials and Design, 45, 228–235. https://doi.org/10.1016/j.matdes.2012.08.078
  • Yu, T., Zhao, Y., Sun, J., Chen, Y., Qu, W. (2018) Process parameters optimization and mechanical properties of forming parts by direct laser fabrication of YCF101 alloy, Journal of Materials Processing Technology, 262, 75–84. https://doi.org/10.1016/j.jmatprotec.2018.06.023
  • Zareh, P., Urbanic, R. J. (2020) Numerical simulations for laser clad beads with a variable side-to-side overlap condition, The International Journal of Advanced Manufacturing Technology, 1027–1058. https://doi.org/10.1007/s00170-020-05565-7
  • Zhan, X., Qi, C., Gao, Z., Tian, D., Wang, Z. (2019) The influence of heat input on microstructure and porosity during laser cladding of Invar alloy, Optics and Laser Technology, 113, 453–461. https://doi.org/10.1016/j.optlastec.2019.01.015
  • Zhang, Z., Farahmand, P., Kovacevic, R. (2016) Laser cladding of 420 stainless steel with molybdenum on mild steel A36 by a high power direct diode laser, Materials & Design, 109, 686–699. https://doi.org/https://doi.org/10.1016/j.matdes.2016.07.114
  • Zhao, J., Wang, G., Wang, X., Luo, S., Wang, L., Rong, Y. (2020a) Multicomponent multiphase modeling of dissimilar laser cladding process with high-speed steel on medium carbon steel, International Journal of Heat and Mass Transfer, 148, 118990. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118990
  • Zhao, Y., Yu, T., Sun, J., Jiang, S. (2020b) Microstructure and properties of laser cladded B4C/TiC/Ni-based composite coating, International Journal of Refractory Metals and Hard Materials, 86, 105112. https://doi.org/10.1016/j.ijrmhm.2019.105112
  • Zheng, M., Fan, D., Li, X. K., Li, W. F., Liu, Q. B., Zhang, J. B. (2008) Microstructure and osteoblast response of gradient bioceramic coating on titanium alloy fabricated by laser cladding, Applied Surface Science, 255(2), 426–428. https://doi.org/10.1016/j.apsusc.2008.06.078
  • Zhu, L., Wang, S., Pan, H., Yuan, C., Chen, X. (2020) Research on remanufacturing strategy for 45 steel gear using H13 steel powder based on laser cladding technology, Journal of Manufacturing Processes, 49, 344–354. https://doi.org/10.1016/j.jmapro.2019.12.009
  • Zhu, Y., Yang, Y., Mu, X., Wang, W., Yao, Z., Yang, H. (2019) Study on wear and RCF performance of repaired damage railway wheels : Assessing laser cladding to repair local defects on wheels, Wear, 431, 126–136. https://doi.org/10.1016/j.wear.2019.04.028

Laser Cladding Process and Process Parameters: A Review

Yıl 2021, , 723 - 736, 31.08.2021
https://doi.org/10.17482/uumfd.798666

Öz

Laser cladding method, which is the one of leading manufacturing technologies of today, is used in various applications such as prototyping, product repair and material coating. It has a wide application areas: aviation, space, automotive, defense industry, medicine, etc. The production method is based on the melting of the powder material using a laser beam and its penetration with the substrate. In the laser cladding process, the final quality properties of the material are directly affected by the process parameters. The importance of these parameters is revealed by the studies on the macrostructure and microstructure of the material. In this review article, the laser cladding process has researched in detail, the effects of laser power, welding speed, powder feed rate, shielding gas process parameters on the welding area have examined, and the results obtained have given by gathered together.

Proje Numarası

118 C 083

Kaynakça

  • Al-Hamdani, K. S., Murray, J. W., Hussain, T., Clare, A. T. (2020) Controlling ceramic-reinforcement distribution in laser cladding of MMCs, Surface and Coatings Technology, 381, 125128. https://doi.org/10.1016/j.surfcoat.2019.125128.
  • Barr, C., Da, S., Easton, M., Orchowski, N., Matthews, N. (2018) Influence of macrosegregation on solidification cracking in laser clad ultra-high strength steels, Surface & Coatings Technology, 340, 126–136. https://doi.org/10.1016/j.surfcoat.2018.02.052
  • Bartkowski, D., Młynarczak, A., Piasecki, A., Dudziak, B., Gos̈ciański, M., Bartkowska, A. (2015) Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding, Optics and Laser Technology, 68, 191–201. https://doi.org/10.1016/j.optlastec.2014.12.005
  • Bu, R., Jin, A., Sun, Q., Zan, W., He, R. (2020) Study on laser cladding and properties of AZ63-Er alloy for automobile engine, Journal of Materials Research and Technology, 1–7. https://doi.org/10.1016/j.jmrt.2020.03.032
  • Calleja, A., Tabernero, I., Fernández, A., Celaya, A., Lamikiz, A., López De Lacalle, L. N. (2014) Improvement of strategies and parameters for multi-axis laser cladding operations, Optics and Lasers in Engineering, 56, 113-120. https://doi.org/10.1016/j.optlaseng.2013.12.017
  • Cavaliere, P. (2021) Laser Cladding of Metals, Springer Nature. https://doi.org/10.1007/978-3-030-53195-9
  • Chen, C., Wang, Y., Ou, H., He, Y., Tang, X. (2014) A review on remanufacture of dies and moulds, Journal of Cleaner Production, 64, 13–23. https://doi.org/10.1016/j.jclepro.2013.09.014
  • Chen, H., Lu, Y., Sun, Y., Wei, Y., Wang, X., Liu, D. (2020) Coarse TiC particles reinforced H13 steel matrix composites produced by laser cladding, Surface and Coatings Technology, 125867. https://doi.org/10.1016/j.surfcoat.2020.125867
  • Chen, J., Wang, S. H., Xue, L. (2012) On the development of microstructures and residual stresses during laser cladding and post-heat treatments, Journal of Materials Science, 47(2), 779–792. https://doi.org/10.1007/s10853-011-5854-4
  • Chen, T., Wu, W., Li, W., Liu, D. (2019) Laser cladding of nanoparticle TiC ceramic powder: Effects of process parameters on the quality characteristics of the coatings and its prediction model, Optics and Laser Technology, 116, 345–355. https://doi.org/10.1016/j.optlastec.2019.03.048
  • Chew, Y., Pang, J. H. L., Bi, G., & Song, B. (2015). Thermo-mechanical model for simulating laser cladding induced residual stresses with single and multiple clad beads. Journal of Materials Processing Technology, 224, 89–101. https://doi.org/https://doi.org/10.1016/j.jmatprotec.2015.04.031
  • Davim, J. P., Oliveira, C., Cardoso, A. (2006) Laser cladding: An experimental study of geometric form and hardness of coating using statistical analysis, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220(9), 1549–1554. https://doi.org/10.1243/09544054JEM641
  • Devojno, O. G., Feldshtein, E., Kardapolava, M. A., Lutsko, N. I. (2018) On the formation features, microstructure and microhardness of single laser tracks formed by laser cladding of a NiCrBSi self-fluxing alloy, Optics and Lasers in Engineering, 106, 32–38. https://doi.org/https://doi.org/10.1016/j.optlaseng.2018.02.004
  • El Cheikh, H., Courant, B., Branchu, S., Hascoët, J.-Y., Guillén, R. (2012) Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process, Optics and Lasers in Engineering, 50(3), 413–422. https://doi.org/https://doi.org/10.1016/j.optlaseng.2011.10.014
  • Farahmand, P., Kovacevic, R. (2014) An experimental-numerical investigation of heat distribution and stress field in single- and multi-track laser cladding by a high-power direct diode laser, Optics and Laser Technology, 63, 154–168. https://doi.org/10.1016/j.optlastec.2014.04.016
  • Fu, Y., Guo, N., Cheng, Q., Zhang, D., Feng, J. (2020) In-situ formation of laser-cladded layer on Ti-6Al-4 V titanium alloy in underwater environment, Optics and Lasers in Engineering, 131(2). https://doi.org/10.1016/j.optlaseng.2020.106104
  • Gao, J., Wu, C., Hao, Y., Xu, X., Guo, L. (2020) Numerical simulation and experimental investigation on three-dimensional modelling of single-track geometry and temperature evolution by laser cladding, Optics and Laser Technology, 129, 106287. https://doi.org/10.1016/j.optlastec.2020.106287
  • Hemmati, I., Ocelík, V., De Hosson, J. T. M. (2011) The effect of cladding speed on phase constitution and properties of AISI 431 stainless steel laser deposited coatings, Surface and Coatings Technology, 205(21–22), 5235–5239. https://doi.org/10.1016/j.surfcoat.2011.05.035
  • Hofman, J. T., de Lange, D. F., Pathiraj, B., Meijer, J. (2011) FEM modeling and experimental verification for dilution control in laser cladding, Journal of Materials Processing Technology, 211(2), 187–196. https://doi.org/https://doi.org/10.1016/j.jmatprotec.2010.09.007
  • Huang, L., Zhou, J., Xu, J., Huo, K., He, W., Meng, X., Huang, S. (2020) Microstructure and wear resistance of electromagnetic field assisted multi-layer laser clad Fe901 coating, Surface and Coatings Technology, 125876. https://doi.org/10.1016/j.surfcoat.2020.125876
  • Huang, Y., Khamesee, M. B., Toyserkani, E. (2016) A comprehensive analytical model for laser powder-fed additive manufacturing, Additive Manufacturing, 12, 90–99. https://doi.org/10.1016/j.addma.2016.07.001
  • Jiang, Y., Cheng, Y., Zhang, X., Yang, J., Yang, X. (2020) Optik Simulation and experimental investigations on the e ff ect of Marangoni convection on thermal fi eld during laser cladding process, Optik - International Journal for Light and Electron Optics, 203, 164044. https://doi.org/10.1016/j.ijleo.2019.164044
  • Kaierle, S., Overmeyer, L., Alfred, I., Rottwinkel, B., Hermsdorf, J., Wesling, V., Weidlich, N. (2017) CIRP Journal of Manufacturing Science and Technology Single-crystal turbine blade tip repair by laser cladding and remelting, CIRP Journal of Manufacturing Science and Technology, 19, 196–199. https://doi.org/10.1016/j.cirpj.2017.04.001
  • Karşı, A. (2019). Otomotivde lazer dolgu kaynağı parametrelerinin etkilerinin araştırılması, Yüksek Lisans Tezi, U.Ü. Fen Bilimleri Enstitüsü, Bursa.
  • Kattire, P., Paul, S., Singh, R., Yan, W. (2015) Experimental characterization of laser cladding of CPM 9V on H13 tool steel for die repair applications, Journal of Manufacturing Processes, 20, 492–499. https://doi.org/10.1016/j.jmapro.2015.06.018
  • Li-Yan, L., Yu, Z., Yun-Jie, J., Yan, L., Hong-Fang, T., Yu-Jun, C., Cheng-Xin, L. (2020) High speed laser cladded Ti-Cu-NiCoCrAlTaY burn resistant coating and its oxidation behavior, Surface and Coatings Technology, 392, 125697. https://doi.org/10.1016/j.surfcoat.2020.125697
  • Li, C., Sun, S., Zhang, Y., Liu, C., Deng, P., Zeng, M., Wang, F., Ma, P., Li, W., Wang, Y. (2019) Effects of laser processing parameters on microstructure and mechanical properties of additively manufactured AlSi10Mg alloys reinforced by TiC, International Journal of Advanced Manufacturing Technology, 103(5–8), 3235–3246. https://doi.org/10.1007/s00170-019-04001-9
  • Li, X., Li, T., Shi, B., Wang, D., Adnan, M., Lu, H. (2020) The influence of substrate tilt angle on the morphology of laser cladding layer, Surface and Coatings Technology, 391, 125706. https://doi.org/10.1016/j.surfcoat.2020.125706
  • Liu, H., Hu, Z., Qin, X., Wang, Y., Zhang, J. (2017) Parameter optimization and experimental study of the sprocket repairing using laser cladding, Int J Adv Manuf Technology, 91:3967–3975. https://doi.org/10.1007/s00170-017-0066-y
  • Liu, J., Yu, H., Chen, C., Weng, F., Dai, J. (2017) Research and development status of laser cladding on magnesium alloys: A review, Optics and Lasers in Engineering, 93, 195–210. https://doi.org/10.1016/j.optlaseng.2017.02.007
  • Locs, S., Boiko, I., Leitans, A., Drozdovs, P. (2017) Experimental study of coaxial laser cladding of tool steel, Engineering for Rural Development, 16, 1038–1046. https://doi.org/10.22616/ERDev2017.16.N219
  • Lourenço, J. M., Sun, S. Da, Sharp, K., Luzin, V., Klein, A. N., Wang, C. H., Brandt, M. (2016) Fatigue and fracture behavior of laser clad repair of AerMet® 100 ultra-high strength steel, International Journal of Fatigue, 85, 18–30. https://doi.org/10.1016/j.ijfatigue.2015.11.021
  • Lu, J. Z., Cao, J., Lu, H. F., Zhang, L. Y., Luo, K. Y. (2019) Wear properties and microstructural analyses of Fe-based coatings with various WC contents on H13 die steel by laser cladding, Surface & Coatings Technology, 369, 228–237. https://doi.org/10.1016/j.surfcoat.2019.04.063
  • Ma, M., Xiong, W., Lian, Y., Han, D., Zhao, C., Zhang, J. (2020) Modeling and optimization for laser cladding via multi-objective quantum-behaved particle swarm optimization algorithm, Surface and Coatings Technology, 381, 125129. https://doi.org/10.1016/j.surfcoat.2019.125129
  • Marin, E., Zanocco, M., Boschetto, F., Santini, M., Zhu, W., Adachi, T., Ohgitani, E., McEntire, B. J., Bal, B. S., Pezzotti, G. (2020) Silicon nitride laser cladding: A feasible technique to improve the biological response of zirconia, Materials & Design, 191, 108649. https://doi.org/10.1016/j.matdes.2020.108649
  • Marques, M. J., Ramasamy, A., Batista, A. C., Nobre, J. P., Loureiro, A. (2015) Effect of heat treatment on microstructure and residual stress fields of a weld multilayer austenitic steel clad, Journal of Materials Processing Technology, 222, 52–60. https://doi.org/10.1016/j.jmatprotec.2015.03.004
  • Marzban, J., Ghaseminejad, P., Ahmadzadeh, M. H., Teimouri, R. (2014) Experimental investigation and statistical optimization of laser surface cladding parameters, International Journal of Advanced Manufacturing Technology, 76(5–8), 1163–1172. https://doi.org/10.1007/s00170-014-6338-x
  • Mondal, S., Paul, C. P., Kukreja, L. M., Bandyopadhyay, A., Pal, P. K. (2013) Application of Taguchi-based gray relational analysis for evaluating the optimal laser cladding parameters for AISI1040 steel plane surface, International Journal of Advanced Manufacturing Technology, 66(1–4), 91–96. https://doi.org/10.1007/s00170-012-4308-8
  • Moskal, G., Niemiec, D., Chmiela, B., Kałamarz, P., Durejko, T., Ziętala, M., Czujko, T. (2020) Microstructural characterization of laser-cladded NiCrAlY coatings on Inconel 625 Ni-based superalloy and 316L stainless steel, Surface and Coatings Technology, 387, 125317. https://doi.org/10.1016/j.surfcoat.2019.125317
  • Muvvala, G., Patra Karmakar, D., Nath, A. K. (2017) Online monitoring of thermo-cycles and its correlation with microstructure in laser cladding of nickel based super alloy, Optics and Lasers in Engineering, 88, 139–152. https://doi.org/https://doi.org/10.1016/j.optlaseng.2016.08.005
  • Quazi, M. M., Fazal, M. A., Haseeb, A. S. M. A., Yusof, F., Masjuki, H. H., Arslan, A. (2016) Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: A review, Journal of Rare Earths, 34(6), 549–564. https://doi.org/10.1016/S1002-0721(16)60061-3
  • Reddy, L., Preston, S. P., Shipway, P. H., Davis, C., Hussain, T. (2018) Process parameter optimisation of laser clad iron based alloy: Predictive models of deposition efficiency, porosity and dilution, Surface and Coatings Technology, 349, 198–207. https://doi.org/https://doi.org/10.1016/j.surfcoat.2018.05.054
  • Ren, H., Ren, J., Zhao, L., Wang, Q. (2013) Simulation Analysis on Selection of Laser Cladding Repair Material for the Diesel Engine Crankshaft Crack, Advanced Materials Research, 820, 175–179. https://doi.org/10.4028/www.scientific.net/AMR.820.175
  • Riveiro, A., Mejías, A., Lusquiños, F., del Val, J., Comesaña, R., Pardo, J., Pou, J. (2014) Laser cladding of aluminium on AISI 304 stainless steel with high-power diode lasers, Surface and Coatings Technology, 253, 214–220. https://doi.org/https://doi.org/10.1016/j.surfcoat.2014.05.039
  • Roy, T., Paradowska, A., Abrahams, R., Law, M., Mutton, P., Soodi, M., Yan, W. (2020) Residual stress in laser cladded heavy-haul rails investigated by neutron diffraction, Journal of Materials Processing Technology, 278, 116511. https://doi.org/10.1016/j.jmatprotec.2019.116511
  • Singh, S., Ramakrishna, S., Singh. R. (2017) Material issues in additive manufacturing A review, Journal of Manufacturing Processes, 25, 185–200. doi:10.1016/j.jmapro.2016.11.006
  • Shamsaei, N., Yadollahi, A., Bian, L., Thompson, S. M. (2015) An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control, Additive Manufacturing, 8, 12–35. https://doi.org/10.1016/j.addma.2015.07.002
  • Shi, J., Zhu, P., Fu, G., Shi, S. (2018) Geometry characteristics modeling and process optimization in coaxial laser inside wire cladding, Optics & Laser Technology, 101, 341–348. https://doi.org/https://doi.org/10.1016/j.optlastec.2017.10.035
  • Shi, Y., Jin, H., Wu, P. D., Lloyd, D. J. (2017) Acta Materialia Analysis of roping in an AA6111 T4P automotive sheet in 3D deformation states, Acta Materialia, 124, 598–607. https://doi.org/10.1016/j.actamat.2016.11.028
  • Şimşek, T., İzciler, M., Ozcan, Ş., Akkurt, A. (2019) Laser Cladding of Hot Work Tool Steel (H13) With Nano Tic Particles, Turkish Journal of Engineering, 3(1), 1–10. https://doi.org/10.31127/tuje.419531
  • Siva Prasad, H., Brueckner, F., Volpp, J., Kaplan, A. F. H. (2020) Laser metal deposition of copper on diverse metals using green laser sources, International Journal of Advanced Manufacturing Technology, 107(3–4), 1559–1568. https://doi.org/10.1007/s00170-020-05117-z
  • Sun, G., Tong, Z., Fang, X., Liu, X., Ni, Z., Zhang, W. (2016) Effect of scanning speeds on microstructure and wear behavior of laser-processed NiCr–Cr3C2–MoS2–CeO2 on 38CrMoAl steel, Optics & Laser Technology, 77, 80–90. https://doi.org/https://doi.org/10.1016/j.optlastec.2015.08.008
  • Tabernero, I., Lamikiz, A., Ukar, E., Arregi, B., Figueras, J., Soriano, C. (2009) Parameter optimization for mould and die recovering using laser cladding, AIP Conference Proceedings, 1181, 484–493. https://doi.org/10.1063/1.3273666
  • Tamanna, N., Crouch, R., Naher, S. (2019) Progress in numerical simulation of the laser cladding process, Optics and Lasers in Engineering, 122, 151–163. https://doi.org/10.1016/j.optlaseng.2019.05.026
  • Theron, M., Rooyen, C. Van, Malabi, K. (2020) Investigation into laser refurbishment and transformation hardening of cast iron forming dies for the automotive industry Investigation into laser refurbishment and transformation hardening of cast iron forming dies for the automotive industry, 022071. https://doi.org/10.2351/7.0000106
  • Toyserkani, E., Khajepour, A., Corbin, S. (2004) Laser Cladding, CRC Press, New York. https://doi.org/10.1201/9781420039177
  • Wang, Q., Chen, F. Q., Zhang, L., Li, J. D., Zhang, J. W. (2020) Microstructure evolution and high temperature corrosion behavior of FeCrBSi coatings prepared by laser cladding, Ceramics International, 46, 17233-17242. https://doi.org/10.1016/j.ceramint.2020.04.010
  • Weng, F., Chen, C., Yu, H. (2014) Research status of laser cladding on titanium and its alloys : A review, Journal of Materials&Design, 58, 412–425. https://doi.org/10.1016/j.matdes.2014.01.077
  • Xu, X., Mi, G., Xiong, L., Jiang, P., Shao, X., Wang, C. (2018) Morphologies, microstructures and properties of TiC particle reinforced Inconel 625 coatings obtained by laser cladding with wire, Journal of Alloys and Compounds, 740, 16–27. https://doi.org/10.1016/j.jallcom.2017.12.298
  • Yu, J., Rombouts, M., Maes, G. (2013) Cracking behavior and mechanical properties of austenitic stainless steel parts produced by laser metal deposition, Materials and Design, 45, 228–235. https://doi.org/10.1016/j.matdes.2012.08.078
  • Yu, T., Zhao, Y., Sun, J., Chen, Y., Qu, W. (2018) Process parameters optimization and mechanical properties of forming parts by direct laser fabrication of YCF101 alloy, Journal of Materials Processing Technology, 262, 75–84. https://doi.org/10.1016/j.jmatprotec.2018.06.023
  • Zareh, P., Urbanic, R. J. (2020) Numerical simulations for laser clad beads with a variable side-to-side overlap condition, The International Journal of Advanced Manufacturing Technology, 1027–1058. https://doi.org/10.1007/s00170-020-05565-7
  • Zhan, X., Qi, C., Gao, Z., Tian, D., Wang, Z. (2019) The influence of heat input on microstructure and porosity during laser cladding of Invar alloy, Optics and Laser Technology, 113, 453–461. https://doi.org/10.1016/j.optlastec.2019.01.015
  • Zhang, Z., Farahmand, P., Kovacevic, R. (2016) Laser cladding of 420 stainless steel with molybdenum on mild steel A36 by a high power direct diode laser, Materials & Design, 109, 686–699. https://doi.org/https://doi.org/10.1016/j.matdes.2016.07.114
  • Zhao, J., Wang, G., Wang, X., Luo, S., Wang, L., Rong, Y. (2020a) Multicomponent multiphase modeling of dissimilar laser cladding process with high-speed steel on medium carbon steel, International Journal of Heat and Mass Transfer, 148, 118990. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118990
  • Zhao, Y., Yu, T., Sun, J., Jiang, S. (2020b) Microstructure and properties of laser cladded B4C/TiC/Ni-based composite coating, International Journal of Refractory Metals and Hard Materials, 86, 105112. https://doi.org/10.1016/j.ijrmhm.2019.105112
  • Zheng, M., Fan, D., Li, X. K., Li, W. F., Liu, Q. B., Zhang, J. B. (2008) Microstructure and osteoblast response of gradient bioceramic coating on titanium alloy fabricated by laser cladding, Applied Surface Science, 255(2), 426–428. https://doi.org/10.1016/j.apsusc.2008.06.078
  • Zhu, L., Wang, S., Pan, H., Yuan, C., Chen, X. (2020) Research on remanufacturing strategy for 45 steel gear using H13 steel powder based on laser cladding technology, Journal of Manufacturing Processes, 49, 344–354. https://doi.org/10.1016/j.jmapro.2019.12.009
  • Zhu, Y., Yang, Y., Mu, X., Wang, W., Yao, Z., Yang, H. (2019) Study on wear and RCF performance of repaired damage railway wheels : Assessing laser cladding to repair local defects on wheels, Wear, 431, 126–136. https://doi.org/10.1016/j.wear.2019.04.028
Toplam 69 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Derleme Makaleler
Yazarlar

Çiğdem Dindar 0000-0002-4597-906X

Meryem Altay 0000-0001-6930-6292

Hakan Aydın 0000-0001-7364-6281

Proje Numarası 118 C 083
Yayımlanma Tarihi 31 Ağustos 2021
Gönderilme Tarihi 22 Eylül 2020
Kabul Tarihi 8 Temmuz 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Dindar, Ç., Altay, M., & Aydın, H. (2021). LAZER KAPLAMA PROSESİ ve PROSES PARAMETRELERİ: DERLEME ÇALIŞMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(2), 723-736. https://doi.org/10.17482/uumfd.798666
AMA Dindar Ç, Altay M, Aydın H. LAZER KAPLAMA PROSESİ ve PROSES PARAMETRELERİ: DERLEME ÇALIŞMASI. UUJFE. Ağustos 2021;26(2):723-736. doi:10.17482/uumfd.798666
Chicago Dindar, Çiğdem, Meryem Altay, ve Hakan Aydın. “LAZER KAPLAMA PROSESİ Ve PROSES PARAMETRELERİ: DERLEME ÇALIŞMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, sy. 2 (Ağustos 2021): 723-36. https://doi.org/10.17482/uumfd.798666.
EndNote Dindar Ç, Altay M, Aydın H (01 Ağustos 2021) LAZER KAPLAMA PROSESİ ve PROSES PARAMETRELERİ: DERLEME ÇALIŞMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26 2 723–736.
IEEE Ç. Dindar, M. Altay, ve H. Aydın, “LAZER KAPLAMA PROSESİ ve PROSES PARAMETRELERİ: DERLEME ÇALIŞMASI”, UUJFE, c. 26, sy. 2, ss. 723–736, 2021, doi: 10.17482/uumfd.798666.
ISNAD Dindar, Çiğdem vd. “LAZER KAPLAMA PROSESİ Ve PROSES PARAMETRELERİ: DERLEME ÇALIŞMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/2 (Ağustos 2021), 723-736. https://doi.org/10.17482/uumfd.798666.
JAMA Dindar Ç, Altay M, Aydın H. LAZER KAPLAMA PROSESİ ve PROSES PARAMETRELERİ: DERLEME ÇALIŞMASI. UUJFE. 2021;26:723–736.
MLA Dindar, Çiğdem vd. “LAZER KAPLAMA PROSESİ Ve PROSES PARAMETRELERİ: DERLEME ÇALIŞMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 26, sy. 2, 2021, ss. 723-36, doi:10.17482/uumfd.798666.
Vancouver Dindar Ç, Altay M, Aydın H. LAZER KAPLAMA PROSESİ ve PROSES PARAMETRELERİ: DERLEME ÇALIŞMASI. UUJFE. 2021;26(2):723-36.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr