Günümüz lider üretim teknolojilerinden biri olan lazer kaplama prototip, onarım ve imalat
uygulamalarında kullanılmakta olup havacılık, uzay, otomotiv, savunma sanayi, tıp vb. alanlarda geniş
uygulama alanına sahiptir. Üretim yöntemi, lazer ışını kullanılarak toz malzemenin ergimesi ve temel
malzeme ile nüfuziyetine dayanmaktadır. Lazer kaplama prosesinde, malzemenin nihai kalite özellikleri
işlem parametrelerinden doğrudan etkilenmektedir. Bu parametrelerin önemi, malzeme makro ve mikro
yapısının incelenmesi üzerine yapılan çalışmalarla ortaya konulmaktadır. Bu derleme çalışmada, lazer
kaplama prosesi detaylı olarak incelenerek lazer gücü, ilerleme hızı, toz besleme hızı ve koruyucu gaz
proses parametrelerinin kaynak bölgesine etkileri irdelenmiş olup literatürde yer alan sonuçlar
derlenmiştir.
Yapılan bu çalışmaya, TÜBİTAK 2244 sanayi doktora programı (118 C 083 nolu proje) katkıda bulunmuş olup TÜBİTAK kurumuna teşekkürlerimizi sunarız.
Kaynakça
Al-Hamdani, K. S., Murray, J. W., Hussain, T., Clare, A. T. (2020) Controlling ceramic-reinforcement distribution in laser cladding of MMCs, Surface and Coatings Technology, 381, 125128. https://doi.org/10.1016/j.surfcoat.2019.125128.
Barr, C., Da, S., Easton, M., Orchowski, N., Matthews, N. (2018) Influence of macrosegregation on solidification cracking in laser clad ultra-high strength steels, Surface & Coatings Technology, 340, 126–136. https://doi.org/10.1016/j.surfcoat.2018.02.052
Bartkowski, D., Młynarczak, A., Piasecki, A., Dudziak, B., Gos̈ciański, M., Bartkowska, A. (2015) Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding, Optics and Laser Technology, 68, 191–201. https://doi.org/10.1016/j.optlastec.2014.12.005
Bu, R., Jin, A., Sun, Q., Zan, W., He, R. (2020) Study on laser cladding and properties of AZ63-Er alloy for automobile engine, Journal of Materials Research and Technology, 1–7. https://doi.org/10.1016/j.jmrt.2020.03.032
Calleja, A., Tabernero, I., Fernández, A., Celaya, A., Lamikiz, A., López De Lacalle, L. N. (2014) Improvement of strategies and parameters for multi-axis laser cladding operations, Optics and Lasers in Engineering, 56, 113-120. https://doi.org/10.1016/j.optlaseng.2013.12.017
Cavaliere, P. (2021) Laser Cladding of Metals, Springer Nature. https://doi.org/10.1007/978-3-030-53195-9
Chen, C., Wang, Y., Ou, H., He, Y., Tang, X. (2014) A review on remanufacture of dies and moulds, Journal of Cleaner Production, 64, 13–23. https://doi.org/10.1016/j.jclepro.2013.09.014
Chen, H., Lu, Y., Sun, Y., Wei, Y., Wang, X., Liu, D. (2020) Coarse TiC particles reinforced H13 steel matrix composites produced by laser cladding, Surface and Coatings Technology, 125867. https://doi.org/10.1016/j.surfcoat.2020.125867
Chen, J., Wang, S. H., Xue, L. (2012) On the development of microstructures and residual stresses during laser cladding and post-heat treatments, Journal of Materials Science, 47(2), 779–792. https://doi.org/10.1007/s10853-011-5854-4
Chen, T., Wu, W., Li, W., Liu, D. (2019) Laser cladding of nanoparticle TiC ceramic powder: Effects of process parameters on the quality characteristics of the coatings and its prediction model, Optics and Laser Technology, 116, 345–355. https://doi.org/10.1016/j.optlastec.2019.03.048
Chew, Y., Pang, J. H. L., Bi, G., & Song, B. (2015). Thermo-mechanical model for simulating laser cladding induced residual stresses with single and multiple clad beads. Journal of Materials Processing Technology, 224, 89–101. https://doi.org/https://doi.org/10.1016/j.jmatprotec.2015.04.031
Davim, J. P., Oliveira, C., Cardoso, A. (2006) Laser cladding: An experimental study of geometric form and hardness of coating using statistical analysis, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220(9), 1549–1554. https://doi.org/10.1243/09544054JEM641
Devojno, O. G., Feldshtein, E., Kardapolava, M. A., Lutsko, N. I. (2018) On the formation features, microstructure and microhardness of single laser tracks formed by laser cladding of a NiCrBSi self-fluxing alloy, Optics and Lasers in Engineering, 106, 32–38. https://doi.org/https://doi.org/10.1016/j.optlaseng.2018.02.004
El Cheikh, H., Courant, B., Branchu, S., Hascoët, J.-Y., Guillén, R. (2012) Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process, Optics and Lasers in Engineering, 50(3), 413–422. https://doi.org/https://doi.org/10.1016/j.optlaseng.2011.10.014
Farahmand, P., Kovacevic, R. (2014) An experimental-numerical investigation of heat distribution and stress field in single- and multi-track laser cladding by a high-power direct diode laser, Optics and Laser Technology, 63, 154–168. https://doi.org/10.1016/j.optlastec.2014.04.016
Fu, Y., Guo, N., Cheng, Q., Zhang, D., Feng, J. (2020) In-situ formation of laser-cladded layer on Ti-6Al-4 V titanium alloy in underwater environment, Optics and Lasers in Engineering, 131(2). https://doi.org/10.1016/j.optlaseng.2020.106104
Gao, J., Wu, C., Hao, Y., Xu, X., Guo, L. (2020) Numerical simulation and experimental investigation on three-dimensional modelling of single-track geometry and temperature evolution by laser cladding, Optics and Laser Technology, 129, 106287. https://doi.org/10.1016/j.optlastec.2020.106287
Hemmati, I., Ocelík, V., De Hosson, J. T. M. (2011) The effect of cladding speed on phase constitution and properties of AISI 431 stainless steel laser deposited coatings, Surface and Coatings Technology, 205(21–22), 5235–5239. https://doi.org/10.1016/j.surfcoat.2011.05.035
Hofman, J. T., de Lange, D. F., Pathiraj, B., Meijer, J. (2011) FEM modeling and experimental verification for dilution control in laser cladding, Journal of Materials Processing Technology, 211(2), 187–196. https://doi.org/https://doi.org/10.1016/j.jmatprotec.2010.09.007
Huang, L., Zhou, J., Xu, J., Huo, K., He, W., Meng, X., Huang, S. (2020) Microstructure and wear resistance of electromagnetic field assisted multi-layer laser clad Fe901 coating, Surface and Coatings Technology, 125876. https://doi.org/10.1016/j.surfcoat.2020.125876
Huang, Y., Khamesee, M. B., Toyserkani, E. (2016) A comprehensive analytical model for laser powder-fed additive manufacturing, Additive Manufacturing, 12, 90–99. https://doi.org/10.1016/j.addma.2016.07.001
Jiang, Y., Cheng, Y., Zhang, X., Yang, J., Yang, X. (2020) Optik Simulation and experimental investigations on the e ff ect of Marangoni convection on thermal fi eld during laser cladding process, Optik - International Journal for Light and Electron Optics, 203, 164044. https://doi.org/10.1016/j.ijleo.2019.164044
Kaierle, S., Overmeyer, L., Alfred, I., Rottwinkel, B., Hermsdorf, J., Wesling, V., Weidlich, N. (2017) CIRP Journal of Manufacturing Science and Technology Single-crystal turbine blade tip repair by laser cladding and remelting, CIRP Journal of Manufacturing Science and Technology, 19, 196–199. https://doi.org/10.1016/j.cirpj.2017.04.001
Karşı, A. (2019). Otomotivde lazer dolgu kaynağı parametrelerinin etkilerinin araştırılması, Yüksek Lisans Tezi, U.Ü. Fen Bilimleri Enstitüsü, Bursa.
Kattire, P., Paul, S., Singh, R., Yan, W. (2015) Experimental characterization of laser cladding of CPM 9V on H13 tool steel for die repair applications, Journal of Manufacturing Processes, 20, 492–499. https://doi.org/10.1016/j.jmapro.2015.06.018
Li-Yan, L., Yu, Z., Yun-Jie, J., Yan, L., Hong-Fang, T., Yu-Jun, C., Cheng-Xin, L. (2020) High speed laser cladded Ti-Cu-NiCoCrAlTaY burn resistant coating and its oxidation behavior, Surface and Coatings Technology, 392, 125697. https://doi.org/10.1016/j.surfcoat.2020.125697
Li, C., Sun, S., Zhang, Y., Liu, C., Deng, P., Zeng, M., Wang, F., Ma, P., Li, W., Wang, Y. (2019) Effects of laser processing parameters on microstructure and mechanical properties of additively manufactured AlSi10Mg alloys reinforced by TiC, International Journal of Advanced Manufacturing Technology, 103(5–8), 3235–3246. https://doi.org/10.1007/s00170-019-04001-9
Li, X., Li, T., Shi, B., Wang, D., Adnan, M., Lu, H. (2020) The influence of substrate tilt angle on the morphology of laser cladding layer, Surface and Coatings Technology, 391, 125706. https://doi.org/10.1016/j.surfcoat.2020.125706
Liu, H., Hu, Z., Qin, X., Wang, Y., Zhang, J. (2017) Parameter optimization and experimental study of the sprocket repairing using laser cladding, Int J Adv Manuf Technology, 91:3967–3975. https://doi.org/10.1007/s00170-017-0066-y
Liu, J., Yu, H., Chen, C., Weng, F., Dai, J. (2017) Research and development status of laser cladding on magnesium alloys: A review, Optics and Lasers in Engineering, 93, 195–210. https://doi.org/10.1016/j.optlaseng.2017.02.007
Locs, S., Boiko, I., Leitans, A., Drozdovs, P. (2017) Experimental study of coaxial laser cladding of tool steel, Engineering for Rural Development, 16, 1038–1046. https://doi.org/10.22616/ERDev2017.16.N219
Lourenço, J. M., Sun, S. Da, Sharp, K., Luzin, V., Klein, A. N., Wang, C. H., Brandt, M. (2016) Fatigue and fracture behavior of laser clad repair of AerMet® 100 ultra-high strength steel, International Journal of Fatigue, 85, 18–30. https://doi.org/10.1016/j.ijfatigue.2015.11.021
Lu, J. Z., Cao, J., Lu, H. F., Zhang, L. Y., Luo, K. Y. (2019) Wear properties and microstructural analyses of Fe-based coatings with various WC contents on H13 die steel by laser cladding, Surface & Coatings Technology, 369, 228–237. https://doi.org/10.1016/j.surfcoat.2019.04.063
Ma, M., Xiong, W., Lian, Y., Han, D., Zhao, C., Zhang, J. (2020) Modeling and optimization for laser cladding via multi-objective quantum-behaved particle swarm optimization algorithm, Surface and Coatings Technology, 381, 125129. https://doi.org/10.1016/j.surfcoat.2019.125129
Marin, E., Zanocco, M., Boschetto, F., Santini, M., Zhu, W., Adachi, T., Ohgitani, E., McEntire, B. J., Bal, B. S., Pezzotti, G. (2020) Silicon nitride laser cladding: A feasible technique to improve the biological response of zirconia, Materials & Design, 191, 108649. https://doi.org/10.1016/j.matdes.2020.108649
Marques, M. J., Ramasamy, A., Batista, A. C., Nobre, J. P., Loureiro, A. (2015) Effect of heat treatment on microstructure and residual stress fields of a weld multilayer austenitic steel clad, Journal of Materials Processing Technology, 222, 52–60. https://doi.org/10.1016/j.jmatprotec.2015.03.004
Marzban, J., Ghaseminejad, P., Ahmadzadeh, M. H., Teimouri, R. (2014) Experimental investigation and statistical optimization of laser surface cladding parameters, International Journal of Advanced Manufacturing Technology, 76(5–8), 1163–1172. https://doi.org/10.1007/s00170-014-6338-x
Mondal, S., Paul, C. P., Kukreja, L. M., Bandyopadhyay, A., Pal, P. K. (2013) Application of Taguchi-based gray relational analysis for evaluating the optimal laser cladding parameters for AISI1040 steel plane surface, International Journal of Advanced Manufacturing Technology, 66(1–4), 91–96. https://doi.org/10.1007/s00170-012-4308-8
Moskal, G., Niemiec, D., Chmiela, B., Kałamarz, P., Durejko, T., Ziętala, M., Czujko, T. (2020) Microstructural characterization of laser-cladded NiCrAlY coatings on Inconel 625 Ni-based superalloy and 316L stainless steel, Surface and Coatings Technology, 387, 125317. https://doi.org/10.1016/j.surfcoat.2019.125317
Muvvala, G., Patra Karmakar, D., Nath, A. K. (2017) Online monitoring of thermo-cycles and its correlation with microstructure in laser cladding of nickel based super alloy, Optics and Lasers in Engineering, 88, 139–152. https://doi.org/https://doi.org/10.1016/j.optlaseng.2016.08.005
Quazi, M. M., Fazal, M. A., Haseeb, A. S. M. A., Yusof, F., Masjuki, H. H., Arslan, A. (2016) Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: A review, Journal of Rare Earths, 34(6), 549–564. https://doi.org/10.1016/S1002-0721(16)60061-3
Reddy, L., Preston, S. P., Shipway, P. H., Davis, C., Hussain, T. (2018) Process parameter optimisation of laser clad iron based alloy: Predictive models of deposition efficiency, porosity and dilution, Surface and Coatings Technology, 349, 198–207. https://doi.org/https://doi.org/10.1016/j.surfcoat.2018.05.054
Ren, H., Ren, J., Zhao, L., Wang, Q. (2013) Simulation Analysis on Selection of Laser Cladding Repair Material for the Diesel Engine Crankshaft Crack, Advanced Materials Research, 820, 175–179. https://doi.org/10.4028/www.scientific.net/AMR.820.175
Riveiro, A., Mejías, A., Lusquiños, F., del Val, J., Comesaña, R., Pardo, J., Pou, J. (2014) Laser cladding of aluminium on AISI 304 stainless steel with high-power diode lasers, Surface and Coatings Technology, 253, 214–220. https://doi.org/https://doi.org/10.1016/j.surfcoat.2014.05.039
Roy, T., Paradowska, A., Abrahams, R., Law, M., Mutton, P., Soodi, M., Yan, W. (2020) Residual stress in laser cladded heavy-haul rails investigated by neutron diffraction, Journal of Materials Processing Technology, 278, 116511. https://doi.org/10.1016/j.jmatprotec.2019.116511
Singh, S., Ramakrishna, S., Singh. R. (2017) Material issues in additive manufacturing A review, Journal of Manufacturing Processes, 25, 185–200. doi:10.1016/j.jmapro.2016.11.006
Shamsaei, N., Yadollahi, A., Bian, L., Thompson, S. M. (2015) An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control, Additive Manufacturing, 8, 12–35. https://doi.org/10.1016/j.addma.2015.07.002
Shi, J., Zhu, P., Fu, G., Shi, S. (2018) Geometry characteristics modeling and process optimization in coaxial laser inside wire cladding, Optics & Laser Technology, 101, 341–348. https://doi.org/https://doi.org/10.1016/j.optlastec.2017.10.035
Shi, Y., Jin, H., Wu, P. D., Lloyd, D. J. (2017) Acta Materialia Analysis of roping in an AA6111 T4P automotive sheet in 3D deformation states, Acta Materialia, 124, 598–607. https://doi.org/10.1016/j.actamat.2016.11.028
Şimşek, T., İzciler, M., Ozcan, Ş., Akkurt, A. (2019) Laser Cladding of Hot Work Tool Steel (H13) With Nano Tic Particles, Turkish Journal of Engineering, 3(1), 1–10. https://doi.org/10.31127/tuje.419531
Siva Prasad, H., Brueckner, F., Volpp, J., Kaplan, A. F. H. (2020) Laser metal deposition of copper on diverse metals using green laser sources, International Journal of Advanced Manufacturing Technology, 107(3–4), 1559–1568. https://doi.org/10.1007/s00170-020-05117-z
Sun, G., Tong, Z., Fang, X., Liu, X., Ni, Z., Zhang, W. (2016) Effect of scanning speeds on microstructure and wear behavior of laser-processed NiCr–Cr3C2–MoS2–CeO2 on 38CrMoAl steel, Optics & Laser Technology, 77, 80–90. https://doi.org/https://doi.org/10.1016/j.optlastec.2015.08.008
Tabernero, I., Lamikiz, A., Ukar, E., Arregi, B., Figueras, J., Soriano, C. (2009) Parameter optimization for mould and die recovering using laser cladding, AIP Conference Proceedings, 1181, 484–493. https://doi.org/10.1063/1.3273666
Tamanna, N., Crouch, R., Naher, S. (2019) Progress in numerical simulation of the laser cladding process, Optics and Lasers in Engineering, 122, 151–163. https://doi.org/10.1016/j.optlaseng.2019.05.026
Theron, M., Rooyen, C. Van, Malabi, K. (2020) Investigation into laser refurbishment and transformation hardening of cast iron forming dies for the automotive industry Investigation into laser refurbishment and transformation hardening of cast iron forming dies for the automotive industry, 022071. https://doi.org/10.2351/7.0000106
Toyserkani, E., Khajepour, A., Corbin, S. (2004) Laser Cladding, CRC Press, New York. https://doi.org/10.1201/9781420039177
Wang, Q., Chen, F. Q., Zhang, L., Li, J. D., Zhang, J. W. (2020) Microstructure evolution and high temperature corrosion behavior of FeCrBSi coatings prepared by laser cladding, Ceramics International, 46, 17233-17242. https://doi.org/10.1016/j.ceramint.2020.04.010
Weng, F., Chen, C., Yu, H. (2014) Research status of laser cladding on titanium and its alloys : A review, Journal of Materials&Design, 58, 412–425. https://doi.org/10.1016/j.matdes.2014.01.077
Xu, X., Mi, G., Xiong, L., Jiang, P., Shao, X., Wang, C. (2018) Morphologies, microstructures and properties of TiC particle reinforced Inconel 625 coatings obtained by laser cladding with wire, Journal of Alloys and Compounds, 740, 16–27. https://doi.org/10.1016/j.jallcom.2017.12.298
Yu, J., Rombouts, M., Maes, G. (2013) Cracking behavior and mechanical properties of austenitic stainless steel parts produced by laser metal deposition, Materials and Design, 45, 228–235. https://doi.org/10.1016/j.matdes.2012.08.078
Yu, T., Zhao, Y., Sun, J., Chen, Y., Qu, W. (2018) Process parameters optimization and mechanical properties of forming parts by direct laser fabrication of YCF101 alloy, Journal of Materials Processing Technology, 262, 75–84. https://doi.org/10.1016/j.jmatprotec.2018.06.023
Zareh, P., Urbanic, R. J. (2020) Numerical simulations for laser clad beads with a variable side-to-side overlap condition, The International Journal of Advanced Manufacturing Technology, 1027–1058. https://doi.org/10.1007/s00170-020-05565-7
Zhan, X., Qi, C., Gao, Z., Tian, D., Wang, Z. (2019) The influence of heat input on microstructure and porosity during laser cladding of Invar alloy, Optics and Laser Technology, 113, 453–461. https://doi.org/10.1016/j.optlastec.2019.01.015
Zhang, Z., Farahmand, P., Kovacevic, R. (2016) Laser cladding of 420 stainless steel with molybdenum on mild steel A36 by a high power direct diode laser, Materials & Design, 109, 686–699. https://doi.org/https://doi.org/10.1016/j.matdes.2016.07.114
Zhao, J., Wang, G., Wang, X., Luo, S., Wang, L., Rong, Y. (2020a) Multicomponent multiphase modeling of dissimilar laser cladding process with high-speed steel on medium carbon steel, International Journal of Heat and Mass Transfer, 148, 118990. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118990
Zhao, Y., Yu, T., Sun, J., Jiang, S. (2020b) Microstructure and properties of laser cladded B4C/TiC/Ni-based composite coating, International Journal of Refractory Metals and Hard Materials, 86, 105112. https://doi.org/10.1016/j.ijrmhm.2019.105112
Zheng, M., Fan, D., Li, X. K., Li, W. F., Liu, Q. B., Zhang, J. B. (2008) Microstructure and osteoblast response of gradient bioceramic coating on titanium alloy fabricated by laser cladding, Applied Surface Science, 255(2), 426–428. https://doi.org/10.1016/j.apsusc.2008.06.078
Zhu, L., Wang, S., Pan, H., Yuan, C., Chen, X. (2020) Research on remanufacturing strategy for 45 steel gear using H13 steel powder based on laser cladding technology, Journal of Manufacturing Processes, 49, 344–354. https://doi.org/10.1016/j.jmapro.2019.12.009
Zhu, Y., Yang, Y., Mu, X., Wang, W., Yao, Z., Yang, H. (2019) Study on wear and RCF performance of repaired damage railway wheels : Assessing laser cladding to repair local defects on wheels, Wear, 431, 126–136. https://doi.org/10.1016/j.wear.2019.04.028
Laser Cladding Process and Process Parameters: A Review
Laser cladding method, which is the one of leading manufacturing technologies of today, is used in various applications such as prototyping, product repair and material coating. It has a wide application areas: aviation, space, automotive, defense industry, medicine, etc. The production method is based on the melting of the powder material using a laser beam and its penetration with the substrate. In the laser cladding process, the final quality properties of the material are directly affected by the process parameters. The importance of these parameters is revealed by the studies on the macrostructure and microstructure of the material. In this review article, the laser cladding process has researched in detail, the effects of laser power, welding speed, powder feed rate, shielding gas process parameters on the welding area have examined, and the results obtained have given by gathered together.
Al-Hamdani, K. S., Murray, J. W., Hussain, T., Clare, A. T. (2020) Controlling ceramic-reinforcement distribution in laser cladding of MMCs, Surface and Coatings Technology, 381, 125128. https://doi.org/10.1016/j.surfcoat.2019.125128.
Barr, C., Da, S., Easton, M., Orchowski, N., Matthews, N. (2018) Influence of macrosegregation on solidification cracking in laser clad ultra-high strength steels, Surface & Coatings Technology, 340, 126–136. https://doi.org/10.1016/j.surfcoat.2018.02.052
Bartkowski, D., Młynarczak, A., Piasecki, A., Dudziak, B., Gos̈ciański, M., Bartkowska, A. (2015) Microstructure, microhardness and corrosion resistance of Stellite-6 coatings reinforced with WC particles using laser cladding, Optics and Laser Technology, 68, 191–201. https://doi.org/10.1016/j.optlastec.2014.12.005
Bu, R., Jin, A., Sun, Q., Zan, W., He, R. (2020) Study on laser cladding and properties of AZ63-Er alloy for automobile engine, Journal of Materials Research and Technology, 1–7. https://doi.org/10.1016/j.jmrt.2020.03.032
Calleja, A., Tabernero, I., Fernández, A., Celaya, A., Lamikiz, A., López De Lacalle, L. N. (2014) Improvement of strategies and parameters for multi-axis laser cladding operations, Optics and Lasers in Engineering, 56, 113-120. https://doi.org/10.1016/j.optlaseng.2013.12.017
Cavaliere, P. (2021) Laser Cladding of Metals, Springer Nature. https://doi.org/10.1007/978-3-030-53195-9
Chen, C., Wang, Y., Ou, H., He, Y., Tang, X. (2014) A review on remanufacture of dies and moulds, Journal of Cleaner Production, 64, 13–23. https://doi.org/10.1016/j.jclepro.2013.09.014
Chen, H., Lu, Y., Sun, Y., Wei, Y., Wang, X., Liu, D. (2020) Coarse TiC particles reinforced H13 steel matrix composites produced by laser cladding, Surface and Coatings Technology, 125867. https://doi.org/10.1016/j.surfcoat.2020.125867
Chen, J., Wang, S. H., Xue, L. (2012) On the development of microstructures and residual stresses during laser cladding and post-heat treatments, Journal of Materials Science, 47(2), 779–792. https://doi.org/10.1007/s10853-011-5854-4
Chen, T., Wu, W., Li, W., Liu, D. (2019) Laser cladding of nanoparticle TiC ceramic powder: Effects of process parameters on the quality characteristics of the coatings and its prediction model, Optics and Laser Technology, 116, 345–355. https://doi.org/10.1016/j.optlastec.2019.03.048
Chew, Y., Pang, J. H. L., Bi, G., & Song, B. (2015). Thermo-mechanical model for simulating laser cladding induced residual stresses with single and multiple clad beads. Journal of Materials Processing Technology, 224, 89–101. https://doi.org/https://doi.org/10.1016/j.jmatprotec.2015.04.031
Davim, J. P., Oliveira, C., Cardoso, A. (2006) Laser cladding: An experimental study of geometric form and hardness of coating using statistical analysis, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220(9), 1549–1554. https://doi.org/10.1243/09544054JEM641
Devojno, O. G., Feldshtein, E., Kardapolava, M. A., Lutsko, N. I. (2018) On the formation features, microstructure and microhardness of single laser tracks formed by laser cladding of a NiCrBSi self-fluxing alloy, Optics and Lasers in Engineering, 106, 32–38. https://doi.org/https://doi.org/10.1016/j.optlaseng.2018.02.004
El Cheikh, H., Courant, B., Branchu, S., Hascoët, J.-Y., Guillén, R. (2012) Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process, Optics and Lasers in Engineering, 50(3), 413–422. https://doi.org/https://doi.org/10.1016/j.optlaseng.2011.10.014
Farahmand, P., Kovacevic, R. (2014) An experimental-numerical investigation of heat distribution and stress field in single- and multi-track laser cladding by a high-power direct diode laser, Optics and Laser Technology, 63, 154–168. https://doi.org/10.1016/j.optlastec.2014.04.016
Fu, Y., Guo, N., Cheng, Q., Zhang, D., Feng, J. (2020) In-situ formation of laser-cladded layer on Ti-6Al-4 V titanium alloy in underwater environment, Optics and Lasers in Engineering, 131(2). https://doi.org/10.1016/j.optlaseng.2020.106104
Gao, J., Wu, C., Hao, Y., Xu, X., Guo, L. (2020) Numerical simulation and experimental investigation on three-dimensional modelling of single-track geometry and temperature evolution by laser cladding, Optics and Laser Technology, 129, 106287. https://doi.org/10.1016/j.optlastec.2020.106287
Hemmati, I., Ocelík, V., De Hosson, J. T. M. (2011) The effect of cladding speed on phase constitution and properties of AISI 431 stainless steel laser deposited coatings, Surface and Coatings Technology, 205(21–22), 5235–5239. https://doi.org/10.1016/j.surfcoat.2011.05.035
Hofman, J. T., de Lange, D. F., Pathiraj, B., Meijer, J. (2011) FEM modeling and experimental verification for dilution control in laser cladding, Journal of Materials Processing Technology, 211(2), 187–196. https://doi.org/https://doi.org/10.1016/j.jmatprotec.2010.09.007
Huang, L., Zhou, J., Xu, J., Huo, K., He, W., Meng, X., Huang, S. (2020) Microstructure and wear resistance of electromagnetic field assisted multi-layer laser clad Fe901 coating, Surface and Coatings Technology, 125876. https://doi.org/10.1016/j.surfcoat.2020.125876
Huang, Y., Khamesee, M. B., Toyserkani, E. (2016) A comprehensive analytical model for laser powder-fed additive manufacturing, Additive Manufacturing, 12, 90–99. https://doi.org/10.1016/j.addma.2016.07.001
Jiang, Y., Cheng, Y., Zhang, X., Yang, J., Yang, X. (2020) Optik Simulation and experimental investigations on the e ff ect of Marangoni convection on thermal fi eld during laser cladding process, Optik - International Journal for Light and Electron Optics, 203, 164044. https://doi.org/10.1016/j.ijleo.2019.164044
Kaierle, S., Overmeyer, L., Alfred, I., Rottwinkel, B., Hermsdorf, J., Wesling, V., Weidlich, N. (2017) CIRP Journal of Manufacturing Science and Technology Single-crystal turbine blade tip repair by laser cladding and remelting, CIRP Journal of Manufacturing Science and Technology, 19, 196–199. https://doi.org/10.1016/j.cirpj.2017.04.001
Karşı, A. (2019). Otomotivde lazer dolgu kaynağı parametrelerinin etkilerinin araştırılması, Yüksek Lisans Tezi, U.Ü. Fen Bilimleri Enstitüsü, Bursa.
Kattire, P., Paul, S., Singh, R., Yan, W. (2015) Experimental characterization of laser cladding of CPM 9V on H13 tool steel for die repair applications, Journal of Manufacturing Processes, 20, 492–499. https://doi.org/10.1016/j.jmapro.2015.06.018
Li-Yan, L., Yu, Z., Yun-Jie, J., Yan, L., Hong-Fang, T., Yu-Jun, C., Cheng-Xin, L. (2020) High speed laser cladded Ti-Cu-NiCoCrAlTaY burn resistant coating and its oxidation behavior, Surface and Coatings Technology, 392, 125697. https://doi.org/10.1016/j.surfcoat.2020.125697
Li, C., Sun, S., Zhang, Y., Liu, C., Deng, P., Zeng, M., Wang, F., Ma, P., Li, W., Wang, Y. (2019) Effects of laser processing parameters on microstructure and mechanical properties of additively manufactured AlSi10Mg alloys reinforced by TiC, International Journal of Advanced Manufacturing Technology, 103(5–8), 3235–3246. https://doi.org/10.1007/s00170-019-04001-9
Li, X., Li, T., Shi, B., Wang, D., Adnan, M., Lu, H. (2020) The influence of substrate tilt angle on the morphology of laser cladding layer, Surface and Coatings Technology, 391, 125706. https://doi.org/10.1016/j.surfcoat.2020.125706
Liu, H., Hu, Z., Qin, X., Wang, Y., Zhang, J. (2017) Parameter optimization and experimental study of the sprocket repairing using laser cladding, Int J Adv Manuf Technology, 91:3967–3975. https://doi.org/10.1007/s00170-017-0066-y
Liu, J., Yu, H., Chen, C., Weng, F., Dai, J. (2017) Research and development status of laser cladding on magnesium alloys: A review, Optics and Lasers in Engineering, 93, 195–210. https://doi.org/10.1016/j.optlaseng.2017.02.007
Locs, S., Boiko, I., Leitans, A., Drozdovs, P. (2017) Experimental study of coaxial laser cladding of tool steel, Engineering for Rural Development, 16, 1038–1046. https://doi.org/10.22616/ERDev2017.16.N219
Lourenço, J. M., Sun, S. Da, Sharp, K., Luzin, V., Klein, A. N., Wang, C. H., Brandt, M. (2016) Fatigue and fracture behavior of laser clad repair of AerMet® 100 ultra-high strength steel, International Journal of Fatigue, 85, 18–30. https://doi.org/10.1016/j.ijfatigue.2015.11.021
Lu, J. Z., Cao, J., Lu, H. F., Zhang, L. Y., Luo, K. Y. (2019) Wear properties and microstructural analyses of Fe-based coatings with various WC contents on H13 die steel by laser cladding, Surface & Coatings Technology, 369, 228–237. https://doi.org/10.1016/j.surfcoat.2019.04.063
Ma, M., Xiong, W., Lian, Y., Han, D., Zhao, C., Zhang, J. (2020) Modeling and optimization for laser cladding via multi-objective quantum-behaved particle swarm optimization algorithm, Surface and Coatings Technology, 381, 125129. https://doi.org/10.1016/j.surfcoat.2019.125129
Marin, E., Zanocco, M., Boschetto, F., Santini, M., Zhu, W., Adachi, T., Ohgitani, E., McEntire, B. J., Bal, B. S., Pezzotti, G. (2020) Silicon nitride laser cladding: A feasible technique to improve the biological response of zirconia, Materials & Design, 191, 108649. https://doi.org/10.1016/j.matdes.2020.108649
Marques, M. J., Ramasamy, A., Batista, A. C., Nobre, J. P., Loureiro, A. (2015) Effect of heat treatment on microstructure and residual stress fields of a weld multilayer austenitic steel clad, Journal of Materials Processing Technology, 222, 52–60. https://doi.org/10.1016/j.jmatprotec.2015.03.004
Marzban, J., Ghaseminejad, P., Ahmadzadeh, M. H., Teimouri, R. (2014) Experimental investigation and statistical optimization of laser surface cladding parameters, International Journal of Advanced Manufacturing Technology, 76(5–8), 1163–1172. https://doi.org/10.1007/s00170-014-6338-x
Mondal, S., Paul, C. P., Kukreja, L. M., Bandyopadhyay, A., Pal, P. K. (2013) Application of Taguchi-based gray relational analysis for evaluating the optimal laser cladding parameters for AISI1040 steel plane surface, International Journal of Advanced Manufacturing Technology, 66(1–4), 91–96. https://doi.org/10.1007/s00170-012-4308-8
Moskal, G., Niemiec, D., Chmiela, B., Kałamarz, P., Durejko, T., Ziętala, M., Czujko, T. (2020) Microstructural characterization of laser-cladded NiCrAlY coatings on Inconel 625 Ni-based superalloy and 316L stainless steel, Surface and Coatings Technology, 387, 125317. https://doi.org/10.1016/j.surfcoat.2019.125317
Muvvala, G., Patra Karmakar, D., Nath, A. K. (2017) Online monitoring of thermo-cycles and its correlation with microstructure in laser cladding of nickel based super alloy, Optics and Lasers in Engineering, 88, 139–152. https://doi.org/https://doi.org/10.1016/j.optlaseng.2016.08.005
Quazi, M. M., Fazal, M. A., Haseeb, A. S. M. A., Yusof, F., Masjuki, H. H., Arslan, A. (2016) Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: A review, Journal of Rare Earths, 34(6), 549–564. https://doi.org/10.1016/S1002-0721(16)60061-3
Reddy, L., Preston, S. P., Shipway, P. H., Davis, C., Hussain, T. (2018) Process parameter optimisation of laser clad iron based alloy: Predictive models of deposition efficiency, porosity and dilution, Surface and Coatings Technology, 349, 198–207. https://doi.org/https://doi.org/10.1016/j.surfcoat.2018.05.054
Ren, H., Ren, J., Zhao, L., Wang, Q. (2013) Simulation Analysis on Selection of Laser Cladding Repair Material for the Diesel Engine Crankshaft Crack, Advanced Materials Research, 820, 175–179. https://doi.org/10.4028/www.scientific.net/AMR.820.175
Riveiro, A., Mejías, A., Lusquiños, F., del Val, J., Comesaña, R., Pardo, J., Pou, J. (2014) Laser cladding of aluminium on AISI 304 stainless steel with high-power diode lasers, Surface and Coatings Technology, 253, 214–220. https://doi.org/https://doi.org/10.1016/j.surfcoat.2014.05.039
Roy, T., Paradowska, A., Abrahams, R., Law, M., Mutton, P., Soodi, M., Yan, W. (2020) Residual stress in laser cladded heavy-haul rails investigated by neutron diffraction, Journal of Materials Processing Technology, 278, 116511. https://doi.org/10.1016/j.jmatprotec.2019.116511
Singh, S., Ramakrishna, S., Singh. R. (2017) Material issues in additive manufacturing A review, Journal of Manufacturing Processes, 25, 185–200. doi:10.1016/j.jmapro.2016.11.006
Shamsaei, N., Yadollahi, A., Bian, L., Thompson, S. M. (2015) An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control, Additive Manufacturing, 8, 12–35. https://doi.org/10.1016/j.addma.2015.07.002
Shi, J., Zhu, P., Fu, G., Shi, S. (2018) Geometry characteristics modeling and process optimization in coaxial laser inside wire cladding, Optics & Laser Technology, 101, 341–348. https://doi.org/https://doi.org/10.1016/j.optlastec.2017.10.035
Shi, Y., Jin, H., Wu, P. D., Lloyd, D. J. (2017) Acta Materialia Analysis of roping in an AA6111 T4P automotive sheet in 3D deformation states, Acta Materialia, 124, 598–607. https://doi.org/10.1016/j.actamat.2016.11.028
Şimşek, T., İzciler, M., Ozcan, Ş., Akkurt, A. (2019) Laser Cladding of Hot Work Tool Steel (H13) With Nano Tic Particles, Turkish Journal of Engineering, 3(1), 1–10. https://doi.org/10.31127/tuje.419531
Siva Prasad, H., Brueckner, F., Volpp, J., Kaplan, A. F. H. (2020) Laser metal deposition of copper on diverse metals using green laser sources, International Journal of Advanced Manufacturing Technology, 107(3–4), 1559–1568. https://doi.org/10.1007/s00170-020-05117-z
Sun, G., Tong, Z., Fang, X., Liu, X., Ni, Z., Zhang, W. (2016) Effect of scanning speeds on microstructure and wear behavior of laser-processed NiCr–Cr3C2–MoS2–CeO2 on 38CrMoAl steel, Optics & Laser Technology, 77, 80–90. https://doi.org/https://doi.org/10.1016/j.optlastec.2015.08.008
Tabernero, I., Lamikiz, A., Ukar, E., Arregi, B., Figueras, J., Soriano, C. (2009) Parameter optimization for mould and die recovering using laser cladding, AIP Conference Proceedings, 1181, 484–493. https://doi.org/10.1063/1.3273666
Tamanna, N., Crouch, R., Naher, S. (2019) Progress in numerical simulation of the laser cladding process, Optics and Lasers in Engineering, 122, 151–163. https://doi.org/10.1016/j.optlaseng.2019.05.026
Theron, M., Rooyen, C. Van, Malabi, K. (2020) Investigation into laser refurbishment and transformation hardening of cast iron forming dies for the automotive industry Investigation into laser refurbishment and transformation hardening of cast iron forming dies for the automotive industry, 022071. https://doi.org/10.2351/7.0000106
Toyserkani, E., Khajepour, A., Corbin, S. (2004) Laser Cladding, CRC Press, New York. https://doi.org/10.1201/9781420039177
Wang, Q., Chen, F. Q., Zhang, L., Li, J. D., Zhang, J. W. (2020) Microstructure evolution and high temperature corrosion behavior of FeCrBSi coatings prepared by laser cladding, Ceramics International, 46, 17233-17242. https://doi.org/10.1016/j.ceramint.2020.04.010
Weng, F., Chen, C., Yu, H. (2014) Research status of laser cladding on titanium and its alloys : A review, Journal of Materials&Design, 58, 412–425. https://doi.org/10.1016/j.matdes.2014.01.077
Xu, X., Mi, G., Xiong, L., Jiang, P., Shao, X., Wang, C. (2018) Morphologies, microstructures and properties of TiC particle reinforced Inconel 625 coatings obtained by laser cladding with wire, Journal of Alloys and Compounds, 740, 16–27. https://doi.org/10.1016/j.jallcom.2017.12.298
Yu, J., Rombouts, M., Maes, G. (2013) Cracking behavior and mechanical properties of austenitic stainless steel parts produced by laser metal deposition, Materials and Design, 45, 228–235. https://doi.org/10.1016/j.matdes.2012.08.078
Yu, T., Zhao, Y., Sun, J., Chen, Y., Qu, W. (2018) Process parameters optimization and mechanical properties of forming parts by direct laser fabrication of YCF101 alloy, Journal of Materials Processing Technology, 262, 75–84. https://doi.org/10.1016/j.jmatprotec.2018.06.023
Zareh, P., Urbanic, R. J. (2020) Numerical simulations for laser clad beads with a variable side-to-side overlap condition, The International Journal of Advanced Manufacturing Technology, 1027–1058. https://doi.org/10.1007/s00170-020-05565-7
Zhan, X., Qi, C., Gao, Z., Tian, D., Wang, Z. (2019) The influence of heat input on microstructure and porosity during laser cladding of Invar alloy, Optics and Laser Technology, 113, 453–461. https://doi.org/10.1016/j.optlastec.2019.01.015
Zhang, Z., Farahmand, P., Kovacevic, R. (2016) Laser cladding of 420 stainless steel with molybdenum on mild steel A36 by a high power direct diode laser, Materials & Design, 109, 686–699. https://doi.org/https://doi.org/10.1016/j.matdes.2016.07.114
Zhao, J., Wang, G., Wang, X., Luo, S., Wang, L., Rong, Y. (2020a) Multicomponent multiphase modeling of dissimilar laser cladding process with high-speed steel on medium carbon steel, International Journal of Heat and Mass Transfer, 148, 118990. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118990
Zhao, Y., Yu, T., Sun, J., Jiang, S. (2020b) Microstructure and properties of laser cladded B4C/TiC/Ni-based composite coating, International Journal of Refractory Metals and Hard Materials, 86, 105112. https://doi.org/10.1016/j.ijrmhm.2019.105112
Zheng, M., Fan, D., Li, X. K., Li, W. F., Liu, Q. B., Zhang, J. B. (2008) Microstructure and osteoblast response of gradient bioceramic coating on titanium alloy fabricated by laser cladding, Applied Surface Science, 255(2), 426–428. https://doi.org/10.1016/j.apsusc.2008.06.078
Zhu, L., Wang, S., Pan, H., Yuan, C., Chen, X. (2020) Research on remanufacturing strategy for 45 steel gear using H13 steel powder based on laser cladding technology, Journal of Manufacturing Processes, 49, 344–354. https://doi.org/10.1016/j.jmapro.2019.12.009
Zhu, Y., Yang, Y., Mu, X., Wang, W., Yao, Z., Yang, H. (2019) Study on wear and RCF performance of repaired damage railway wheels : Assessing laser cladding to repair local defects on wheels, Wear, 431, 126–136. https://doi.org/10.1016/j.wear.2019.04.028
Dindar, Ç., Altay, M., & Aydın, H. (2021). LAZER KAPLAMA PROSESİ ve PROSES PARAMETRELERİ: DERLEME ÇALIŞMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(2), 723-736. https://doi.org/10.17482/uumfd.798666
AMA
Dindar Ç, Altay M, Aydın H. LAZER KAPLAMA PROSESİ ve PROSES PARAMETRELERİ: DERLEME ÇALIŞMASI. UUJFE. Ağustos 2021;26(2):723-736. doi:10.17482/uumfd.798666
Chicago
Dindar, Çiğdem, Meryem Altay, ve Hakan Aydın. “LAZER KAPLAMA PROSESİ Ve PROSES PARAMETRELERİ: DERLEME ÇALIŞMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, sy. 2 (Ağustos 2021): 723-36. https://doi.org/10.17482/uumfd.798666.
EndNote
Dindar Ç, Altay M, Aydın H (01 Ağustos 2021) LAZER KAPLAMA PROSESİ ve PROSES PARAMETRELERİ: DERLEME ÇALIŞMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26 2 723–736.
IEEE
Ç. Dindar, M. Altay, ve H. Aydın, “LAZER KAPLAMA PROSESİ ve PROSES PARAMETRELERİ: DERLEME ÇALIŞMASI”, UUJFE, c. 26, sy. 2, ss. 723–736, 2021, doi: 10.17482/uumfd.798666.
ISNAD
Dindar, Çiğdem vd. “LAZER KAPLAMA PROSESİ Ve PROSES PARAMETRELERİ: DERLEME ÇALIŞMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/2 (Ağustos 2021), 723-736. https://doi.org/10.17482/uumfd.798666.
JAMA
Dindar Ç, Altay M, Aydın H. LAZER KAPLAMA PROSESİ ve PROSES PARAMETRELERİ: DERLEME ÇALIŞMASI. UUJFE. 2021;26:723–736.
MLA
Dindar, Çiğdem vd. “LAZER KAPLAMA PROSESİ Ve PROSES PARAMETRELERİ: DERLEME ÇALIŞMASI”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 26, sy. 2, 2021, ss. 723-36, doi:10.17482/uumfd.798666.
Vancouver
Dindar Ç, Altay M, Aydın H. LAZER KAPLAMA PROSESİ ve PROSES PARAMETRELERİ: DERLEME ÇALIŞMASI. UUJFE. 2021;26(2):723-36.
30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir). Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.
Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr