BibTex RIS Kaynak Göster

Evaluation of The Effects of Cutting Parameters On The Surface Roughness During The Turning of Hadfield Steel With Response Surface Methodology

Yıl 2014, Cilt: 19 Sayı: 2, 19 - 28, 23.12.2014
https://doi.org/10.17482/uujfe.38441

Öz

Hadfield steel (X120Mn12) is widely used in the engineering applications due to its excellent wear resistance. In this study, the effects of the cutting parameters on the surface roughness were investigated in relation to the lathe process carried out on Hadfield steel. The experiments were conducted at a cutting speed of 80, 110, 140 m/min, feed rate of 0.2, 0.3, 0.4 mm/rev and depth of cut 0.2, 0.4, 0.6 mm, using coated carbide tools. Regarding the evaluation of the machinability of Hadfield steel, a model was formed utilizing the response surface method (RSM). For the determination of the effects of the cutting parameters on the surface roughness, the central composite design (CCD) and variance analysis (ANOVA) were used. By means of the model formed as a result of the experimental study, it was demonstrated that among the cutting parameters, the feed rate is the most effective parameter on the surface roughness, with a contribution ratio of 90.28%. It was determined that the surface roughness increases with increasing feed rate. With respect to the effect on the surface roughness, the feed rate was followed by the cutting speed with a contribution ratio of 3.1% and the cutting depth with a contribution ratio of 1.7%.

Kaynakça

  • Baş, D., İsmail, Boyacı, H., (2008). Modeling and Optimization I: Usability of response surface methodology, Journal of Food Engineering, 78, 836–845.
  • Bhattacharyya, B., & Sorkhel, S. K. (1998). Investigation for controlled ellectrochemical machining through response surface methodology-based approach. Journal of Materials Processing Technology, 86(1), 200-207.
  • Canadinc, D., Sehitoglu, H., Maier, H.J., Chumlyakov, Y.I., (2005). Strain hardening behavior of aluminum alloyed Hadfield steel single crystals, Acta Materialia, 53, 1831– 1842Maratray, F. (1995) High Carbon Manganese Austenitic Steels. The International Manganese Institute.
  • Chiang, K.T. and Chang, F.P. (2007). Analysis of shrinkage and warpage in an injection- molded part with a thin shell feature using the response surface methodology, Int J Adv Manuf Technol, 35, 468–479.
  • Choudhury, I.A. and El-Baradie, M.A. (1997). Surface roughness in the turning of high- strength steel by factorial design of experiments, Journal of Material Processing Technology, 67, 55–61.
  • Collette, G., Crussard, C., Kohn, A., Plateau, J., Pomey, G., Weisz, M., (1957). Contribution à ́létude des transformations des austénites à 12% Mn, Revue de Métallurgie LIV, 6, 433– 481.
  • Davim, J.P. (2003). Design of optimisation of cutting parameters for turning metal matrix composites based on the orthogonal arrays, Journal of Materials Processing Technology, 132, 340–344.
  • Deniz, T.Ç., Çoğun, Ç., Özgedik, A., (2005). Elektro Erozyon İle İşlemede İşleme Parametrelerinin Matematiksel Modellenmesi, Makina Tasarım ve İmalat Dergisi, 7, 11.
  • Dhanasekar, B. and Ramamoorthy, B. (2010). Restoration of blurred images for surface roughness evaluation using machine vision, Tribology International, 4, 3268–276.
  • Gavriljuk, V.G., Tyshchenko, A.I., Razumov, O.N., Petrov, Y., Shanina, B.D., Berns, H., (2005). Corrosion-resistant analogue of Hadfield steel, Materials Science and Engineering, 420, 47–54.
  • Godfrey, C.O. and Kumar, S. (2006). Response surface methodology-based approach to CNC drilling operations, Journal of Materials Processing Technology, 171, 41–47.
  • Grum, J. and Slabe, J.M. (2006). The use of factorial design and response surface methodology for fast determination of optimal heat treatment conditions of different Ni–Co– Mo surfaced layers, Journal of Materials Processing Technology, 155–156, 2026–2032.
  • Gunaraj, V. and Murugan, N. (1999). Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes, Journal of Materials Processing Technology, 88, 266–275.
  • Işık Y., (2007). Investigating the machinability of tool steels in turning operations, Materials and Design, 28, 1417–1424.
  • Ko-Ta, C. (2008). Modeling and analysis of the effects of machining parameters on the performance characteristics in the EDM process of Al2O3+TiC mixed ceramic, Int J Adv Manuf Technol, 37, 523–533.
  • Krajnik, P., Kopac, J., Sluga, A., (2005). Design of grinding factors based on response surface methodology, Journal of Materials Processing Technology, 162–163;629–636.
  • Mohan, Lal, D., Renganarayanan, S., Kalanidhi, (2001). A Cryogenic treatment to augment wear resistance of tool and die steels, Cryogenics, 41, 149–155.
  • Öktem, H., Erzurumlu, T., Kurtaran, H., (2005). Application of response surface methodology in the optimization of cutting conditions for surface roughness, Journal of Materials Processing Technology, 170, 11–16.
  • Savaş, V. and Özay, Ç. (2009). Teğetsel Tornalama-Frezeleme Yöntemi Kullanılarak Ms 58 Pirinç Malzemesinin İşlenmesinde Kesme Parametrelerinin Yüzey Pürüzlülüğüne Etkisinin Araştırılması, Makine Teknolojileri Elektronik Dergisi, 6, 65-70.
  • Seman, M., Ganesan, G., Karthikeyan, R., Velayudham, A., (2010). Study on tool wear and surface roughness in machining of particulate aluminum metal matrix composite-response surface methodology approach, Int J Adv Manuf Technol, 48, 613–624.
  • Shaw, MC. (1984). Metal Cutting Principles. Oxford University Press, Oxford, NY.
  • Vitanov, V.I., Javaid, N., Stephenson, D.J., (2010). Application of response surface methodology for the optimisation of micro friction surfacing process, Surface & Coatings Technology, 204, 3501–3508.
  • Yang, W.H. and Tarng, Y.S. (1998). Design optimization of cutting parameters for turning operations based on the Taguchi method, Journal of Materials Processing Technology, 84, 122–129.

Hadfield Çeliğinin Tornalanmasında Kesme Parametrelerinin Yüzey Pürüzlülüğü Üzerindeki Etkilerinin Yanıt Yüzey Metodu ile Değerlendirilmesi

Yıl 2014, Cilt: 19 Sayı: 2, 19 - 28, 23.12.2014
https://doi.org/10.17482/uujfe.38441

Öz

Hadfield çelii (X120Mn12) sahip olduu mükemmel aınma direncinden dolayı mühendislik uygulamalarında yaygın olarak kullanılmaktadır. Bu çalımada Hadfield çeliinin tornalanmasında kesme parametrelerinin yüzey pürüzlülüü üzerindeki etkileri aratırılmıtır. Deneyler 80, 110, 140 m/dak kesme hızı, 0.2, 0.3, 0.4 mm/dev ilerleme ve 0.2, 0.4, 0.6 mm kesme derinliinde kaplamalı karbür takımlar kullanılarak gerçekletirilmitir. Halfield çeliinin ilenebilirliinin deerlendirilmesinde yanıt yüzey yöntemi (RSM) kullanılarak bir model oluturulmutur. Kesme parametrelerinin yüzey pürüzlülüü üzerindeki etkilerinin belirlenmesinde merkezi tümleik tasarım (CCD) ve varyans analizi (ANOVA) kullanılmıtır. Deneysel çalıma sonrasında oluturulan modelle, yüzey pürüzlülüü üzerinde kesme parametrelerinden ilerlemenin % 90,28 katkı oranı ile en etkili parametre olduu ortaya konulmutur. lerlemenin artmasıyla yüzey pürüzlülüünün arttıı görülmütür. Yüzey pürüzlülüü üzerinde etki bakımından ilerlemeyi % 3,12 katkı oranı ile kesme hızı, % 1,7 katkı oranı ile de kesme derinlii takip etmitir. 

Kaynakça

  • Baş, D., İsmail, Boyacı, H., (2008). Modeling and Optimization I: Usability of response surface methodology, Journal of Food Engineering, 78, 836–845.
  • Bhattacharyya, B., & Sorkhel, S. K. (1998). Investigation for controlled ellectrochemical machining through response surface methodology-based approach. Journal of Materials Processing Technology, 86(1), 200-207.
  • Canadinc, D., Sehitoglu, H., Maier, H.J., Chumlyakov, Y.I., (2005). Strain hardening behavior of aluminum alloyed Hadfield steel single crystals, Acta Materialia, 53, 1831– 1842Maratray, F. (1995) High Carbon Manganese Austenitic Steels. The International Manganese Institute.
  • Chiang, K.T. and Chang, F.P. (2007). Analysis of shrinkage and warpage in an injection- molded part with a thin shell feature using the response surface methodology, Int J Adv Manuf Technol, 35, 468–479.
  • Choudhury, I.A. and El-Baradie, M.A. (1997). Surface roughness in the turning of high- strength steel by factorial design of experiments, Journal of Material Processing Technology, 67, 55–61.
  • Collette, G., Crussard, C., Kohn, A., Plateau, J., Pomey, G., Weisz, M., (1957). Contribution à ́létude des transformations des austénites à 12% Mn, Revue de Métallurgie LIV, 6, 433– 481.
  • Davim, J.P. (2003). Design of optimisation of cutting parameters for turning metal matrix composites based on the orthogonal arrays, Journal of Materials Processing Technology, 132, 340–344.
  • Deniz, T.Ç., Çoğun, Ç., Özgedik, A., (2005). Elektro Erozyon İle İşlemede İşleme Parametrelerinin Matematiksel Modellenmesi, Makina Tasarım ve İmalat Dergisi, 7, 11.
  • Dhanasekar, B. and Ramamoorthy, B. (2010). Restoration of blurred images for surface roughness evaluation using machine vision, Tribology International, 4, 3268–276.
  • Gavriljuk, V.G., Tyshchenko, A.I., Razumov, O.N., Petrov, Y., Shanina, B.D., Berns, H., (2005). Corrosion-resistant analogue of Hadfield steel, Materials Science and Engineering, 420, 47–54.
  • Godfrey, C.O. and Kumar, S. (2006). Response surface methodology-based approach to CNC drilling operations, Journal of Materials Processing Technology, 171, 41–47.
  • Grum, J. and Slabe, J.M. (2006). The use of factorial design and response surface methodology for fast determination of optimal heat treatment conditions of different Ni–Co– Mo surfaced layers, Journal of Materials Processing Technology, 155–156, 2026–2032.
  • Gunaraj, V. and Murugan, N. (1999). Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes, Journal of Materials Processing Technology, 88, 266–275.
  • Işık Y., (2007). Investigating the machinability of tool steels in turning operations, Materials and Design, 28, 1417–1424.
  • Ko-Ta, C. (2008). Modeling and analysis of the effects of machining parameters on the performance characteristics in the EDM process of Al2O3+TiC mixed ceramic, Int J Adv Manuf Technol, 37, 523–533.
  • Krajnik, P., Kopac, J., Sluga, A., (2005). Design of grinding factors based on response surface methodology, Journal of Materials Processing Technology, 162–163;629–636.
  • Mohan, Lal, D., Renganarayanan, S., Kalanidhi, (2001). A Cryogenic treatment to augment wear resistance of tool and die steels, Cryogenics, 41, 149–155.
  • Öktem, H., Erzurumlu, T., Kurtaran, H., (2005). Application of response surface methodology in the optimization of cutting conditions for surface roughness, Journal of Materials Processing Technology, 170, 11–16.
  • Savaş, V. and Özay, Ç. (2009). Teğetsel Tornalama-Frezeleme Yöntemi Kullanılarak Ms 58 Pirinç Malzemesinin İşlenmesinde Kesme Parametrelerinin Yüzey Pürüzlülüğüne Etkisinin Araştırılması, Makine Teknolojileri Elektronik Dergisi, 6, 65-70.
  • Seman, M., Ganesan, G., Karthikeyan, R., Velayudham, A., (2010). Study on tool wear and surface roughness in machining of particulate aluminum metal matrix composite-response surface methodology approach, Int J Adv Manuf Technol, 48, 613–624.
  • Shaw, MC. (1984). Metal Cutting Principles. Oxford University Press, Oxford, NY.
  • Vitanov, V.I., Javaid, N., Stephenson, D.J., (2010). Application of response surface methodology for the optimisation of micro friction surfacing process, Surface & Coatings Technology, 204, 3501–3508.
  • Yang, W.H. and Tarng, Y.S. (1998). Design optimization of cutting parameters for turning operations based on the Taguchi method, Journal of Materials Processing Technology, 84, 122–129.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makaleleri
Yazarlar

Ergün Ekı̇cı̇

Gültekin Uzun

Turgay Kıvak

Yayımlanma Tarihi 23 Aralık 2014
Gönderilme Tarihi 23 Aralık 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 19 Sayı: 2

Kaynak Göster

APA Ekı̇cı̇ E., Uzun, G., & Kıvak, T. (2014). Evaluation of The Effects of Cutting Parameters On The Surface Roughness During The Turning of Hadfield Steel With Response Surface Methodology. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 19(2), 19-28. https://doi.org/10.17482/uujfe.38441
AMA Ekı̇cı̇ E, Uzun G, Kıvak T. Evaluation of The Effects of Cutting Parameters On The Surface Roughness During The Turning of Hadfield Steel With Response Surface Methodology. UUJFE. Aralık 2014;19(2):19-28. doi:10.17482/uujfe.38441
Chicago Ekı̇cı̇ Ergün, Uzun Gültekin, ve Turgay Kıvak. “Evaluation of The Effects of Cutting Parameters On The Surface Roughness During The Turning of Hadfield Steel With Response Surface Methodology”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 19, sy. 2 (Aralık 2014): 19-28. https://doi.org/10.17482/uujfe.38441.
EndNote Ekı̇cı̇ E, Uzun G, Kıvak T (01 Aralık 2014) Evaluation of The Effects of Cutting Parameters On The Surface Roughness During The Turning of Hadfield Steel With Response Surface Methodology. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 19 2 19–28.
IEEE Ekı̇cı̇ E., G. Uzun, ve T. Kıvak, “Evaluation of The Effects of Cutting Parameters On The Surface Roughness During The Turning of Hadfield Steel With Response Surface Methodology”, UUJFE, c. 19, sy. 2, ss. 19–28, 2014, doi: 10.17482/uujfe.38441.
ISNAD Ekı̇cı̇ Ergün vd. “Evaluation of The Effects of Cutting Parameters On The Surface Roughness During The Turning of Hadfield Steel With Response Surface Methodology”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 19/2 (Aralık 2014), 19-28. https://doi.org/10.17482/uujfe.38441.
JAMA Ekı̇cı̇ E, Uzun G, Kıvak T. Evaluation of The Effects of Cutting Parameters On The Surface Roughness During The Turning of Hadfield Steel With Response Surface Methodology. UUJFE. 2014;19:19–28.
MLA Ekı̇cı̇ Ergün vd. “Evaluation of The Effects of Cutting Parameters On The Surface Roughness During The Turning of Hadfield Steel With Response Surface Methodology”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 19, sy. 2, 2014, ss. 19-28, doi:10.17482/uujfe.38441.
Vancouver Ekı̇cı̇ E, Uzun G, Kıvak T. Evaluation of The Effects of Cutting Parameters On The Surface Roughness During The Turning of Hadfield Steel With Response Surface Methodology. UUJFE. 2014;19(2):19-28.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr