Araştırma Makalesi
BibTex RIS Kaynak Göster

ÇATI GEOMETRİSİN BİNA ISIL DAVRANIŞI ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ

Yıl 2017, Cilt: 22 Sayı: 3, 187 - 200, 28.12.2017
https://doi.org/10.17482/uumfd.330923

Öz

Bu
çalışmanın amacı yaz ayları için enerji verimliliği açısından, bina çatı
geometrisinin iç ortam havasına etkisini araştırmaktır. Bu amaçla Harran konik
çatılı yapıları aynı taban alanı, hacim ve termo-fiziksel özelliklere sahip düz
çatılı bina ile karşılaştırılmıştır. k-ε türbülans modeli kullanılarak üç
boyutlu CFD simülasyonu gerçekleştirilmiştir. Çatı geometrisinin doğal
havalandırmaya etkisi araştırılmıştır. Bu kapsamda çapraz havalandırma debisi
ve taşınım ısı transfer katsayıları değerlendirilmiştir. Harran evi çapraz
havalandırma açısından düz çatılı yapıya göre % 8 daha iyi performans
göstermektedir.  Sayısal analizler
sonucundan tipik bir yaz günü için Harran evinin kubbesinin düz çatıdan % 30
daha az ısı atağına maruz kaldığı ve bunun daha düşük iç ortam havası
sıcaklığına neden olduğu ortaya çıkmıştır
.

Kaynakça

  • 1. Özdeniz, M. B.,Bekleyen, A., Gönül, I. A., Gönül, H.,Sarigul, H., Ilter, T.,Dalkiliç, N., Yildirim, M. (1998) Vernacular Domed Houses of Harran, Turkey. Habitat International, vol. 22 issue 4 December, 1998. p. 477-485.
  • 2. Başaran T. (2011) Thermal Analysis of the Domed Vernacular Houses of Harran, Turkey, Indoor and Built Environment, 20(5), 543-554.
  • 3. Cardinale, N. Rospi, G., Stefanizzi, P.(2013) Energy and microclimatic performance of Mediterranean vernacular buildings: The Sassi district of Matera and the Trulli district of Alberobello, Building and Environment, Volume 59, Pages 590-598.
  • 4. Geva, A., Saaroni, H. Jacob Morris, J. (2014) Measurements and simulations of thermal comfort: a synagogue in Tel Aviv, Israel, Journal of Building Performance Simulation, Vol. 7, Iss. 3.
  • 5. Faghih, A. K. and Bahadori, M. N. (2011) Thermal performance evaluation of domed roofs, Energy and Buildings, Volume 43, Issue 6, June 2011, Pages 1254-1263.
  • 6. Laborda, M. A. C., García, I. A., Escudero, J.F.,. Sendra,J.J. (2015) Towards finding the optimal location of a ventilation inlet in a roof monitor skylight, using visual and thermal performance criteria, for dwellings in a Mediterranean climate, Journal of Building Performance Simulation , Vol. 8, Iss. 4.
  • 7. Al-Jawadi, M. H., Al-Sudany J. A. (2010). Domes and their Impact on Thermal Environment inside Buildings, World Congress on Housing, October 26-29, Santander, Spain.
  • 8. Pearlmutter D. (1993) Roof Geometry as a Determinant of Thermal Behaviour: A Comparative Study of Vaulted and Flat Surfaces in a Hot-Arid Zone. Architectural Science Review, 36 (2) , Pages 75-86.
  • 9. Nguyen, A.T., Reiter, S. (2014) Passive designs and strategies for low-cost housing using simulation-based optimization and different thermal comfort criteria, Journal of Building Performance Simulation, Vol. 7, Iss. 1, 2014
  • 10. Duffie, J.A., Beckman, W.A. (1991). Solar Engineering Thermal Process. New York, Wiley Interscience
  • 11. Blocken, B.J.E., Defraeye, T.W.J., Derome, D. & Carmeliet, J.E. (2009). High-resolution CFD simulations of forced convective heat transfer coefficients at the facade of a low-rise building. Building and Environment, 44(12), 2396-2412.
  • 12. Defraeye, T.W.J., Blocken, B.J.E. & Carmeliet, J.E. (2009). CFD analysis of convective heat transfer coefficients on the exterior surfaces of a cubic building. Conference Paper: Proceedings of the 7th International Conference on Urban Climate, 29 June – 3 July, Yokohama, Japan, 1-4.
  • 13. Wallentén P. (2001). Convective heat transfer coefficients in a full-scale room with and without furniture. Building and Environment, 36: 743–751.
  • 14. Şanlıurfa İl Çevre Durum Raporu (2010), T.C. Şanlıurfa Valiliği İl Çevre ve Orman Müdürlüğü, page 13, Şanlıurfa.
  • 15. Nguyen, A.T., Reiter, S. (2011) The effect of ceiling configurations on indoor air motion and ventilation flow rates, Building and Environment, Volume 46, Issue 5, Pages 1211-1222
  • 16. Meroney R. N. (2009) CFD Prediction of Airflow in Buildings for Natural Ventilation. 11th Americas Conference on Wind Engineering, June 22-26, San Juan, Puerto Rico.
  • 17. Allocca, C., Chen, Q., Glicksman, L. R., (2003) Design analysis of single-sided natural ventilation, Energy and Buildings, Volume 35, Issue 8, Pages 785-795, ISSN 0378-7788

Investigation of the Effect of the Roof Geometry on Building Thermal Behaviour

Yıl 2017, Cilt: 22 Sayı: 3, 187 - 200, 28.12.2017
https://doi.org/10.17482/uumfd.330923

Öz

Main objective of this study is to investigate
effect of the roof geometry on indoor air conditions in terms of energy
efficiency in summer. Harran’s conical roofed building has for this purpose
been compared with flat roofed building of equivalent thermo-physical
properties, base area and volume. Three dimensional CFD simulations using the
low-Reynolds number modeling (LRNM) and standard
 turbulence models are performed. The effect of
roof geometry on natural ventilation is investigated. Cross ventilation flow
rates and convection heat transfer coefficients for these two roof types are
evaluated for this purpose. Cross ventilation flow rate for the house with
conical roof is found to be 8% higher than that of the flat one. The result of
the numerical analysis reveals as well that the conical roof transfers 30% less
heat to interior side for a representative summer day, resulting in lower
indoor air temperature in the house.  

Kaynakça

  • 1. Özdeniz, M. B.,Bekleyen, A., Gönül, I. A., Gönül, H.,Sarigul, H., Ilter, T.,Dalkiliç, N., Yildirim, M. (1998) Vernacular Domed Houses of Harran, Turkey. Habitat International, vol. 22 issue 4 December, 1998. p. 477-485.
  • 2. Başaran T. (2011) Thermal Analysis of the Domed Vernacular Houses of Harran, Turkey, Indoor and Built Environment, 20(5), 543-554.
  • 3. Cardinale, N. Rospi, G., Stefanizzi, P.(2013) Energy and microclimatic performance of Mediterranean vernacular buildings: The Sassi district of Matera and the Trulli district of Alberobello, Building and Environment, Volume 59, Pages 590-598.
  • 4. Geva, A., Saaroni, H. Jacob Morris, J. (2014) Measurements and simulations of thermal comfort: a synagogue in Tel Aviv, Israel, Journal of Building Performance Simulation, Vol. 7, Iss. 3.
  • 5. Faghih, A. K. and Bahadori, M. N. (2011) Thermal performance evaluation of domed roofs, Energy and Buildings, Volume 43, Issue 6, June 2011, Pages 1254-1263.
  • 6. Laborda, M. A. C., García, I. A., Escudero, J.F.,. Sendra,J.J. (2015) Towards finding the optimal location of a ventilation inlet in a roof monitor skylight, using visual and thermal performance criteria, for dwellings in a Mediterranean climate, Journal of Building Performance Simulation , Vol. 8, Iss. 4.
  • 7. Al-Jawadi, M. H., Al-Sudany J. A. (2010). Domes and their Impact on Thermal Environment inside Buildings, World Congress on Housing, October 26-29, Santander, Spain.
  • 8. Pearlmutter D. (1993) Roof Geometry as a Determinant of Thermal Behaviour: A Comparative Study of Vaulted and Flat Surfaces in a Hot-Arid Zone. Architectural Science Review, 36 (2) , Pages 75-86.
  • 9. Nguyen, A.T., Reiter, S. (2014) Passive designs and strategies for low-cost housing using simulation-based optimization and different thermal comfort criteria, Journal of Building Performance Simulation, Vol. 7, Iss. 1, 2014
  • 10. Duffie, J.A., Beckman, W.A. (1991). Solar Engineering Thermal Process. New York, Wiley Interscience
  • 11. Blocken, B.J.E., Defraeye, T.W.J., Derome, D. & Carmeliet, J.E. (2009). High-resolution CFD simulations of forced convective heat transfer coefficients at the facade of a low-rise building. Building and Environment, 44(12), 2396-2412.
  • 12. Defraeye, T.W.J., Blocken, B.J.E. & Carmeliet, J.E. (2009). CFD analysis of convective heat transfer coefficients on the exterior surfaces of a cubic building. Conference Paper: Proceedings of the 7th International Conference on Urban Climate, 29 June – 3 July, Yokohama, Japan, 1-4.
  • 13. Wallentén P. (2001). Convective heat transfer coefficients in a full-scale room with and without furniture. Building and Environment, 36: 743–751.
  • 14. Şanlıurfa İl Çevre Durum Raporu (2010), T.C. Şanlıurfa Valiliği İl Çevre ve Orman Müdürlüğü, page 13, Şanlıurfa.
  • 15. Nguyen, A.T., Reiter, S. (2011) The effect of ceiling configurations on indoor air motion and ventilation flow rates, Building and Environment, Volume 46, Issue 5, Pages 1211-1222
  • 16. Meroney R. N. (2009) CFD Prediction of Airflow in Buildings for Natural Ventilation. 11th Americas Conference on Wind Engineering, June 22-26, San Juan, Puerto Rico.
  • 17. Allocca, C., Chen, Q., Glicksman, L. R., (2003) Design analysis of single-sided natural ventilation, Energy and Buildings, Volume 35, Issue 8, Pages 785-795, ISSN 0378-7788
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Erdal Yıldırım

Zeynel Abidin Fıratoğlu Bu kişi benim

Bülent Yeşilata Bu kişi benim

Yayımlanma Tarihi 28 Aralık 2017
Gönderilme Tarihi 26 Temmuz 2017
Kabul Tarihi 5 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 22 Sayı: 3

Kaynak Göster

APA Yıldırım, E., Fıratoğlu, Z. A., & Yeşilata, B. (2017). ÇATI GEOMETRİSİN BİNA ISIL DAVRANIŞI ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22(3), 187-200. https://doi.org/10.17482/uumfd.330923
AMA Yıldırım E, Fıratoğlu ZA, Yeşilata B. ÇATI GEOMETRİSİN BİNA ISIL DAVRANIŞI ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ. UUJFE. Aralık 2017;22(3):187-200. doi:10.17482/uumfd.330923
Chicago Yıldırım, Erdal, Zeynel Abidin Fıratoğlu, ve Bülent Yeşilata. “ÇATI GEOMETRİSİN BİNA ISIL DAVRANIŞI ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22, sy. 3 (Aralık 2017): 187-200. https://doi.org/10.17482/uumfd.330923.
EndNote Yıldırım E, Fıratoğlu ZA, Yeşilata B (01 Aralık 2017) ÇATI GEOMETRİSİN BİNA ISIL DAVRANIŞI ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22 3 187–200.
IEEE E. Yıldırım, Z. A. Fıratoğlu, ve B. Yeşilata, “ÇATI GEOMETRİSİN BİNA ISIL DAVRANIŞI ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ”, UUJFE, c. 22, sy. 3, ss. 187–200, 2017, doi: 10.17482/uumfd.330923.
ISNAD Yıldırım, Erdal vd. “ÇATI GEOMETRİSİN BİNA ISIL DAVRANIŞI ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 22/3 (Aralık 2017), 187-200. https://doi.org/10.17482/uumfd.330923.
JAMA Yıldırım E, Fıratoğlu ZA, Yeşilata B. ÇATI GEOMETRİSİN BİNA ISIL DAVRANIŞI ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ. UUJFE. 2017;22:187–200.
MLA Yıldırım, Erdal vd. “ÇATI GEOMETRİSİN BİNA ISIL DAVRANIŞI ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 22, sy. 3, 2017, ss. 187-00, doi:10.17482/uumfd.330923.
Vancouver Yıldırım E, Fıratoğlu ZA, Yeşilata B. ÇATI GEOMETRİSİN BİNA ISIL DAVRANIŞI ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ. UUJFE. 2017;22(3):187-200.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr