Araştırma Makalesi
BibTex RIS Kaynak Göster

KESİT ŞEKLİNİN POLİ (L-LAKTİK ASİT) FİLAMENT İPLİK ÖZELLİKLERİNE ETKİSİ

Yıl 2022, Cilt: 27 Sayı: 1, 375 - 388, 30.04.2022
https://doi.org/10.17482/uumfd.1017015

Öz

Bu çalışmada yenilenebilir kaynaklardan üretilen biyo bozunur ve biyo gübrelenebilir poli(L-laktik asit) (PLLA) polimerinden, eriyikten çekim eğirme prosesiyle filament iplikler üretilmiştir. Özel kesitli PLLA filament iplik üretimleri başarıyla gerçekleştirilmiş, bu kesitlerin sahip olduğu farklı yüzey morfolojilerinin ipliklerin yapısal ve fiziksel özelliklerine olan etkileri araştırılmıştır. Kesit şekilleri olarak en yaygın kullanılan dairesel kesitin dışında üçgen, artı, içi boş daire ve yassı biçimleri seçilmiştir. İpliklerin termal özellikleri ve kristalizasyon verileri DSC analizi ile, kimyasal özellikleri viskozite ve karboksil analizleriyle, fiziksel özellikleri ise mukavemet, uzama, düzgünsüzlük testleriyle karakterize edilmiştir. PLLA polimerinden eriyikten çekim eğirme prosesi ile endüstriyel özellikte özel kesitli filament iplikler başarı ile üretilmiştir.

Kaynakça

  • 1. Amaro, L. P., Cicogna, F., Passaglia, E., Morici, E., Oberhauser, W., Al-Malaika, S., ... & Coiai, S. (2016). Thermo-oxidative stabilization of poly (lactic acid) with antioxidant intercalated layered double hydroxides. Polymer Degradation and Stability, 133, 92-100. doi: 10.1016/j.polymdegradstab.2016.08.005
  • 2. Auras, R. A., Singh, S. P., & Singh, J. J. (2005). Evaluation of oriented poly (lactide) polymers vs. existing PET and oriented PS for fresh food service containers. Packaging Technology and Science: An International Journal, 18(4), 207-216. doi: 10.1002/pts.692
  • 3. Auras, R. A., Lim, L. T., Selke, S. E., & Tsuji, H. (2011) Poly (lactic acid): synthesis, structures, properties, processing, and applications, John Wiley & Sons, New Jersey.
  • 4. Budhavaram, N. K., & Fan, Z. (2007, November). Lactic acid production from paper sludge using thermophilic bacteria. In AIChE Annual Meeting.
  • 5. Chavalitpanya, K., & Phattanarudee, S. (2013). Poly (lactic acid)/polycaprolactone blends compatibilized with block copolymer. Energy Procedia, 34, 542-548. doi: 10.1016/j.egypro.2013.06.783
  • 6. Cicero, J. A., Dorgan, J. R., Janzen, J., Garrett, J., Runt, J., & Lin, J. S. (2002). Supramolecular morphology of two‐step, melt‐spun poly (lactic acid) fibers. Journal of Applied Polymer Science, 86(11), 2828-2838. doi: 10.1002/app.11267
  • 7. Domingues, R. C. C., Pereira, C. C., & Borges, C. P. (2017). Morphological control and properties of poly (lactic acid) hollow fibers for biomedical applications. Journal of Applied Polymer Science, 134(47), 45494. doi: 10.1002/app.45494
  • 8. Drumright, R. E., Gruber, P. R., & Henton, D. E. (2000). Polylactic acid technology. Advanced materials, 12(23), 1841-1846. doi: 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
  • 9. Dugan, J. S. (2000) Novel Properties of PLA fibers, Research Fiber Innovation technology, INTC 2000, Texas.
  • 10. Gupta, A. P., & Kumar, V. (2007). New emerging trends in synthetic biodegradable polymers–Polylactide: A critique. European polymer journal, 43(10), 4053-4074. doi: 10.1016/j.eurpolymj.2007.06.045
  • 11. Jompang, L., Thumsorn, S., On, J. W., Surin, P., Apawet, C., Chaichalermwong, T., ... & Srisawat, N. (2013). Poly (lactic acid) and poly (butylene succinate) blend fibers prepared by melt spinning technique. Energy Procedia, 34, 493-499. doi: 10.1016/j.egypro.2013.06.777
  • 12. Kara Ş. (2011). Farklı enine kesit şekillerinde üretilen kimyasal liflerin yapısal davranışları ve kullanım özelliklerinin incelenmesi, Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • 13. Karaca, E., Omeroglu, S., & Becerir, B. (2015). Effects of fiber cross-sectional shapes on tensile and tearing properties of polyester woven fabrics. Textile and Apparel, 25(4), 313-318.
  • 14. Kim, K. I., Kim, W. K., Seo, D. K., Yoo, I. S., Kim, E. K., & Yoon, H. H. (2003) Biotechnology for Fuels and Chemicals, Humana Press, Totowa.
  • 15. Kopinke, F. D., Remmler, M., Mackenzie, K., Möder, M., & Wachsen, O. (1996). Thermal decomposition of biodegradable polyesters—II. Poly (lactic acid). polymer Degradation and Stability, 53(3), 329-342. doi: 10.1016/0141-3910(96)00102-4
  • 16. Lim, L. T., Auras, R., & Rubino, M. (2008). Processing technologies for poly (lactic acid). Progress in polymer science, 33(8), 820-852. doi: 10.1016/j.progpolymsci.2008.05.004
  • 17. Martin, O., & Avérous, L. (2001). Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 42(14), 6209-6219. doi: 10.1016/S0032-3861(01)00086-6
  • 18. Mathew, A. P., Oksman, K., & Sain, M. (2005). Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of applied polymer science, 97(5), 2014-2025. doi: 10.1002/app.21779
  • 19. Mohanty, A. K., Misra, M., & Drzal, L. T. (2005) Natural fibers, biopolymers, and biocomposites. CRC press, Florida.
  • 20. Mochizuki, M. (2009) Handbook of textile fibre structure, Woodhead Publishing, Cambridge.
  • 21. Moriya, A., Maruyama, T., Ohmukai, Y., Sotani, T., & Matsuyama, H. (2009). Preparation of poly (lactic acid) hollow fiber membranes via phase separation methods. Journal of Membrane Science, 342(1-2), 307-312. doi: 10.1016/j.memsci.2009.07.005
  • 22. Nakajima, T., Kajiwara, K., & McIntyre, J. E. (1994) Advanced fiber spinning technology. Woodhead Publishing, Cambridge. 23. Ömeroğlu, S., Karaca, E., Becerir, B., & Akbaş, E. B. (2011). Farklı kesite sahip filamentlerden oluşan poliester ipliklerde bükümün mukavemet özelliklerine etkisi. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 16 (2).
  • 24. Özcan, H. (2019). Poliesterin süper kritik karbondioksit ortamında boyanmasında proses şartlarının renge etkisinin incelenmesi, Yüksek Lisans Tezi, Bursa Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Bursa.
  • 25. Özkan, S., & Babaarslan, O. (2010). İplik kesitindeki filament sayısının filament ve tekstüre ipliklerin özellikleri üzerindeki etkisi. Tekstil ve Konfeksiyon, 20(1), 17-22.
  • 26. Padee, S., Thumsorn, S., On, J. W., Surin, P., Apawet, C., Chaichalermwong, T., ... & Srisawat, N. (2013). Preparation of poly (lactic acid) and poly (trimethylene terephthalate) blend fibers for textile application. Energy Procedia, 34, 534-541. doi:10.1016/j.egypro.2013.06.782
  • 27. Prahsarn, C., Klinsukhon, W., Padee, S., Suwannamek, N., Roungpaisan, N., & Srisawat, N. (2016). Hollow segmented-pie PLA/PBS and PLA/PP bicomponent fibers: an investigation on fiber properties and splittability. Journal of Materials Science, 51(24), 10910-10916. doi: 10.1007/s10853-016-0302-0
  • 28. Sangroniz, L., Gancheva, T., Favis, B. D., Müller, A. J., & Santamaria, A. (2021). Rheology of complex biobased quaternary blends: Poly (lactic acid)[poly (ethylene oxide)]/poly (ether-b-amide)/poly (amide 11). Journal of Rheology, 65(3), 437-451. doi:10.1122/8.0000202
  • 29. Sato, Y., Inohara, K., Takishima, S., Masuoka, H., Imaizumi, M., Yamamoto, H., & Takasugi, M. (2000). Pressure‐volume‐temperature behavior of polylactide, poly (butylene succinate), and poly (butylene succinate‐co‐adipate). Polymer Engineering & Science, 40(12), 2602-2609. doi: 10.1002/pen.11390.
  • 30. Sawyer, D. (2001). PLA technology and applications. Nonwovens World, 10(2), 49-53.
  • 31. Tavanaie, M. A. (2014). Melt recycling of poly (lactic acid) plastic wastes to produce biodegradable fibers. Polymer-Plastics Technology and Engineering, 53(7), 742-751. doi: 10.1080/03602559.2013.877931
  • 32. Üner, İ. & Koçak, E.D. (2012). Poli (laktik asit)’in kullanım alanları ve nano lif üretimdeki uygulamaları. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 11(22), 79-88.
  • 33. Xiao, L., Wang, B., Yang, G., & Gauthier, M. (2012). Poly (lactic acid)-based biomaterials: synthesis, modification and applications. Biomedical science, engineering and technology, 11, 247-82.
  • 34. Yang, F., Murugan, R., Wang, S., & Ramakrishna, S. (2005). Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 26(15), 2603-2610. doi: 10.1016/j.biomaterials.2004.06.051
  • 35. Yoruç, A. B. H., & Uğraşkan, V. (2017). Yeşil Polimerler ve Uygulamaları. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17(1), 318-337.
  • 36. Yu, L., Dean, K., & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in polymer science, 31(6), 576-602. doi:10.1016/j.progpolymsci.2006.03.002
  • 37. Zhou, H., Green, T. B., & Joo, Y. L. (2006). The thermal effects on electrospinning of polylactic acid melts. Polymer, 47(21), 7497-7505. doi:10.1016/j.polymer.2006.08.042

The Effect of Cross Section on Poly (L -Lactic Acid) Filament Yarn Properties

Yıl 2022, Cilt: 27 Sayı: 1, 375 - 388, 30.04.2022
https://doi.org/10.17482/uumfd.1017015

Öz

In this study, filament yarns were produced from the biodegradable and bio compostable poly(L-lactic acid) (PLLA) polymer produced from renewable resources by the melt spinning process. Special cross-section PLLA filament yarn production was carried out successfully, and the effects of different surface morphologies of these sections on the structural and physical properties of the yarns were investigated. Triangle, plus, hollow circle and flat sections were chosen as the special cross section, apart from the most commonly used circular section. Thermal properties and crystallization data of the yarns were characterized by DSC analysis, chemical properties were characterized by viscosity and carboxyl analysis, and physical properties were characterized by tensile, elongation and evenness tests. Industrial quality special cross-section filament yarns have been produced successfully with the melt spinning process from PLLA polymer.

Kaynakça

  • 1. Amaro, L. P., Cicogna, F., Passaglia, E., Morici, E., Oberhauser, W., Al-Malaika, S., ... & Coiai, S. (2016). Thermo-oxidative stabilization of poly (lactic acid) with antioxidant intercalated layered double hydroxides. Polymer Degradation and Stability, 133, 92-100. doi: 10.1016/j.polymdegradstab.2016.08.005
  • 2. Auras, R. A., Singh, S. P., & Singh, J. J. (2005). Evaluation of oriented poly (lactide) polymers vs. existing PET and oriented PS for fresh food service containers. Packaging Technology and Science: An International Journal, 18(4), 207-216. doi: 10.1002/pts.692
  • 3. Auras, R. A., Lim, L. T., Selke, S. E., & Tsuji, H. (2011) Poly (lactic acid): synthesis, structures, properties, processing, and applications, John Wiley & Sons, New Jersey.
  • 4. Budhavaram, N. K., & Fan, Z. (2007, November). Lactic acid production from paper sludge using thermophilic bacteria. In AIChE Annual Meeting.
  • 5. Chavalitpanya, K., & Phattanarudee, S. (2013). Poly (lactic acid)/polycaprolactone blends compatibilized with block copolymer. Energy Procedia, 34, 542-548. doi: 10.1016/j.egypro.2013.06.783
  • 6. Cicero, J. A., Dorgan, J. R., Janzen, J., Garrett, J., Runt, J., & Lin, J. S. (2002). Supramolecular morphology of two‐step, melt‐spun poly (lactic acid) fibers. Journal of Applied Polymer Science, 86(11), 2828-2838. doi: 10.1002/app.11267
  • 7. Domingues, R. C. C., Pereira, C. C., & Borges, C. P. (2017). Morphological control and properties of poly (lactic acid) hollow fibers for biomedical applications. Journal of Applied Polymer Science, 134(47), 45494. doi: 10.1002/app.45494
  • 8. Drumright, R. E., Gruber, P. R., & Henton, D. E. (2000). Polylactic acid technology. Advanced materials, 12(23), 1841-1846. doi: 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
  • 9. Dugan, J. S. (2000) Novel Properties of PLA fibers, Research Fiber Innovation technology, INTC 2000, Texas.
  • 10. Gupta, A. P., & Kumar, V. (2007). New emerging trends in synthetic biodegradable polymers–Polylactide: A critique. European polymer journal, 43(10), 4053-4074. doi: 10.1016/j.eurpolymj.2007.06.045
  • 11. Jompang, L., Thumsorn, S., On, J. W., Surin, P., Apawet, C., Chaichalermwong, T., ... & Srisawat, N. (2013). Poly (lactic acid) and poly (butylene succinate) blend fibers prepared by melt spinning technique. Energy Procedia, 34, 493-499. doi: 10.1016/j.egypro.2013.06.777
  • 12. Kara Ş. (2011). Farklı enine kesit şekillerinde üretilen kimyasal liflerin yapısal davranışları ve kullanım özelliklerinin incelenmesi, Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • 13. Karaca, E., Omeroglu, S., & Becerir, B. (2015). Effects of fiber cross-sectional shapes on tensile and tearing properties of polyester woven fabrics. Textile and Apparel, 25(4), 313-318.
  • 14. Kim, K. I., Kim, W. K., Seo, D. K., Yoo, I. S., Kim, E. K., & Yoon, H. H. (2003) Biotechnology for Fuels and Chemicals, Humana Press, Totowa.
  • 15. Kopinke, F. D., Remmler, M., Mackenzie, K., Möder, M., & Wachsen, O. (1996). Thermal decomposition of biodegradable polyesters—II. Poly (lactic acid). polymer Degradation and Stability, 53(3), 329-342. doi: 10.1016/0141-3910(96)00102-4
  • 16. Lim, L. T., Auras, R., & Rubino, M. (2008). Processing technologies for poly (lactic acid). Progress in polymer science, 33(8), 820-852. doi: 10.1016/j.progpolymsci.2008.05.004
  • 17. Martin, O., & Avérous, L. (2001). Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 42(14), 6209-6219. doi: 10.1016/S0032-3861(01)00086-6
  • 18. Mathew, A. P., Oksman, K., & Sain, M. (2005). Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of applied polymer science, 97(5), 2014-2025. doi: 10.1002/app.21779
  • 19. Mohanty, A. K., Misra, M., & Drzal, L. T. (2005) Natural fibers, biopolymers, and biocomposites. CRC press, Florida.
  • 20. Mochizuki, M. (2009) Handbook of textile fibre structure, Woodhead Publishing, Cambridge.
  • 21. Moriya, A., Maruyama, T., Ohmukai, Y., Sotani, T., & Matsuyama, H. (2009). Preparation of poly (lactic acid) hollow fiber membranes via phase separation methods. Journal of Membrane Science, 342(1-2), 307-312. doi: 10.1016/j.memsci.2009.07.005
  • 22. Nakajima, T., Kajiwara, K., & McIntyre, J. E. (1994) Advanced fiber spinning technology. Woodhead Publishing, Cambridge. 23. Ömeroğlu, S., Karaca, E., Becerir, B., & Akbaş, E. B. (2011). Farklı kesite sahip filamentlerden oluşan poliester ipliklerde bükümün mukavemet özelliklerine etkisi. Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 16 (2).
  • 24. Özcan, H. (2019). Poliesterin süper kritik karbondioksit ortamında boyanmasında proses şartlarının renge etkisinin incelenmesi, Yüksek Lisans Tezi, Bursa Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Bursa.
  • 25. Özkan, S., & Babaarslan, O. (2010). İplik kesitindeki filament sayısının filament ve tekstüre ipliklerin özellikleri üzerindeki etkisi. Tekstil ve Konfeksiyon, 20(1), 17-22.
  • 26. Padee, S., Thumsorn, S., On, J. W., Surin, P., Apawet, C., Chaichalermwong, T., ... & Srisawat, N. (2013). Preparation of poly (lactic acid) and poly (trimethylene terephthalate) blend fibers for textile application. Energy Procedia, 34, 534-541. doi:10.1016/j.egypro.2013.06.782
  • 27. Prahsarn, C., Klinsukhon, W., Padee, S., Suwannamek, N., Roungpaisan, N., & Srisawat, N. (2016). Hollow segmented-pie PLA/PBS and PLA/PP bicomponent fibers: an investigation on fiber properties and splittability. Journal of Materials Science, 51(24), 10910-10916. doi: 10.1007/s10853-016-0302-0
  • 28. Sangroniz, L., Gancheva, T., Favis, B. D., Müller, A. J., & Santamaria, A. (2021). Rheology of complex biobased quaternary blends: Poly (lactic acid)[poly (ethylene oxide)]/poly (ether-b-amide)/poly (amide 11). Journal of Rheology, 65(3), 437-451. doi:10.1122/8.0000202
  • 29. Sato, Y., Inohara, K., Takishima, S., Masuoka, H., Imaizumi, M., Yamamoto, H., & Takasugi, M. (2000). Pressure‐volume‐temperature behavior of polylactide, poly (butylene succinate), and poly (butylene succinate‐co‐adipate). Polymer Engineering & Science, 40(12), 2602-2609. doi: 10.1002/pen.11390.
  • 30. Sawyer, D. (2001). PLA technology and applications. Nonwovens World, 10(2), 49-53.
  • 31. Tavanaie, M. A. (2014). Melt recycling of poly (lactic acid) plastic wastes to produce biodegradable fibers. Polymer-Plastics Technology and Engineering, 53(7), 742-751. doi: 10.1080/03602559.2013.877931
  • 32. Üner, İ. & Koçak, E.D. (2012). Poli (laktik asit)’in kullanım alanları ve nano lif üretimdeki uygulamaları. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 11(22), 79-88.
  • 33. Xiao, L., Wang, B., Yang, G., & Gauthier, M. (2012). Poly (lactic acid)-based biomaterials: synthesis, modification and applications. Biomedical science, engineering and technology, 11, 247-82.
  • 34. Yang, F., Murugan, R., Wang, S., & Ramakrishna, S. (2005). Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 26(15), 2603-2610. doi: 10.1016/j.biomaterials.2004.06.051
  • 35. Yoruç, A. B. H., & Uğraşkan, V. (2017). Yeşil Polimerler ve Uygulamaları. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17(1), 318-337.
  • 36. Yu, L., Dean, K., & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in polymer science, 31(6), 576-602. doi:10.1016/j.progpolymsci.2006.03.002
  • 37. Zhou, H., Green, T. B., & Joo, Y. L. (2006). The thermal effects on electrospinning of polylactic acid melts. Polymer, 47(21), 7497-7505. doi:10.1016/j.polymer.2006.08.042
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Giyilebilir Malzemeler
Bölüm Araştırma Makaleleri
Yazarlar

Onur Çelen 0000-0002-7475-6455

Hasan Basri Koçer 0000-0003-2612-6712

Yayımlanma Tarihi 30 Nisan 2022
Gönderilme Tarihi 31 Ekim 2021
Kabul Tarihi 22 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 27 Sayı: 1

Kaynak Göster

APA Çelen, O., & Koçer, H. B. (2022). KESİT ŞEKLİNİN POLİ (L-LAKTİK ASİT) FİLAMENT İPLİK ÖZELLİKLERİNE ETKİSİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 27(1), 375-388. https://doi.org/10.17482/uumfd.1017015
AMA Çelen O, Koçer HB. KESİT ŞEKLİNİN POLİ (L-LAKTİK ASİT) FİLAMENT İPLİK ÖZELLİKLERİNE ETKİSİ. UUJFE. Nisan 2022;27(1):375-388. doi:10.17482/uumfd.1017015
Chicago Çelen, Onur, ve Hasan Basri Koçer. “KESİT ŞEKLİNİN POLİ (L-LAKTİK ASİT) FİLAMENT İPLİK ÖZELLİKLERİNE ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27, sy. 1 (Nisan 2022): 375-88. https://doi.org/10.17482/uumfd.1017015.
EndNote Çelen O, Koçer HB (01 Nisan 2022) KESİT ŞEKLİNİN POLİ (L-LAKTİK ASİT) FİLAMENT İPLİK ÖZELLİKLERİNE ETKİSİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27 1 375–388.
IEEE O. Çelen ve H. B. Koçer, “KESİT ŞEKLİNİN POLİ (L-LAKTİK ASİT) FİLAMENT İPLİK ÖZELLİKLERİNE ETKİSİ”, UUJFE, c. 27, sy. 1, ss. 375–388, 2022, doi: 10.17482/uumfd.1017015.
ISNAD Çelen, Onur - Koçer, Hasan Basri. “KESİT ŞEKLİNİN POLİ (L-LAKTİK ASİT) FİLAMENT İPLİK ÖZELLİKLERİNE ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 27/1 (Nisan 2022), 375-388. https://doi.org/10.17482/uumfd.1017015.
JAMA Çelen O, Koçer HB. KESİT ŞEKLİNİN POLİ (L-LAKTİK ASİT) FİLAMENT İPLİK ÖZELLİKLERİNE ETKİSİ. UUJFE. 2022;27:375–388.
MLA Çelen, Onur ve Hasan Basri Koçer. “KESİT ŞEKLİNİN POLİ (L-LAKTİK ASİT) FİLAMENT İPLİK ÖZELLİKLERİNE ETKİSİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 27, sy. 1, 2022, ss. 375-88, doi:10.17482/uumfd.1017015.
Vancouver Çelen O, Koçer HB. KESİT ŞEKLİNİN POLİ (L-LAKTİK ASİT) FİLAMENT İPLİK ÖZELLİKLERİNE ETKİSİ. UUJFE. 2022;27(1):375-88.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr