Araştırma Makalesi
BibTex RIS Kaynak Göster

THERMAL COMFORT ANALYSIS OF WORKERS IN AN INDUSTRIAL FACILITY: A FIELD STUDY IN BOLU PROVINCE

Yıl 2024, Cilt: 29 Sayı: 3, 699 - 712
https://doi.org/10.17482/uumfd.1511981

Öz

Thermal comfort in industrial facilities has critical importance in terms of worker productivity and health. Providing optimal thermal comfort requires effective use of HVAC systems. In this context, continuous monitoring and improvement are important to ensure appropriate thermal conditions in the working environment. In this study, the current environmental conditions of a facility located in Bolu province were evaluated in terms of workers with the help of measurements and surveys. The measurements were taken separately for summer, winter and spring periods and the evaluations were made by taking into account age, gender, clothing status and activity status. PMV and PPD values were calculated and these values were compared with the survey results and the current thermal comfort conditions were revealed. As a result, it was seen that the clothing status could cause a change between 0.9 ºC and 2.2 ºC in the optimum working temperature.

Kaynakça

  • Arif, M., Katafygiotou, M., Mazroei, A., Kaushik, A., and Elsarrag, E. (2016). Impact of indoor environmental quality on occupant well-being and comfort: A review of the literature. International Journal of Sustainable Built Environment, 5(1), 1-11. dx.doi.org/10.1016/j.ijsbe.2016.03.006.
  • Aritan, A.E. Investigation of thermal comfort conditions in a travertine processing plant by using thermal comfort indices. Int. J. Environ. Sci. Technol. 16, 5285–5288 (2019). doi: 10.1007/s13762-019-02378-4.
  • ASHRAE-55 Standard, A. S. H. R. A. E. (1992). Thermal environmental conditions for human occupancy. ANSI/ASHRAE, 55, 5.
  • Caner, İ. (2020). Optimization of Heating and Cooling Load in Hospitals in Terms of Thermal Comfort and Energy Efficiency, PhD Thesis, Balikesir University, Institute of science, Balikesir.
  • Özbağ, Ş. (2024). Thermal Comfort Analysıs For Heavy Manufacturing Environments in Industrial Facilities, Msc Thesis, Balikesir University, Institute of science, Balikesir.
  • de Melo Pinto, N., de Paula Xavier, A. A., and Hatakeyama, K. (2015). Thermal comfort in industrial environment: conditions and parameters. Procedia Manufacturing, 3, 4999-5006. doi: 10.1016/j.promfg.2015.07.662.
  • Enescu, D. (2017). A review of thermal comfort models and indicators for indoor environments. Renewable and Sustainable Energy Reviews, 79, 1353-1379. doi: 10.1016/j.rser.2017.05.175.
  • Akan, A. E., and Ünal, F. (2021). An application to error and uncertainty analysis in industrial type dryer experiments. Turkish Journal of Engineering, 5(2), 75-80.
  • Ünal, F. (2021). Energy and exergy analysis of an industrial corn dryer operated by two different fuels. International Journal of Exergy, 34(4), 475-491. doi: 10.1504/IJEX.2021.114095.
  • Eskin N. and Aker T., (2019) Binalarda Isıl Konfor Hesaplama Yöntemleri Ve Kullanıcı Değerlendirmesi ile Karşılaştırılması, 14. Ulusal Tesisat Mühendisliği Kongresi, İzmir, 17-20 Nisan 2019, s. 1053-1059.
  • Fanger, P. O., and Toftum, J. (2002). Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy and buildings, 34(6), 533-536. doi: 10.1016/S0378-7788(02)00003-8.
  • ISO 7730, (1995). Ergonomics of the thermal environment-assessment of the influence of the thermal environment using subjective judgement scales. ISO: Geneva, Switzerland.
  • Kekäläinen, P., Niemelä, R., Tuomainen, M., Kemppilä, S., Palonen, J., Riuttala, H., and Reijula, K. (2010). Effect of reduced summer indoor temperature on symptoms, perceived work environment and productivity in office work: An intervention study. Intelligent Buildings International, 2(4), 251-266. doi: 10.3763/inbi.2010.0051.
  • Kumar, S., Mathur, A., Singh, M. K., and Rana, K. B. (2021). Adaptive thermal comfort study of workers in a mini-industrial unit during summer and winter season in a tropical country, India. Building and Environment, 197, 107874, doi.org/10.1016/j.buildenv.2021.107874.
  • Lan, L., Wargocki, P., Wyon, D. P., and Lian, Z. (2011). Effects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses, and human performance. Indoor air, 21(5), 376-390, doi:10.1111/j.1600-0668.2011.00714.x.
  • Langevin, J., Gurian, P. L., and Wen, J. (2015). Tracking the human-building interaction: A longitudinal field study of occupant behavior in air-conditioned offices. Journal of Environmental Psychology, 42, 94-115. doi: 10.1016/j.jenvp.2015.01.007.
  • Langevin, J., Wen, J., and Gurian, P. L. (2013). Modeling thermal comfort holistically: Bayesian estimation of thermal sensation, acceptability, and preference distributions for office building occupants. Building and Environment, 69, 206-226. doi: 10.1016/j.buildenv.2013.07.017.
  • Omidvar, A., and Kim, J. (2020). Modification of sweat evaporative heat loss in the PMV/PPD model to improve thermal comfort prediction in warm climates. Building and Environment, 176, 106868, doi.org/10.1016/j.buildenv.2020.106868.
  • Wu, Q., Liu, J., Zhang, L., Zhang, J., and Jiang, L. (2020). Study on thermal sensation and thermal comfort in environment with moderate temperature ramps. Building and Environment, 171, 106640. doi.org/10.1016/j.buildenv.2019.106640.
  • Wyon, D. P., Andersen, I. B., and Lundqvist, G. R. (1979). The effects of moderate heat stress on mental performance. Scandinavian journal of work, environment & health, 352-361.
  • Yao, R., Li, B., and Liu, J. (2009). A theoretical adaptive model of thermal comfort–Adaptive Predicted Mean Vote (aPMV). Building and environment, 44(10), 2089-2096. doi: 10.1016/j.buildenv.2009.02.014.
  • Zhang, S., Cheng, Y., Oladokun, M. O., Wu, Y., and Lin, Z. (2020). Improving predicted mean vote with inversely determined metabolic rate. Sustainable Cities and Society, 53, 101870, doi: 10.1016/j.scs.2019.101870.
  • Kon, O., and Caner, İ. (2023). Calculations of internal heat gain from occupants affecting the energy consumption of airport buildings. International Journal of Sustainable Aviation, 9(4), 279-292. doi: 10.1504/IJSA.2023.134331.

Endüstriyel Tesiste Çalışanların Termal Konfor Analizi: Bolu İli Saha Çalışması

Yıl 2024, Cilt: 29 Sayı: 3, 699 - 712
https://doi.org/10.17482/uumfd.1511981

Öz

Endüstriyel tesislerde termal konfor, işçi verimliliği ve sağlık açısından kritik öneme sahiptir. Optimal ısıl konfor sağlanması, HVAC sistemlerinin etkin kullanımını gerektirir. Bu bağlamda, çalışma ortamında uygun termal koşulların sağlanması için sürekli izleme ve iyileştirme önemlidir. Bu çalışmada Bolu ilinde bulunan bir tesisin mevcut ortam koşulları ölçüm ve anket yardımı ile işçiler açısından değerlendirilmiştir. Ölçümler yaz, kış ve bahar dönemleri olmak üzere ayrı ayrı ele alınmış ve yaş, cinsiyet, kıyafet durumu ve aktivite durumları dikkate alınarak değerlendirmeler yapılmıştır. PMV, PPD değerleri hesaplanmış ve bu değerler yapılan anket sonuçları ile kıyaslanarak mevcut ısıl konfor koşulları ortaya konulmuştur. Sonuç olarak kıyafet durumunun optimum çalışma sıcaklığında 0,9 ºC ile 2,2 ºC arasında değişime neden olabileceği görülmüştür.

Kaynakça

  • Arif, M., Katafygiotou, M., Mazroei, A., Kaushik, A., and Elsarrag, E. (2016). Impact of indoor environmental quality on occupant well-being and comfort: A review of the literature. International Journal of Sustainable Built Environment, 5(1), 1-11. dx.doi.org/10.1016/j.ijsbe.2016.03.006.
  • Aritan, A.E. Investigation of thermal comfort conditions in a travertine processing plant by using thermal comfort indices. Int. J. Environ. Sci. Technol. 16, 5285–5288 (2019). doi: 10.1007/s13762-019-02378-4.
  • ASHRAE-55 Standard, A. S. H. R. A. E. (1992). Thermal environmental conditions for human occupancy. ANSI/ASHRAE, 55, 5.
  • Caner, İ. (2020). Optimization of Heating and Cooling Load in Hospitals in Terms of Thermal Comfort and Energy Efficiency, PhD Thesis, Balikesir University, Institute of science, Balikesir.
  • Özbağ, Ş. (2024). Thermal Comfort Analysıs For Heavy Manufacturing Environments in Industrial Facilities, Msc Thesis, Balikesir University, Institute of science, Balikesir.
  • de Melo Pinto, N., de Paula Xavier, A. A., and Hatakeyama, K. (2015). Thermal comfort in industrial environment: conditions and parameters. Procedia Manufacturing, 3, 4999-5006. doi: 10.1016/j.promfg.2015.07.662.
  • Enescu, D. (2017). A review of thermal comfort models and indicators for indoor environments. Renewable and Sustainable Energy Reviews, 79, 1353-1379. doi: 10.1016/j.rser.2017.05.175.
  • Akan, A. E., and Ünal, F. (2021). An application to error and uncertainty analysis in industrial type dryer experiments. Turkish Journal of Engineering, 5(2), 75-80.
  • Ünal, F. (2021). Energy and exergy analysis of an industrial corn dryer operated by two different fuels. International Journal of Exergy, 34(4), 475-491. doi: 10.1504/IJEX.2021.114095.
  • Eskin N. and Aker T., (2019) Binalarda Isıl Konfor Hesaplama Yöntemleri Ve Kullanıcı Değerlendirmesi ile Karşılaştırılması, 14. Ulusal Tesisat Mühendisliği Kongresi, İzmir, 17-20 Nisan 2019, s. 1053-1059.
  • Fanger, P. O., and Toftum, J. (2002). Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy and buildings, 34(6), 533-536. doi: 10.1016/S0378-7788(02)00003-8.
  • ISO 7730, (1995). Ergonomics of the thermal environment-assessment of the influence of the thermal environment using subjective judgement scales. ISO: Geneva, Switzerland.
  • Kekäläinen, P., Niemelä, R., Tuomainen, M., Kemppilä, S., Palonen, J., Riuttala, H., and Reijula, K. (2010). Effect of reduced summer indoor temperature on symptoms, perceived work environment and productivity in office work: An intervention study. Intelligent Buildings International, 2(4), 251-266. doi: 10.3763/inbi.2010.0051.
  • Kumar, S., Mathur, A., Singh, M. K., and Rana, K. B. (2021). Adaptive thermal comfort study of workers in a mini-industrial unit during summer and winter season in a tropical country, India. Building and Environment, 197, 107874, doi.org/10.1016/j.buildenv.2021.107874.
  • Lan, L., Wargocki, P., Wyon, D. P., and Lian, Z. (2011). Effects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses, and human performance. Indoor air, 21(5), 376-390, doi:10.1111/j.1600-0668.2011.00714.x.
  • Langevin, J., Gurian, P. L., and Wen, J. (2015). Tracking the human-building interaction: A longitudinal field study of occupant behavior in air-conditioned offices. Journal of Environmental Psychology, 42, 94-115. doi: 10.1016/j.jenvp.2015.01.007.
  • Langevin, J., Wen, J., and Gurian, P. L. (2013). Modeling thermal comfort holistically: Bayesian estimation of thermal sensation, acceptability, and preference distributions for office building occupants. Building and Environment, 69, 206-226. doi: 10.1016/j.buildenv.2013.07.017.
  • Omidvar, A., and Kim, J. (2020). Modification of sweat evaporative heat loss in the PMV/PPD model to improve thermal comfort prediction in warm climates. Building and Environment, 176, 106868, doi.org/10.1016/j.buildenv.2020.106868.
  • Wu, Q., Liu, J., Zhang, L., Zhang, J., and Jiang, L. (2020). Study on thermal sensation and thermal comfort in environment with moderate temperature ramps. Building and Environment, 171, 106640. doi.org/10.1016/j.buildenv.2019.106640.
  • Wyon, D. P., Andersen, I. B., and Lundqvist, G. R. (1979). The effects of moderate heat stress on mental performance. Scandinavian journal of work, environment & health, 352-361.
  • Yao, R., Li, B., and Liu, J. (2009). A theoretical adaptive model of thermal comfort–Adaptive Predicted Mean Vote (aPMV). Building and environment, 44(10), 2089-2096. doi: 10.1016/j.buildenv.2009.02.014.
  • Zhang, S., Cheng, Y., Oladokun, M. O., Wu, Y., and Lin, Z. (2020). Improving predicted mean vote with inversely determined metabolic rate. Sustainable Cities and Society, 53, 101870, doi: 10.1016/j.scs.2019.101870.
  • Kon, O., and Caner, İ. (2023). Calculations of internal heat gain from occupants affecting the energy consumption of airport buildings. International Journal of Sustainable Aviation, 9(4), 279-292. doi: 10.1504/IJSA.2023.134331.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

İsmail Caner 0000-0003-1232-649X

Şükran Özbağ 0009-0006-7569-618X

Nadir İlten 0000-0003-4009-5078

Erken Görünüm Tarihi 18 Aralık 2024
Yayımlanma Tarihi
Gönderilme Tarihi 7 Temmuz 2024
Kabul Tarihi 13 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 29 Sayı: 3

Kaynak Göster

APA Caner, İ., Özbağ, Ş., & İlten, N. (2024). THERMAL COMFORT ANALYSIS OF WORKERS IN AN INDUSTRIAL FACILITY: A FIELD STUDY IN BOLU PROVINCE. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 29(3), 699-712. https://doi.org/10.17482/uumfd.1511981
AMA Caner İ, Özbağ Ş, İlten N. THERMAL COMFORT ANALYSIS OF WORKERS IN AN INDUSTRIAL FACILITY: A FIELD STUDY IN BOLU PROVINCE. UUJFE. Aralık 2024;29(3):699-712. doi:10.17482/uumfd.1511981
Chicago Caner, İsmail, Şükran Özbağ, ve Nadir İlten. “THERMAL COMFORT ANALYSIS OF WORKERS IN AN INDUSTRIAL FACILITY: A FIELD STUDY IN BOLU PROVINCE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29, sy. 3 (Aralık 2024): 699-712. https://doi.org/10.17482/uumfd.1511981.
EndNote Caner İ, Özbağ Ş, İlten N (01 Aralık 2024) THERMAL COMFORT ANALYSIS OF WORKERS IN AN INDUSTRIAL FACILITY: A FIELD STUDY IN BOLU PROVINCE. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29 3 699–712.
IEEE İ. Caner, Ş. Özbağ, ve N. İlten, “THERMAL COMFORT ANALYSIS OF WORKERS IN AN INDUSTRIAL FACILITY: A FIELD STUDY IN BOLU PROVINCE”, UUJFE, c. 29, sy. 3, ss. 699–712, 2024, doi: 10.17482/uumfd.1511981.
ISNAD Caner, İsmail vd. “THERMAL COMFORT ANALYSIS OF WORKERS IN AN INDUSTRIAL FACILITY: A FIELD STUDY IN BOLU PROVINCE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 29/3 (Aralık 2024), 699-712. https://doi.org/10.17482/uumfd.1511981.
JAMA Caner İ, Özbağ Ş, İlten N. THERMAL COMFORT ANALYSIS OF WORKERS IN AN INDUSTRIAL FACILITY: A FIELD STUDY IN BOLU PROVINCE. UUJFE. 2024;29:699–712.
MLA Caner, İsmail vd. “THERMAL COMFORT ANALYSIS OF WORKERS IN AN INDUSTRIAL FACILITY: A FIELD STUDY IN BOLU PROVINCE”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 29, sy. 3, 2024, ss. 699-12, doi:10.17482/uumfd.1511981.
Vancouver Caner İ, Özbağ Ş, İlten N. THERMAL COMFORT ANALYSIS OF WORKERS IN AN INDUSTRIAL FACILITY: A FIELD STUDY IN BOLU PROVINCE. UUJFE. 2024;29(3):699-712.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr