Araştırma Makalesi
BibTex RIS Kaynak Göster

Postnatal Fare Testis Gelişiminde Caspase-Bağımlı ve Caspase-Bağımsız Apoptozun Değerlendirilmesi

Yıl 2018, , 103 - 109, 01.08.2018
https://doi.org/10.32708/uutfd.422147

Öz

Testis gelişimi
sırasında gerçekleşen apoptozun germ hücrelerinin kontrolü için gerekli olduğu
ortaya konmuştur. Hücre ölümü; “caspase-bağımlı” ya
da mitokondriden salınan AIF gibi çeşitli proapoptotik faktörler aracılığıyla “caspase-bağımsız”
olmak üzere iki şekilde düzenlenir. PARP-1’in aşırı aktivasyonunun “caspase-bağımlı”
hücre ölümünde önemli bir rolü olduğu bilinmektedir. Caspase-bağımlı
apoptotik süreçlerde etkin rolü olduğu bilinen PARP-1’in fare testis
gelişiminde rolü olup olmadığı bilinmemektedir. Bu çalışmanın amacı, postnatal
testis gelişiminde, caspase-bağımlı ve caspase-bağımsız apoptotik proteinlerin
ekspresyonlarının değerlendirilmesidir. Postnatal (PN) gelişimin 0, 5, 9, 15,
20. günlerinde ve erişkin fare testis dokularında; PARP-1, cleaved-PARP-1, cleaved-caspase-3
ve AIF proteinlerinin düzeyleri western blot yöntemi ile değerlendirilmiştir.
İmmünohistokimya metodu ile cleaved caspase-3 ve AIF ekspresyonları ve TUNEL
metodu ile değerlendirilmiştir. PARP-1 ekspresyonu,
seçilen tüm günlerde değişmeden devam etmiştir. Cleaved-PARP-1 ve cleaved Caspase-3’ün,
PN0, PN5, PN9. ve PN15. günlerdeki hücre-özgün ekspresyon düzeyleri aynıdır.
Postnatal 5. günde artmaya başlayan AIF protein düzeyleri, PN9, PN15, PN20.
günlerde ve erişkinde de yükselmiştir. Bulgularımız, postnatal gelişim
sürecinde postnatal caspase-bağımlı yolakların germ hücre apoptozunda rol
aldığını düşündürmektedir. İlginç olarak, aynı süreçlerde artan AIF’nin
sitoplazmik ekspresyonu, normal gelişim sürecinde bu molekülün nükleusa
taşınmaması, caspase-bağımsız apoptotik yolağın germ hücre apoptozunda rolü
olmayabileceğini ve/veya AIF’nin germ hücre farklanmasında başka bir role sahip
olabileceğini akla getirmektedir.

Kaynakça

  • 1. Bellamy, C.O., et al., Cell death in health and disease: the biology and regulation of apoptosis. Semin Cancer Biol, 1995. 6(1): p. 3-16.
  • 2. Cummings, M.C., C.M. Winterford, and N.I. Walker, Apoptosis. Am J Surg Pathol, 1997. 21(1): p. 88-101.
  • 3. Majno, G. and I. Joris, Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol, 1995. 146(1): p. 3-15.
  • 4. Schwartzman, R.A. and J.A. Cidlowski, Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr Rev, 1993. 14(2): p. 133-51.
  • 5. Cohen, J.J., Apoptosis. Immunol Today, 1993. 14(3): p. 126-30.
  • 6. Gavrieli, Y., Y. Sherman, and S.A. Ben-Sasson, Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol, 1992. 119(3): p. 493-501.
  • 7. Lu, J., K.W. Ashwell, and P. Waite, Advances in secondary spinal cord injury: role of apoptosis. Spine (Phila Pa 1976), 2000. 25(14): p. 1859-66.
  • 8. Crowe, M.J., et al., Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med, 1997. 3(1): p. 73-6.
  • 9. Li, M., et al., Functional role of kaspaz-1 and kaspaz-3 in an ALS transgenic mouse model. Science, 2000. 288(5464): p. 335-9.
  • 10. Lou, J., et al., Apoptosis as a mechanism of neuronal cell death following acute experimental spinal cord injury. Spinal Cord, 1998. 36(10): p. 683-90.
  • 11. Takagi, T., et al., Kaspaz activation in neuronal and glial apoptosis following spinal cord injury in mice. Neurol Med Chir (Tokyo), 2003. 43(1): p. 20-9; discussion 29-30.
  • 12. Susin, S.A., et al., Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 1999. 397(6718): p. 441-6.
  • 13. Petrilli, V., et al., Noncleavable poly(ADP-ribose) polymerase-1 regulates the inflammation response in mice. J Clin Invest, 2004. 114(8): p. 1072-81.
  • 14. Mahfouz, R.Z., et al., Evaluation of poly(ADP-ribose) polymerase cleavage (cPARP) in ejaculated human sperm fractions after induction of apoptosis. Fertil Steril, 2009. 91(5 Suppl): p. 2210-20.
  • 15. Rodriguez, I., et al., An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J, 1997. 16(9): p. 2262-70.
  • 16. de Rooij, D.G. and J.A. Grootegoed, Spermatogonial stem cells. Curr Opin Cell Biol, 1998. 10(6): p. 694-701.
  • 17. Furuchi, T., et al., Inhibition of testicular germ cell apoptosis and differentiation in mice misexpressing Bcl-2 in spermatogonia. Development, 1996. 122(6): p. 1703-9.
  • 18. Knudson, C.M., et al., Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science, 1995. 270(5233): p. 96-9.
  • 19. Lizama, C., et al., Up-regulation of CD95 (Apo-1/Fas) is associated with spermatocyte apoptosis during the first round of spermatogenesis in the rat. Apoptosis, 2007. 12(3): p. 499-512.
  • 20. Wang, R.A., P.K. Nakane, and T. Koji, Autonomous cell death of mouse male germ cells during fetal and postnatal period. Biol Reprod, 1998. 58(5): p. 1250-6.
  • 21. Goyal, G., et al., Role of mitochondrial remodeling in programmed cell death in Drosophila melanogaster. Dev Cell, 2007. 12(5): p. 807-16.
  • 22. Gassei, K. and S. Schlatt, Testicular morphogenesis: comparison of in vivo and in vitro models to study male gonadal development. Ann N Y Acad Sci, 2007. 1120: p. 152-67.
  • 23. Mego, M., Cancer stem cell in relapsed testicular germ cell cancer: embryonic or somatic? Int J Androl, 2006. 29(6): p. 627.
  • 24. Cande, C., et al., Apoptosis-inducing factor (AIF): a novel kaspaz-independent death effector released from mitochondria. Biochimie, 2002. 84(2-3): p. 215-22.
  • 25. Cande, C., et al., Apoptosis-inducing factor (AIF): kaspaz-independent after all. Cell Death Differ, 2004. 11(6): p. 591-5.
  • 26. Ha, H.C. and S.H. Snyder, Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci U S A, 1999. 96(24): p. 13978-82.
  • 27. de Murcia, G. and J. Menissier de Murcia, Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem Sci, 1994. 19(4): p. 172-6.
  • 28. Berger, N.A., Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res, 1985. 101(1): p. 4-15.
  • 29. Burkle, A., Poly (ADP-Ribosyl)ation. 2006, Konstanz, Germany: Landes Bioscience.
  • 30. Kim, M.Y., T. Zhang, and W.L. Kraus, Poly(ADP-ribosyl)ation by PARP-1: 'PAR-laying' NAD+ into a nuclear signal. Genes Dev, 2005. 19(17): p. 1951-67.
  • 31. Burkle, A., Poly(ADP-ribose). The most elaborate metabolite of NAD+. Febs J, 2005. 272(18): p. 4576-89.
  • 32. Hangen, E., et al., Life with or without AIF. Trends Biochem Sci, 2010. 35(5): p. 278-87.

Assessment of Caspase-Dependent and Caspase-Independent Apoptosis in the Development of Postnatal Mouse Testis

Yıl 2018, , 103 - 109, 01.08.2018
https://doi.org/10.32708/uutfd.422147

Öz

Kaynakça

  • 1. Bellamy, C.O., et al., Cell death in health and disease: the biology and regulation of apoptosis. Semin Cancer Biol, 1995. 6(1): p. 3-16.
  • 2. Cummings, M.C., C.M. Winterford, and N.I. Walker, Apoptosis. Am J Surg Pathol, 1997. 21(1): p. 88-101.
  • 3. Majno, G. and I. Joris, Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol, 1995. 146(1): p. 3-15.
  • 4. Schwartzman, R.A. and J.A. Cidlowski, Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr Rev, 1993. 14(2): p. 133-51.
  • 5. Cohen, J.J., Apoptosis. Immunol Today, 1993. 14(3): p. 126-30.
  • 6. Gavrieli, Y., Y. Sherman, and S.A. Ben-Sasson, Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol, 1992. 119(3): p. 493-501.
  • 7. Lu, J., K.W. Ashwell, and P. Waite, Advances in secondary spinal cord injury: role of apoptosis. Spine (Phila Pa 1976), 2000. 25(14): p. 1859-66.
  • 8. Crowe, M.J., et al., Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med, 1997. 3(1): p. 73-6.
  • 9. Li, M., et al., Functional role of kaspaz-1 and kaspaz-3 in an ALS transgenic mouse model. Science, 2000. 288(5464): p. 335-9.
  • 10. Lou, J., et al., Apoptosis as a mechanism of neuronal cell death following acute experimental spinal cord injury. Spinal Cord, 1998. 36(10): p. 683-90.
  • 11. Takagi, T., et al., Kaspaz activation in neuronal and glial apoptosis following spinal cord injury in mice. Neurol Med Chir (Tokyo), 2003. 43(1): p. 20-9; discussion 29-30.
  • 12. Susin, S.A., et al., Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 1999. 397(6718): p. 441-6.
  • 13. Petrilli, V., et al., Noncleavable poly(ADP-ribose) polymerase-1 regulates the inflammation response in mice. J Clin Invest, 2004. 114(8): p. 1072-81.
  • 14. Mahfouz, R.Z., et al., Evaluation of poly(ADP-ribose) polymerase cleavage (cPARP) in ejaculated human sperm fractions after induction of apoptosis. Fertil Steril, 2009. 91(5 Suppl): p. 2210-20.
  • 15. Rodriguez, I., et al., An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J, 1997. 16(9): p. 2262-70.
  • 16. de Rooij, D.G. and J.A. Grootegoed, Spermatogonial stem cells. Curr Opin Cell Biol, 1998. 10(6): p. 694-701.
  • 17. Furuchi, T., et al., Inhibition of testicular germ cell apoptosis and differentiation in mice misexpressing Bcl-2 in spermatogonia. Development, 1996. 122(6): p. 1703-9.
  • 18. Knudson, C.M., et al., Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science, 1995. 270(5233): p. 96-9.
  • 19. Lizama, C., et al., Up-regulation of CD95 (Apo-1/Fas) is associated with spermatocyte apoptosis during the first round of spermatogenesis in the rat. Apoptosis, 2007. 12(3): p. 499-512.
  • 20. Wang, R.A., P.K. Nakane, and T. Koji, Autonomous cell death of mouse male germ cells during fetal and postnatal period. Biol Reprod, 1998. 58(5): p. 1250-6.
  • 21. Goyal, G., et al., Role of mitochondrial remodeling in programmed cell death in Drosophila melanogaster. Dev Cell, 2007. 12(5): p. 807-16.
  • 22. Gassei, K. and S. Schlatt, Testicular morphogenesis: comparison of in vivo and in vitro models to study male gonadal development. Ann N Y Acad Sci, 2007. 1120: p. 152-67.
  • 23. Mego, M., Cancer stem cell in relapsed testicular germ cell cancer: embryonic or somatic? Int J Androl, 2006. 29(6): p. 627.
  • 24. Cande, C., et al., Apoptosis-inducing factor (AIF): a novel kaspaz-independent death effector released from mitochondria. Biochimie, 2002. 84(2-3): p. 215-22.
  • 25. Cande, C., et al., Apoptosis-inducing factor (AIF): kaspaz-independent after all. Cell Death Differ, 2004. 11(6): p. 591-5.
  • 26. Ha, H.C. and S.H. Snyder, Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci U S A, 1999. 96(24): p. 13978-82.
  • 27. de Murcia, G. and J. Menissier de Murcia, Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem Sci, 1994. 19(4): p. 172-6.
  • 28. Berger, N.A., Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res, 1985. 101(1): p. 4-15.
  • 29. Burkle, A., Poly (ADP-Ribosyl)ation. 2006, Konstanz, Germany: Landes Bioscience.
  • 30. Kim, M.Y., T. Zhang, and W.L. Kraus, Poly(ADP-ribosyl)ation by PARP-1: 'PAR-laying' NAD+ into a nuclear signal. Genes Dev, 2005. 19(17): p. 1951-67.
  • 31. Burkle, A., Poly(ADP-ribose). The most elaborate metabolite of NAD+. Febs J, 2005. 272(18): p. 4576-89.
  • 32. Hangen, E., et al., Life with or without AIF. Trends Biochem Sci, 2010. 35(5): p. 278-87.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Özgün Araştırma Makaleleri
Yazarlar

Nazlı Ece Güngör-ordueri

Tuğba Elgün

Pınar Şahin Bu kişi benim

Nilay Kuşcu Bu kişi benim

Çiler Çelik_özenci Bu kişi benim

Yayımlanma Tarihi 1 Ağustos 2018
Kabul Tarihi 13 Temmuz 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Güngör-ordueri, N. E., Elgün, T., Şahin, P., Kuşcu, N., vd. (2018). Postnatal Fare Testis Gelişiminde Caspase-Bağımlı ve Caspase-Bağımsız Apoptozun Değerlendirilmesi. Uludağ Üniversitesi Tıp Fakültesi Dergisi, 44(2), 103-109. https://doi.org/10.32708/uutfd.422147
AMA Güngör-ordueri NE, Elgün T, Şahin P, Kuşcu N, Çelik_özenci Ç. Postnatal Fare Testis Gelişiminde Caspase-Bağımlı ve Caspase-Bağımsız Apoptozun Değerlendirilmesi. Uludağ Tıp Derg. Ağustos 2018;44(2):103-109. doi:10.32708/uutfd.422147
Chicago Güngör-ordueri, Nazlı Ece, Tuğba Elgün, Pınar Şahin, Nilay Kuşcu, ve Çiler Çelik_özenci. “Postnatal Fare Testis Gelişiminde Caspase-Bağımlı Ve Caspase-Bağımsız Apoptozun Değerlendirilmesi”. Uludağ Üniversitesi Tıp Fakültesi Dergisi 44, sy. 2 (Ağustos 2018): 103-9. https://doi.org/10.32708/uutfd.422147.
EndNote Güngör-ordueri NE, Elgün T, Şahin P, Kuşcu N, Çelik_özenci Ç (01 Ağustos 2018) Postnatal Fare Testis Gelişiminde Caspase-Bağımlı ve Caspase-Bağımsız Apoptozun Değerlendirilmesi. Uludağ Üniversitesi Tıp Fakültesi Dergisi 44 2 103–109.
IEEE N. E. Güngör-ordueri, T. Elgün, P. Şahin, N. Kuşcu, ve Ç. Çelik_özenci, “Postnatal Fare Testis Gelişiminde Caspase-Bağımlı ve Caspase-Bağımsız Apoptozun Değerlendirilmesi”, Uludağ Tıp Derg, c. 44, sy. 2, ss. 103–109, 2018, doi: 10.32708/uutfd.422147.
ISNAD Güngör-ordueri, Nazlı Ece vd. “Postnatal Fare Testis Gelişiminde Caspase-Bağımlı Ve Caspase-Bağımsız Apoptozun Değerlendirilmesi”. Uludağ Üniversitesi Tıp Fakültesi Dergisi 44/2 (Ağustos 2018), 103-109. https://doi.org/10.32708/uutfd.422147.
JAMA Güngör-ordueri NE, Elgün T, Şahin P, Kuşcu N, Çelik_özenci Ç. Postnatal Fare Testis Gelişiminde Caspase-Bağımlı ve Caspase-Bağımsız Apoptozun Değerlendirilmesi. Uludağ Tıp Derg. 2018;44:103–109.
MLA Güngör-ordueri, Nazlı Ece vd. “Postnatal Fare Testis Gelişiminde Caspase-Bağımlı Ve Caspase-Bağımsız Apoptozun Değerlendirilmesi”. Uludağ Üniversitesi Tıp Fakültesi Dergisi, c. 44, sy. 2, 2018, ss. 103-9, doi:10.32708/uutfd.422147.
Vancouver Güngör-ordueri NE, Elgün T, Şahin P, Kuşcu N, Çelik_özenci Ç. Postnatal Fare Testis Gelişiminde Caspase-Bağımlı ve Caspase-Bağımsız Apoptozun Değerlendirilmesi. Uludağ Tıp Derg. 2018;44(2):103-9.

ISSN: 1300-414X, e-ISSN: 2645-9027

Uludağ Üniversitesi Tıp Fakültesi Dergisi "Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License" ile lisanslanmaktadır.


Creative Commons License
Journal of Uludag University Medical Faculty is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

2023