Derleme
BibTex RIS Kaynak Göster

COVID-19 Tanı Testleri, Tedavisindeki Aşılar ve İlaçlar; Güncel Durum

Yıl 2021, , 295 - 308, 01.08.2021
https://doi.org/10.32708/uutfd.957260

Öz

COVID-19 (Koronavirüs Hastalığı 19) olarak adlandırılan SARS-CoV-2 (Şiddetli akut solunum yolu sendromu koronavirüs-2) virüsünün neden olduğu enfeksiyon başlangıçta Aralık 2019’da Çin'de tespit edilmiştir ve daha sonra dünyaya hızla yayılmıştır. 13 Ocak 2020 tarihinde Tayland Halk Sağlığı Bakanlığı Çin'in Wuhan şehrinde yaşayan 8 Ocak 2020 tarihinde Tayland’a giden 61 yaşında Çinli bir kadında ilk importe olguyu bildirmiştir. Daha sonra 11 Mart'ta Dünya Sağlık Örgütü (DSÖ) bu salgını küresel bir pandemi ilan etmiştir. Hastalığın yayılmasını önlemek ve pandemiyi kontrol etmek için ilaçların etkinliği araştırılmakta olup çok sayıda COVID-19 aşı adayı ve ilaç adayı geliştirilmektedir. ABD- Gıda ve İlaç İdaresi (FDA), Aralık 2020'de sırasıyla Pfizer ve Moderna tarafından geliştirilen iki mRNA aşısı için acil kullanım onayı yayınlamıştır. Şu anda geliştirilmekte olan diğer COVID-19 aşıları mRNA, DNA, viral vektör, subünite, inaktive edilmiş ve canlı zayıflatılmış aşıları kapsayan çeşitli platformlara dayanmaktadır. Bu derlemede COVID-19 tanı ve/veya tedavisinde kullanılan testler, aşılar ve ilaçların rolünü incelenmektedir.

Kaynakça

  • 1. Kahn JS, McIntosh K. History and Recent Advances in Coronavirus Discovery. Pediatr Infect Dis J. 2005;24(11): 223-227.
  • 2. Gouveia CC, Campos L. Coronavirus disease 2019: Clinical review. Acta Med Port. 2020;33(13): 4585-4596.
  • 3. Yang CL, Qiu X, Zeng YK, Jiang M, Fan HR, Zhang ZM. Coronavirus disease 2019: A clinical review. Eur Rev Med Pharmacol Sci. 2020; 24(8): 4585-4596.
  • 4. Bhatta M, Nandi S, Dutta S, Saha MK. Coronavirus (SARS-CoV-2): a systematic review for potential vaccines. Hum Vaccines Immunother. 2021:1-18.
  • 5. Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV- A target for vaccine and therapeutic development. Nat Rev Microbiol. 2009;7(3): 226-236.
  • 6. Jiang S, Hillyer C, Du L. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol. 2020;41(6): 545.
  • 7. Chan JFW, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020;9(1): 221-236.
  • 8. Menni C, Valdes AM, Freidin MB, et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat Med. 2020;26 (7):1037-1040.
  • 9. Singh R, Kang A, Luo X, et al. COVID‐19: Current knowledge in clinical features, immunological responses, and vaccine development. FASEB J. 2021; 35(3): e21409.
  • 10. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020;34:101623.
  • 11. Tian Y, Rong L, Nian W, He Y. Review article: gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment Pharmacol Ther. 2020;51(9): 843-851.
  • 12. Chilamakuri R, Agarwal S. COVID-19: Characteristics and Therapeutics. Cells. 2021;10 (2):1-29.
  • 13. Therapeutic Management | COVID-19 Treatment Guidelines. Erişim: https://www.COVID19treatmentguidelines.nih.gov/therapeutic-management/
  • 14. Search of: SARS-CoV-2 Vaccine | Phase Early Phase 1, 1, 2, 3, 4 - Search Details - ClinicalTrials.gov. Erişim:https://clinicaltrials.gov/ct2/results/details?cond=SARS-CoV-2+Vaccine&phase=01234
  • 15. Search of: SARS-CoV-2 Vaccine | Phase 3 - Search Details - ClinicalTrials.gov. Erişim: https://clinicaltrials.gov/ct2/results/details?cond=SARS-CoV-2+Vaccine&phase=2
  • 16. COVID-19 vaccine tracker and landscape. Erişim:https://www.who.int/publications/m/item/draft-landscape-of-COVID-19-candidate-vaccines.
  • 17. van Riel D, de Wit E. Next-generation vaccine platforms for COVID-19. Nat Mater. 2020;19(8): 810-812.
  • 18. COVID-19 vaccines. Erişim:https://www.who.int/emergencies/diseases/novel-coronavirus-2019/COVID-19-vaccines.
  • 19. Kyriakidis NC, López-Cortés A, González EV, Grimaldos AB, Prado EO. SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. npj Vaccines. 2021;6(1):1-17.
  • 20. Pfizer-BioNTech COVID-19 Vaccine | FDA. Erişim:https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-COVID-19/pfizer-biontech-COVID-19-vaccine
  • 21. Li Y Der, Chi WY, Su JH, Ferrall L, Hung CF, Wu TC. Coronavirus vaccine development: from SARS and MERS to COVID-19. J Biomed Sci. 2020;27(1):104.
  • 22. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N Engl J Med. 2020;383(27): 2603-2615.
  • 23. Fact Sheet For Recıpıents And Caregivers Emergency Use Authorization (EUA) of. Erişim: www.janssenCOVID19vaccine.com.
  • 24. Polack F, Thomas S, Kitchin N et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. Mass Med Soc. 2020;383 (27).
  • 25. Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384(5):403-416.
  • 26. Guebre-Xabier M, Patel N, Tian JH, et al. NVX-CoV2373 vaccine protects cynomolgus macaque upper and lower airways against SARS-CoV-2 challenge. Vaccine. 2020;38(50):7892-7896.
  • 27. Novavax COVID-19 Vaccine Demonstrates 89.3% Efficacy in UK Phase 3 Trial | Novavax Inc. - IR Site. https://ir.novavax.com/news-releases/news-release-details/novavax-COVID-19-vaccine-demonstrates-893-efficacy-uk-phase-3.
  • 28. Immunity and Safety of COVID-19 Synthetic Minigene Vaccine - Full Text View - ClinicalTrials.gov. Erişim:https://clinicaltrials.gov/ct2/show/NCT04276896.
  • 29. Tebas P, Yang SP, Boyer JD, et al. Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: A preliminary report of an open-label, Phase 1 clinical trial. EClinicalMedicine. 2021;31:100689.
  • 30. Safety, Immunogenicity, and Efficacy of INO-4800 for COVID-19 in Healthy Seronegative Adults at High Risk of SARS-CoV-2 Exposure - Full Text View - ClinicalTrials.gov. Erişim: https://clinicaltrials.gov/ct2/show/NCT04642638.
  • 31. Folegatti PM, Ewer KJ, Aley PK, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2020;396(10249): 467-478.
  • 32. Ramasamy MN, Minassian AM, Ewer KJ, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet. 2020;396(10267):1979-1993.
  • 33. Janssen COVID-19 Vaccine | FDA. Erişim:https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-COVID-19/janssen-COVID-19-vaccine.
  • 34. Soiza RL, Scicluna C, Thomson EC. Efficacy and safety of COVID-19 vaccines in older people. Age Ageing. 2021;50(2):279-283.
  • 35. Zhang YJ, Zeng G, Pan HX, et al. Immunogenicity and safety of a SARS-CoV-2 inactivated vaccine in healthy adults aged 18-59 years: Report of the randomized, double-blind, and placebo-controlled phase 2 clinical trial. medRxiv. 2020.
  • 36. Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395(10240):1845-1854.
  • 37. Gam-COVID-Vac - Clarivate. Erişim: https://clarivate.com/drugs-to-watch/drugs-to-watch-listing/gam-COVID-vac.
  • 38. Logunov DY, Dolzhikova I V., Shcheblyakov D V., et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397(10275): 671-681.
  • 39. Second interim analysis of clinical trial data showed a 91.4% efficacy for the Sputnik V vaccine on day 28 after the first dose; vaccine efficacy is over 95% 42 days after the first dose | Official website vaccine against COVID-19 Sputnik V. Erişim: https://sputnikvaccine.com/newsroom/pressreleases/second-interim-analysis-of-clinical-trial-data-showed-a-91-4-efficacy-for-the-sputnik-v-vaccine-on-d.
  • 40. Türkiye’de Durum (13.06.2021) | COVID-19 Türkiye Web Portalı. Erişim:https://COVID19.tubitak.gov.tr/turkiyede-durum.
  • 41. Search of: Vaccine | COVID-19 | Turkey | Phase 1, 2, 3 - List Results - ClinicalTrials.gov.. Erişim: https://clinicaltrials.gov/ct2/results?term=Vaccine&cond=COVID-19&cntry=TR&phase=012.
  • 42. TUSEB. Erişim: https://www.tuseb.gov.tr/haberler/tuseb-destekli-yerli-COVID-19-asi-gelistirme-projelerinde-guncel-durum-30042021.
  • 43. Ak Ö. TÜBİTAK Bilim ve Tek Derg. 2021. Erişim: https://bilimteknik.tubitak.gov.tr/system/files/makale/turkiye_asi.pdf.
  • 44. Onwudiwe OA, Weli H, Shaanu TA, Akata NM, Ebong IL. Pharmacological treatment of COVID-19: an update. J Glob Heal Reports. Published online 2020.
  • 45. Lam S, Lombardi A, Ouanounou A. COVID-19: A review of the proposed pharmacological treatments. Eur J Pharmacol. 2020;886:173451.
  • 46. Joshi S, Parkar J, Ansari A, et al. Role of Favipiravir in the Treatment of COVID-19. Vol 102. International Society for Infectious Diseases; 2021.
  • 47. Cai Q, Yang M, Liu D, et al. Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study. Engineering. 2020;6(10):1192-1198.
  • 48. Chen C, Zhang Y, Huang J, et al. Favipiravir versus Arbidol for COVID-19: A randomized clinical trial. medRxiv.2020.
  • 49. Sahebnasagh A, Avan R, Saghafi F, et al. Pharmacological Treatments of COVID-19. Vol 72. Springer International Publishing; 2020.
  • 50. Rattanaumpawa, Pinyo; Jirajariyavej, Supunnee; Lerdlamyong K, Palavutitotai, Nattawan; Saiyarin J. Real-world Experience with Favipiravir for Treatment of COVID-19 in Thailand: Results from a Multicenter Observational Study. All about Your Eyes. 2020:191-192.
  • 51. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA - J Am Med Assoc. 2020;323(18):1824-1836.
  • 52. Wang Z, Yang B, Li Q, Wen L, Zhang R. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan, China. Clin Infect Dis. 2020;71(15):769-777.
  • 53. Huang D, Yu H, Wang T, Yang H, Yao R, Liang Z. Efficacy and safety of umifenovir for coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J Med Virol. 2021;93(1): 481-490.
  • 54. Deng L, Li C, Zeng Q, et al. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. J Infect. 2020;81(1):1-5.
  • 55. Zhu Z, Lu Z, Xu T, et al. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. J Infect. 2020;81(1): 21-23.
  • 56. Lin HXJ, Cho S, Meyyur Aravamudan V, et al. Remdesivir in Coronavirus Disease 2019 (COVID-19) treatment: a review of evidence. Infection. 2021;2019(0123456789).
  • 57. Reza Hashemian SM, Farhadi T, Velayati AA. A review on remdesivir: A possible promising agent for the treatment of COVID-19. Drug Des Devel Ther. 2020;14:3215-3222.
  • 58. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the Treatment of COVID-19 - Final Report. N Engl J Med. 2020;383(19):1813-1826.
  • 59. Grein J, Ohmagari N, Shin D, et al. Compassionate Use of Remdesivir for Patients with Severe COVID-19. N Engl J Med. 2020;382(24):2327-2336.
  • 60. McKee DL, Sternberg A, Stange U, Laufer S, Naujokat C. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol Res. 2020;157:104859.
  • 61. Meini S, Pagotto A, Longo B, Vendramin I, Pecori D, Tascini C. Role of Lopinavir/Ritonavir in the Treatment of COVID-19: A Review of Current Evidence, Guideline Recommendations, and Perspectives. J Clin Med. 2020;9(7): 2050.
  • 62. Choy KT, Wong AYL, Kaewpreedee P, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 2020;178:104786.
  • 63. Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe COVID-19. N Engl J Med. 2020;382(19):1787-1799.
  • 64. Khalili JS, Zhu H, Mak NSA, Yan Y, Zhu Y. Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID-19. J Med Virol. 2020;92(7):740-746.
  • 65. Tong S, Su Y, Yu Y, et al. Ribavirin therapy for severe COVID-19: a retrospective cohort study. Int J Antimicrob Agents. 2020;56(3):1-5.
  • 66. Hung IFN, Lung KC, Tso EYK, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020;395(10238):1695-1704.
  • 67. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117(14):3720-3732.
  • 68. Rizk JG, Kalantar-Zadeh K, Mehra MR, Lavie CJ, Rizk Y, Forthal DN. Pharmaco-Immunomodulatory Therapy in COVID-19. Drugs. 2020;80(13):1267-1292.
  • 69. Soy M, Keser G, Atagündüz P, Tabak F, Atagündüz I, Kayhan S. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol. 2020;39(7):2085-2094.
  • 70. Shakoory B, Carcillo JA, Chatham WW, et al. Interleukin-1 Receptor Blockade Is Associated With Reduced Mortality in Sepsis Patients With Features of Macrophage Activation Syndrome. Crit Care Med. 2016;44(2):275-281.
  • 71. Aouba A, Baldolli A, Geffray L, et al. Targeting the inflammatory cascade with anakinra in moderate to severe COVID-19 pneumonia: Case series. Ann Rheum Dis. 2020;79(10):1381-1382.
  • 72. Cavalli G, De Luca G, Campochiaro C, et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020;2(6): 325-331.
  • 73. Huet T, Beaussier H, Voisin O, et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol. 2020;2(7): 393-400.
  • 74. Alijotas-Reig J, Esteve-Valverde E, Belizna C, et al. Immunomodulatory therapy for the management of severe COVID-19. Beyond the anti-viral therapy: A comprehensive review. Autoimmun Rev. 2020;19 (7):102569.
  • 75. Wu R, Wang L, Kuo HCD, et al. An Update on Current Therapeutic Drugs Treating COVID-19. Curr Pharmacol Reports. 2020;6(3): 56-70.
  • 76. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA. 2020;117(20):10970-10975.
  • 77. Guaraldi G, Meschiari M, Cozzi-Lepri A, et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol. 2020;2(8):474-484.
  • 78. Jamilloux Y, Henry T, Belot A, et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020;19(7):102567.
  • 79. Nasonov E, Samsonov M. The role of Interleukin 6 inhibitors in therapy of severe COVID-19. Biomed Pharmacother. 2020;131:110698.
  • 80. Boregowda U, Perisetti A, Nanjappa A, Sridharan GK, Gajendran M, Goyal H. Addition of Tocilizumab to the Standard of Care Reduces Mortality in Severe COVID-19: A Systematic Review and Meta-Analysis. 2020.
  • 81. Stebbing J, Phelan A, Griffin I, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020;20(4):400-402.
  • 82. Owji H, Negahdaripour M, Hajighahramani N. Immunotherapeutic approaches to curtail COVID-19. Int Immunopharmacol. 2020;88:106924.
  • 83. Elli EM, Baratè C, Mendicino F, Palandri F, Palumbo GA. Mechanisms Underlying the Anti-inflammatory and Immunosuppressive Activity of Ruxolitinib. Front Oncol. 2019;9:1186.
  • 84. Cantini F, Niccoli L, Matarrese D, Nicastri E, Stobbione P, Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect. 2020;81(2):318-356.
  • 85. FDA issues tofacitinib safety alert | rheumatology.medicinematters.com. Erişim: https://rheumatology.medicinematters.com/rheumatoid-arthritis-/tofacitinib/fda-issues-tofacitinib-safety-alert/16527134.
  • 86. NIH clinical trial testing antiviral remdesivir plus anti-inflammatory drug baricitinib for COVID-19 begins | National Institutes of Health (NIH). Erişim:https://www.nih.gov/news-events/news-releases/nih-clinical-trial-testing-antiviral-remdesivir-plus-anti-inflammatory-drug-baricitinib-COVID-19-begins.
  • 87. Gianfrancesco M, Hyrich KL, Hyrich KL, et al. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: Data from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann Rheum Dis. 2020;79(7): 859-866.
  • 88. Winthrop KL, Brunton AE, Beekmann S, et al. SARS CoV-2 infection among patients using immunomodulatory therapies. Ann Rheum Dis. 2021;80(2): 269-271.
  • 89. Sperber K, Quraishi H, Kalb TH, Panja A, Stecher V, Mayer L. Selective regulation of cytokine secretion by hydroxychloroquine: Inhibition of interleukin 1 alpha (IL-1-α) and IL-6 in human monocytes and T cells. J Rheumatol. 1993;20(5): 803-808.
  • 90. Yao X, Ye F, Zhang M, et al. In Vitro Antiviral Activity And Projection of Optimized Dosing Design Of Hydroxychloroquine For The Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020;71(15):732-739.
  • 91. Das S, Bhowmick S, Tiwari S, Sen S. An Updated Systematic Review of the Therapeutic Role of Hydroxychloroquine in Coronavirus Disease-19 (COVID-19). Clin Drug Investig. 2020;40(7): 591-601.
  • 92. Guzik TJ, Mohiddin SA, Dimarco A, et al. COVID-19 and the cardiovascular system: Implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 2020;116(10):1666-1687.
  • 93. Li X, Wang Y, Agostinis P, et al. Is hydroxychloroquine beneficial for COVID-19 patients? Cell Death Dis. 2020;11(7):512.

COVID-19 Diagnostic Tests, Vaccines and Medicines in Its Treatment; Current status

Yıl 2021, , 295 - 308, 01.08.2021
https://doi.org/10.32708/uutfd.957260

Öz

The infection caused by the SARS-CoV-2 (Severe acute respiratory syndrome coronavirus-2) virus, called COVID-19 (Coronavirus disease 19), was initially detected in China in December 2019, and then spread rapidly around the world. On January 13, 2020, the Ministry of Public Health of Thailand reported the first imported case in a 61-year-old Chinese woman living in Wuhan, China, who went to Thailand on January 8, 2020. Later, on March 11, the World Health Organization (WHO) declared this outbreak a global pandemic. The effectiveness of drugs is being investigated to prevent the spread of the disease and control the pandemic, and many COVID-19 vaccine candidates and drug candidates are being developed. The U.S. Food and Drug Administration (FDA) issued emergency-use approval for two mRNA vaccines developed by Pfizer and Moderna, respectively, in December 2020. Other COVID-19 vaccines currently in development are based on a variety of platforms including mRNA, DNA, viral vector, subunit, inactivated and live attenuated vaccines. This review examines the role of tests, vaccines and drugs used in the diagnosis and/or treatment of COVID-19.

Kaynakça

  • 1. Kahn JS, McIntosh K. History and Recent Advances in Coronavirus Discovery. Pediatr Infect Dis J. 2005;24(11): 223-227.
  • 2. Gouveia CC, Campos L. Coronavirus disease 2019: Clinical review. Acta Med Port. 2020;33(13): 4585-4596.
  • 3. Yang CL, Qiu X, Zeng YK, Jiang M, Fan HR, Zhang ZM. Coronavirus disease 2019: A clinical review. Eur Rev Med Pharmacol Sci. 2020; 24(8): 4585-4596.
  • 4. Bhatta M, Nandi S, Dutta S, Saha MK. Coronavirus (SARS-CoV-2): a systematic review for potential vaccines. Hum Vaccines Immunother. 2021:1-18.
  • 5. Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV- A target for vaccine and therapeutic development. Nat Rev Microbiol. 2009;7(3): 226-236.
  • 6. Jiang S, Hillyer C, Du L. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol. 2020;41(6): 545.
  • 7. Chan JFW, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020;9(1): 221-236.
  • 8. Menni C, Valdes AM, Freidin MB, et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat Med. 2020;26 (7):1037-1040.
  • 9. Singh R, Kang A, Luo X, et al. COVID‐19: Current knowledge in clinical features, immunological responses, and vaccine development. FASEB J. 2021; 35(3): e21409.
  • 10. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020;34:101623.
  • 11. Tian Y, Rong L, Nian W, He Y. Review article: gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment Pharmacol Ther. 2020;51(9): 843-851.
  • 12. Chilamakuri R, Agarwal S. COVID-19: Characteristics and Therapeutics. Cells. 2021;10 (2):1-29.
  • 13. Therapeutic Management | COVID-19 Treatment Guidelines. Erişim: https://www.COVID19treatmentguidelines.nih.gov/therapeutic-management/
  • 14. Search of: SARS-CoV-2 Vaccine | Phase Early Phase 1, 1, 2, 3, 4 - Search Details - ClinicalTrials.gov. Erişim:https://clinicaltrials.gov/ct2/results/details?cond=SARS-CoV-2+Vaccine&phase=01234
  • 15. Search of: SARS-CoV-2 Vaccine | Phase 3 - Search Details - ClinicalTrials.gov. Erişim: https://clinicaltrials.gov/ct2/results/details?cond=SARS-CoV-2+Vaccine&phase=2
  • 16. COVID-19 vaccine tracker and landscape. Erişim:https://www.who.int/publications/m/item/draft-landscape-of-COVID-19-candidate-vaccines.
  • 17. van Riel D, de Wit E. Next-generation vaccine platforms for COVID-19. Nat Mater. 2020;19(8): 810-812.
  • 18. COVID-19 vaccines. Erişim:https://www.who.int/emergencies/diseases/novel-coronavirus-2019/COVID-19-vaccines.
  • 19. Kyriakidis NC, López-Cortés A, González EV, Grimaldos AB, Prado EO. SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. npj Vaccines. 2021;6(1):1-17.
  • 20. Pfizer-BioNTech COVID-19 Vaccine | FDA. Erişim:https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-COVID-19/pfizer-biontech-COVID-19-vaccine
  • 21. Li Y Der, Chi WY, Su JH, Ferrall L, Hung CF, Wu TC. Coronavirus vaccine development: from SARS and MERS to COVID-19. J Biomed Sci. 2020;27(1):104.
  • 22. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. N Engl J Med. 2020;383(27): 2603-2615.
  • 23. Fact Sheet For Recıpıents And Caregivers Emergency Use Authorization (EUA) of. Erişim: www.janssenCOVID19vaccine.com.
  • 24. Polack F, Thomas S, Kitchin N et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. Mass Med Soc. 2020;383 (27).
  • 25. Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384(5):403-416.
  • 26. Guebre-Xabier M, Patel N, Tian JH, et al. NVX-CoV2373 vaccine protects cynomolgus macaque upper and lower airways against SARS-CoV-2 challenge. Vaccine. 2020;38(50):7892-7896.
  • 27. Novavax COVID-19 Vaccine Demonstrates 89.3% Efficacy in UK Phase 3 Trial | Novavax Inc. - IR Site. https://ir.novavax.com/news-releases/news-release-details/novavax-COVID-19-vaccine-demonstrates-893-efficacy-uk-phase-3.
  • 28. Immunity and Safety of COVID-19 Synthetic Minigene Vaccine - Full Text View - ClinicalTrials.gov. Erişim:https://clinicaltrials.gov/ct2/show/NCT04276896.
  • 29. Tebas P, Yang SP, Boyer JD, et al. Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: A preliminary report of an open-label, Phase 1 clinical trial. EClinicalMedicine. 2021;31:100689.
  • 30. Safety, Immunogenicity, and Efficacy of INO-4800 for COVID-19 in Healthy Seronegative Adults at High Risk of SARS-CoV-2 Exposure - Full Text View - ClinicalTrials.gov. Erişim: https://clinicaltrials.gov/ct2/show/NCT04642638.
  • 31. Folegatti PM, Ewer KJ, Aley PK, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2020;396(10249): 467-478.
  • 32. Ramasamy MN, Minassian AM, Ewer KJ, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet. 2020;396(10267):1979-1993.
  • 33. Janssen COVID-19 Vaccine | FDA. Erişim:https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-COVID-19/janssen-COVID-19-vaccine.
  • 34. Soiza RL, Scicluna C, Thomson EC. Efficacy and safety of COVID-19 vaccines in older people. Age Ageing. 2021;50(2):279-283.
  • 35. Zhang YJ, Zeng G, Pan HX, et al. Immunogenicity and safety of a SARS-CoV-2 inactivated vaccine in healthy adults aged 18-59 years: Report of the randomized, double-blind, and placebo-controlled phase 2 clinical trial. medRxiv. 2020.
  • 36. Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395(10240):1845-1854.
  • 37. Gam-COVID-Vac - Clarivate. Erişim: https://clarivate.com/drugs-to-watch/drugs-to-watch-listing/gam-COVID-vac.
  • 38. Logunov DY, Dolzhikova I V., Shcheblyakov D V., et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397(10275): 671-681.
  • 39. Second interim analysis of clinical trial data showed a 91.4% efficacy for the Sputnik V vaccine on day 28 after the first dose; vaccine efficacy is over 95% 42 days after the first dose | Official website vaccine against COVID-19 Sputnik V. Erişim: https://sputnikvaccine.com/newsroom/pressreleases/second-interim-analysis-of-clinical-trial-data-showed-a-91-4-efficacy-for-the-sputnik-v-vaccine-on-d.
  • 40. Türkiye’de Durum (13.06.2021) | COVID-19 Türkiye Web Portalı. Erişim:https://COVID19.tubitak.gov.tr/turkiyede-durum.
  • 41. Search of: Vaccine | COVID-19 | Turkey | Phase 1, 2, 3 - List Results - ClinicalTrials.gov.. Erişim: https://clinicaltrials.gov/ct2/results?term=Vaccine&cond=COVID-19&cntry=TR&phase=012.
  • 42. TUSEB. Erişim: https://www.tuseb.gov.tr/haberler/tuseb-destekli-yerli-COVID-19-asi-gelistirme-projelerinde-guncel-durum-30042021.
  • 43. Ak Ö. TÜBİTAK Bilim ve Tek Derg. 2021. Erişim: https://bilimteknik.tubitak.gov.tr/system/files/makale/turkiye_asi.pdf.
  • 44. Onwudiwe OA, Weli H, Shaanu TA, Akata NM, Ebong IL. Pharmacological treatment of COVID-19: an update. J Glob Heal Reports. Published online 2020.
  • 45. Lam S, Lombardi A, Ouanounou A. COVID-19: A review of the proposed pharmacological treatments. Eur J Pharmacol. 2020;886:173451.
  • 46. Joshi S, Parkar J, Ansari A, et al. Role of Favipiravir in the Treatment of COVID-19. Vol 102. International Society for Infectious Diseases; 2021.
  • 47. Cai Q, Yang M, Liu D, et al. Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study. Engineering. 2020;6(10):1192-1198.
  • 48. Chen C, Zhang Y, Huang J, et al. Favipiravir versus Arbidol for COVID-19: A randomized clinical trial. medRxiv.2020.
  • 49. Sahebnasagh A, Avan R, Saghafi F, et al. Pharmacological Treatments of COVID-19. Vol 72. Springer International Publishing; 2020.
  • 50. Rattanaumpawa, Pinyo; Jirajariyavej, Supunnee; Lerdlamyong K, Palavutitotai, Nattawan; Saiyarin J. Real-world Experience with Favipiravir for Treatment of COVID-19 in Thailand: Results from a Multicenter Observational Study. All about Your Eyes. 2020:191-192.
  • 51. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA - J Am Med Assoc. 2020;323(18):1824-1836.
  • 52. Wang Z, Yang B, Li Q, Wen L, Zhang R. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan, China. Clin Infect Dis. 2020;71(15):769-777.
  • 53. Huang D, Yu H, Wang T, Yang H, Yao R, Liang Z. Efficacy and safety of umifenovir for coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J Med Virol. 2021;93(1): 481-490.
  • 54. Deng L, Li C, Zeng Q, et al. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. J Infect. 2020;81(1):1-5.
  • 55. Zhu Z, Lu Z, Xu T, et al. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. J Infect. 2020;81(1): 21-23.
  • 56. Lin HXJ, Cho S, Meyyur Aravamudan V, et al. Remdesivir in Coronavirus Disease 2019 (COVID-19) treatment: a review of evidence. Infection. 2021;2019(0123456789).
  • 57. Reza Hashemian SM, Farhadi T, Velayati AA. A review on remdesivir: A possible promising agent for the treatment of COVID-19. Drug Des Devel Ther. 2020;14:3215-3222.
  • 58. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the Treatment of COVID-19 - Final Report. N Engl J Med. 2020;383(19):1813-1826.
  • 59. Grein J, Ohmagari N, Shin D, et al. Compassionate Use of Remdesivir for Patients with Severe COVID-19. N Engl J Med. 2020;382(24):2327-2336.
  • 60. McKee DL, Sternberg A, Stange U, Laufer S, Naujokat C. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol Res. 2020;157:104859.
  • 61. Meini S, Pagotto A, Longo B, Vendramin I, Pecori D, Tascini C. Role of Lopinavir/Ritonavir in the Treatment of COVID-19: A Review of Current Evidence, Guideline Recommendations, and Perspectives. J Clin Med. 2020;9(7): 2050.
  • 62. Choy KT, Wong AYL, Kaewpreedee P, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 2020;178:104786.
  • 63. Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe COVID-19. N Engl J Med. 2020;382(19):1787-1799.
  • 64. Khalili JS, Zhu H, Mak NSA, Yan Y, Zhu Y. Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID-19. J Med Virol. 2020;92(7):740-746.
  • 65. Tong S, Su Y, Yu Y, et al. Ribavirin therapy for severe COVID-19: a retrospective cohort study. Int J Antimicrob Agents. 2020;56(3):1-5.
  • 66. Hung IFN, Lung KC, Tso EYK, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020;395(10238):1695-1704.
  • 67. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;117(14):3720-3732.
  • 68. Rizk JG, Kalantar-Zadeh K, Mehra MR, Lavie CJ, Rizk Y, Forthal DN. Pharmaco-Immunomodulatory Therapy in COVID-19. Drugs. 2020;80(13):1267-1292.
  • 69. Soy M, Keser G, Atagündüz P, Tabak F, Atagündüz I, Kayhan S. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol. 2020;39(7):2085-2094.
  • 70. Shakoory B, Carcillo JA, Chatham WW, et al. Interleukin-1 Receptor Blockade Is Associated With Reduced Mortality in Sepsis Patients With Features of Macrophage Activation Syndrome. Crit Care Med. 2016;44(2):275-281.
  • 71. Aouba A, Baldolli A, Geffray L, et al. Targeting the inflammatory cascade with anakinra in moderate to severe COVID-19 pneumonia: Case series. Ann Rheum Dis. 2020;79(10):1381-1382.
  • 72. Cavalli G, De Luca G, Campochiaro C, et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020;2(6): 325-331.
  • 73. Huet T, Beaussier H, Voisin O, et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol. 2020;2(7): 393-400.
  • 74. Alijotas-Reig J, Esteve-Valverde E, Belizna C, et al. Immunomodulatory therapy for the management of severe COVID-19. Beyond the anti-viral therapy: A comprehensive review. Autoimmun Rev. 2020;19 (7):102569.
  • 75. Wu R, Wang L, Kuo HCD, et al. An Update on Current Therapeutic Drugs Treating COVID-19. Curr Pharmacol Reports. 2020;6(3): 56-70.
  • 76. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA. 2020;117(20):10970-10975.
  • 77. Guaraldi G, Meschiari M, Cozzi-Lepri A, et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol. 2020;2(8):474-484.
  • 78. Jamilloux Y, Henry T, Belot A, et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020;19(7):102567.
  • 79. Nasonov E, Samsonov M. The role of Interleukin 6 inhibitors in therapy of severe COVID-19. Biomed Pharmacother. 2020;131:110698.
  • 80. Boregowda U, Perisetti A, Nanjappa A, Sridharan GK, Gajendran M, Goyal H. Addition of Tocilizumab to the Standard of Care Reduces Mortality in Severe COVID-19: A Systematic Review and Meta-Analysis. 2020.
  • 81. Stebbing J, Phelan A, Griffin I, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020;20(4):400-402.
  • 82. Owji H, Negahdaripour M, Hajighahramani N. Immunotherapeutic approaches to curtail COVID-19. Int Immunopharmacol. 2020;88:106924.
  • 83. Elli EM, Baratè C, Mendicino F, Palandri F, Palumbo GA. Mechanisms Underlying the Anti-inflammatory and Immunosuppressive Activity of Ruxolitinib. Front Oncol. 2019;9:1186.
  • 84. Cantini F, Niccoli L, Matarrese D, Nicastri E, Stobbione P, Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect. 2020;81(2):318-356.
  • 85. FDA issues tofacitinib safety alert | rheumatology.medicinematters.com. Erişim: https://rheumatology.medicinematters.com/rheumatoid-arthritis-/tofacitinib/fda-issues-tofacitinib-safety-alert/16527134.
  • 86. NIH clinical trial testing antiviral remdesivir plus anti-inflammatory drug baricitinib for COVID-19 begins | National Institutes of Health (NIH). Erişim:https://www.nih.gov/news-events/news-releases/nih-clinical-trial-testing-antiviral-remdesivir-plus-anti-inflammatory-drug-baricitinib-COVID-19-begins.
  • 87. Gianfrancesco M, Hyrich KL, Hyrich KL, et al. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: Data from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann Rheum Dis. 2020;79(7): 859-866.
  • 88. Winthrop KL, Brunton AE, Beekmann S, et al. SARS CoV-2 infection among patients using immunomodulatory therapies. Ann Rheum Dis. 2021;80(2): 269-271.
  • 89. Sperber K, Quraishi H, Kalb TH, Panja A, Stecher V, Mayer L. Selective regulation of cytokine secretion by hydroxychloroquine: Inhibition of interleukin 1 alpha (IL-1-α) and IL-6 in human monocytes and T cells. J Rheumatol. 1993;20(5): 803-808.
  • 90. Yao X, Ye F, Zhang M, et al. In Vitro Antiviral Activity And Projection of Optimized Dosing Design Of Hydroxychloroquine For The Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020;71(15):732-739.
  • 91. Das S, Bhowmick S, Tiwari S, Sen S. An Updated Systematic Review of the Therapeutic Role of Hydroxychloroquine in Coronavirus Disease-19 (COVID-19). Clin Drug Investig. 2020;40(7): 591-601.
  • 92. Guzik TJ, Mohiddin SA, Dimarco A, et al. COVID-19 and the cardiovascular system: Implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 2020;116(10):1666-1687.
  • 93. Li X, Wang Y, Agostinis P, et al. Is hydroxychloroquine beneficial for COVID-19 patients? Cell Death Dis. 2020;11(7):512.
Toplam 93 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyokimya ve Hücre Biyolojisi (Diğer), Mikrobiyoloji
Bölüm Derleme Makaleler
Yazarlar

Derya Selcen Salmanoğlu 0000-0001-7435-1725

Emine Esin Çalışkan 0000-0002-8837-1222

Meliz Sofu 0000-0001-6106-2203

Yiğit Uyanıkgil 0000-0002-4016-0522

Emel Öykü Çetin Uyanıkgil 0000-0001-8822-9130

Yayımlanma Tarihi 1 Ağustos 2021
Kabul Tarihi 3 Ağustos 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Salmanoğlu, D. S., Çalışkan, E. E., Sofu, M., Uyanıkgil, Y., vd. (2021). COVID-19 Tanı Testleri, Tedavisindeki Aşılar ve İlaçlar; Güncel Durum. Uludağ Üniversitesi Tıp Fakültesi Dergisi, 47(2), 295-308. https://doi.org/10.32708/uutfd.957260
AMA Salmanoğlu DS, Çalışkan EE, Sofu M, Uyanıkgil Y, Çetin Uyanıkgil EÖ. COVID-19 Tanı Testleri, Tedavisindeki Aşılar ve İlaçlar; Güncel Durum. Uludağ Tıp Derg. Ağustos 2021;47(2):295-308. doi:10.32708/uutfd.957260
Chicago Salmanoğlu, Derya Selcen, Emine Esin Çalışkan, Meliz Sofu, Yiğit Uyanıkgil, ve Emel Öykü Çetin Uyanıkgil. “COVID-19 Tanı Testleri, Tedavisindeki Aşılar Ve İlaçlar; Güncel Durum”. Uludağ Üniversitesi Tıp Fakültesi Dergisi 47, sy. 2 (Ağustos 2021): 295-308. https://doi.org/10.32708/uutfd.957260.
EndNote Salmanoğlu DS, Çalışkan EE, Sofu M, Uyanıkgil Y, Çetin Uyanıkgil EÖ (01 Ağustos 2021) COVID-19 Tanı Testleri, Tedavisindeki Aşılar ve İlaçlar; Güncel Durum. Uludağ Üniversitesi Tıp Fakültesi Dergisi 47 2 295–308.
IEEE D. S. Salmanoğlu, E. E. Çalışkan, M. Sofu, Y. Uyanıkgil, ve E. Ö. Çetin Uyanıkgil, “COVID-19 Tanı Testleri, Tedavisindeki Aşılar ve İlaçlar; Güncel Durum”, Uludağ Tıp Derg, c. 47, sy. 2, ss. 295–308, 2021, doi: 10.32708/uutfd.957260.
ISNAD Salmanoğlu, Derya Selcen vd. “COVID-19 Tanı Testleri, Tedavisindeki Aşılar Ve İlaçlar; Güncel Durum”. Uludağ Üniversitesi Tıp Fakültesi Dergisi 47/2 (Ağustos 2021), 295-308. https://doi.org/10.32708/uutfd.957260.
JAMA Salmanoğlu DS, Çalışkan EE, Sofu M, Uyanıkgil Y, Çetin Uyanıkgil EÖ. COVID-19 Tanı Testleri, Tedavisindeki Aşılar ve İlaçlar; Güncel Durum. Uludağ Tıp Derg. 2021;47:295–308.
MLA Salmanoğlu, Derya Selcen vd. “COVID-19 Tanı Testleri, Tedavisindeki Aşılar Ve İlaçlar; Güncel Durum”. Uludağ Üniversitesi Tıp Fakültesi Dergisi, c. 47, sy. 2, 2021, ss. 295-08, doi:10.32708/uutfd.957260.
Vancouver Salmanoğlu DS, Çalışkan EE, Sofu M, Uyanıkgil Y, Çetin Uyanıkgil EÖ. COVID-19 Tanı Testleri, Tedavisindeki Aşılar ve İlaçlar; Güncel Durum. Uludağ Tıp Derg. 2021;47(2):295-308.

ISSN: 1300-414X, e-ISSN: 2645-9027

Uludağ Üniversitesi Tıp Fakültesi Dergisi "Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License" ile lisanslanmaktadır.


Creative Commons License
Journal of Uludag University Medical Faculty is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

2023