Araştırma Makalesi
BibTex RIS Kaynak Göster

Tavuk Embriyosu Koryoallantoik Membranında Görülen Anjiyogenez Sürecinde C-Tipi Natriüretik Peptid-3 ve Natriüretik Peptid Reseptör-B mRNA İfadelerinin Analizi: Tanımlayıcı Bir Çalışma

Yıl 2021, Cilt: 47 Sayı: 2, 165 - 175, 01.08.2021
https://doi.org/10.32708/uutfd.909943

Öz

Tavuk koryoallantoik membran (CAM) modeli, anjiyogenez çalışmalarında gelişimsel süreçleri takip etmek için yaygın olarak kullanılan bir modeldir. Bu çalışmada, CAM kullanılarak, embriyonik gelişimin 7. ve 20. günleri (E7 ve E20) arasında görülen anjiyogenez süreci ışık ve transmisyon elektron mikroskop analizleri ile takip edilmiştir. Ayrıca, aynı günlerde alınan CAM örnekleri kullanılarak, anjiyogenez meka-nizmalarında görevli [Vasküler Endotelyal Büyüme Faktörü (VEGF)-A ve Fibroblast Büyüme Faktörü (FGF)-2] ve reseptörlerinin [Vasküler Endotelyal Büyüme Faktörü Reseptörü (VEGFR)-2 ve Fibroblast Büyüme Faktörü (FGFR)-2] yanı sıra, insan C-tipi natriüretik peptid (CNP) homoloğu olan tavuk CNP-3 ve reseptörü natriüretik peptid reseptörü (NPR)-B'nin mRNA ifade düzeylerinin zamana bağımlı değişimi analiz edilmiştir. Işık mikroskobu ve elektron mikroskobu analizleri, endotel tüp benzeri vasküler yapıları yoğun olarak E7-E8 günlerinde ve koryonik mezenşim içinde bulunduğunu göstermiştir. E9-E20 günler sürecinde ise mezenşim içinde yer alan vasküler yapıların progresif gelişimi, stabilizasyonu ve kompleks dallanması gözlenmiştir. Bu vasküler gelişim sürecinde, VEGF-A ve FGF-2 mRNA ifadesi, CAM gelişiminin erken aşamalarında E7 ile E9 arasında ve E8'de pik yapacak şekilde gözlenmiştir. Bu moleküller, CAM gelişiminin geç döne-minde, E16 civarında ikinci bir pik göstermiştir. CNP-3 mRNA ifadesi E16 ile E20 arasında VEGF-A ve FGF-2 mRNA ifadeleri ile eş zamanlı olarak tespit edilmiştir. VEGFR-2 mRNA ifadesi E7-E12 arasında gözlenirken, FGFR-2 mRNA ifadesi ilk pikini E7-E9 arasında ve ikinci pikini E16-20 arasında göstermiştir. NPR-B mRNA ifadesi ise en yüksek seviyesi E16’da olmak üzere E7-E20 arasında gözlenmiştir. Sonuç olarak elde edilen veriler, CNP-3'ün özellikle CAM gelişiminin geç döneminde (E16-E20 günleri sürecinde), NPR-B reseptörü aracı-lığıyla, ileri vasküler organizasyonda rol oynayabileceğini ortaya koymuştur.

Destekleyen Kurum

Başkent Üniversitesi

Proje Numarası

DA20/14

Teşekkür

Elektron mikroskop örneklerinin hazırlanmasında teknik desteği için Başkent Üniversitesi Tıp Fakültesi Histoloji ve Embriyoloji Anabilim Dalından Uzman Biyolog Ece Lakşe Coşar’a teşekkür ederiz.

Kaynakça

  • Noden DM. Embryonic origins and assembly of blood vessels. Am Rev Respir Dis 1989; 140: 1097–1103.
  • Poole TJ, Coffin JD. Vasculogenesis and angiogenesis: two distinct morphogenetic mechanisms establish embryonic vascular pattern. J Exp Zool 1989; 251: 224–231.
  • Risau, W. Vasculogenesis, angiogenesis and endothelial cell differentiation during embryonic development; in Feinberger, R.N., G.K. Sherer, R. Auerbach (eds): The Development of the Vascular System. Issues in Biomedicine. Basel Karger 1991; 14: 58–68.
  • Edward MC, De´sire´ C, Peter C. Molecular mechanisms of blood vessel growth. Cardiovascular Research 2001; 49: 507–521.
  • Naito H, Iba T, Takakura N. Mechanisms of new blood-vessel formation and proliferative heterogeneity of endothelial cells. Int Immunol 2020; 32: 295-305.
  • Giles JJ, Bannigan JG. The effects of lithium on vascular development in the chick area vasculosa. J Anat 1999; 194: 197-205.
  • Patan S. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol 2000; 50: 1-15.
  • Tufan A.C., Satıroglu-Tufan N.L. The effect of ethanol exposure on extraembryonic vascular development in the chick area vasculosa. Cells Tissues Organs 2003; 175:85-97
  • Risau W. Mechanism of angiogenesis. Nature 1997; 386: 671-4.
  • Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000; 6(4): 389-95.
  • Kachooei SA, Rahmani R, Zareh N, et al. Down-regulation of TGF-β, VEGF, and bFGF in vascular endothelial cells of chicken induced by a brittle star (Ophiocoma erinaceus) extract. Heliyon 2020; 6: e03199.
  • Cébe-Suarez S, Zehnder-Fjällman A, Ballmer-Hofer K. The role of VEGF receptors in angiogenesis; complex partnerships. Cell Mol Life Sci 2006; 63(5): 601–615.
  • Cao R, Eriksson A, Kubo H, et al. Comparative Evaluation of FGF-2–, VEGF-A–, and VEGF-C induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circulation Research 2004; 94:664–670.
  • Yancopoulos GD, Davis S, Gale NW, et al. Vascular-specific growth factors and blood vessel formation. Nature 2000; 14;407(6801):242-8.
  • Leconte I, Fox JC, Baldwin HS, et al. Adenoviral-mediated expression of antisense RNA to fibroblast growth factors disrupts murine vascular development. Dev Dyn. 1998; 213: 421-30.
  • Lee SH, Schloss DJ, Swain JL. Maintenance of vacsular integrity in the embryo requires signaling through the fibroblast growth factor receptor. J Biol Chem 2000; 275: 33679-87.
  • Javerzat S, Auguste P, Bikfalvi A. The role of fibroblast growth factors in vascular development. Trends Mol Med. 2002; 8: 483-9.
  • Bikfalvi A, Klein S, Pintucci G, et al. Biological roles of fibroblast growth factor-2. Endocr Rev 1997; 18: 26-45.
  • Bahramsoltani M, Spiegelaere WD, Janczyk P, et al. Quantitation of angiogenesis in vitro induced by VEGF-A and FGF-2 in two different human endothelial cultures – an all-in-one assay. Clin Hemorheol and Microcirc 2010; 46:189-202.
  • Joseph-Silverstein J, Rifkin DB. Endothelial cell growth factors and the vessel wall. Semin Thromb Hemost 1987; 13: 504-13.
  • Klagsbrun M, D'Amore PA. Regulators of angiogenesis. Annu Rev Physiol 1991; 53: 217-39.
  • Olney RC, Bukulmez H, Bartels CF, et al. Heterozygous mutations in natriuretic peptide receptor- B (NPR2) are associated with short stature. J Clin Endocrinol Metab 2006; 91: 1229–1232.
  • Alan T, Tufan AC. C-Type Natriuretic Peptide Regulation of Limb Mesenchymal Chondrogenesis is Accompanied by Altered N-Cadherin and Collagen Type X-Related Functions. J. Cell Biochem 2008; 105: 227-235.
  • Stingo AJ, Clavell AL, Heublein DM, et al. Presence of C-type natriuretic peptide in cultured human endothelial cells and plasma. Am J Physiol 1992; 263: H1318-21.
  • Špiranec K, Chen W, Werner F, et al. Endothelial c-type natriuretic peptide acts on pericytes to regulate microcirculatory flow and blood pressure. Circulation 2018; 138: 494-508.
  • Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev. 2006; 27: 47-72.
  • Rose RA, Giles WR. Natriuretic peptide c receptor signaling in the heart and vasculature. J Physiol 2008; 586: 353–366.
  • Suga S, Nakao K, Itoh H, et al. Endothelial production of c-type natriuretic peptide and its marked augmentation by transforming growth factor-beta. Possible existence of "vascular natriuretic peptide system". J Clin Invest. 1992; 90: 1145-9.
  • Moyes AJ, Hobbs AJ. C-type natriuretic peptide: a multifaceted paracrine regulator in the heart and vasculature. Int J Mol Sci. 2019; 20: 2281.
  • Lumsden NG, Khambata RS, Hobbs AJ. c-type natriuretic peptide (CNP): cardiovascular roles and potential as a therapeutic target. Curr Pharm Des. 2010; 16: 4080-8.
  • Bubb KJ, Aubdool AA, Moyes AJ, et al. Endothelial c-type natriuretic peptide is a critical regulator of angiogenesis and vascular remodeling. Circulation. 2019; 139: 1612-1628.
  • Umaru B, Pyriochou A, Kotsikoris V, et al. ATP-sensitive potassium channel activation induces angiogenesis in vitro and in vivo. J Pharmacol Exp Ther 2015; 354: 79-87.
  • Woodard GE, Rosado JA, Brown J. Expression and control of c-type natriuretic peptide in rat vascular smooth muscle cells. Am J Physiol Regul Integr Comp Physiol. 2002; 282: R156-65.
  • Houweling AC, Somi S, Massink MP, et al. Comparative analysis of the natriuretic peptide precursor gene cluster in vertebrates reveals loss of ANF and retention of cnp-3 in chicken. Dev Dyn 2005; 233: 1076–1082.
  • Kocamaz E, Gok D, Cetinkaya A, et al. Implication of c-type natriuretic peptide-3 signaling in glycosaminoglycan synthesis and chondrocyte hypertrophy during TGF-β1 induced chondrogenic differentiation of chicken bone marrow-derived mesenchymal stem cells. J Mol Histol 2012; 43: 497-508.
  • Merckx G, Tay H, Lo Monaco M, et al. Chorioallantoic membrane assay as model for angiogenesis in tissue engineering: focus on stem cells. Tissue Eng Part B Rev 2020; doi: 10.1089/ten.TEB.2020.0048.
  • Ribatti D. The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model. Mech Dev 2016; 141: 70-77.
  • Patrycja NS, Tatiana S, M. Luisa IA. The chicken chorioallantoic membrane model in biology, medicine and bioengineering, Angiogenesis 2014; 17: 779-804.
  • Ergin C, Tufan AC, Yılmaz C. Bartonella Henselae tarafından uyarılan anjiogenezin, in vivo model olarak yumurta açığında, kabuksuz tavuk embriyosu kültürü üzerinde, koryoallantoik membranda gösterilmesi. Nobel Med 2012: 8: 108-112.
  • Tufan AC, Satiroglu-Tufan NL. The chick embryo chorioallantoic membrane as a model system for the study of tumor angiogenesis, invasion and development of anti-angiogenic agents. Curr Cancer Drug Targets 2005; 5: 249-66.
  • Baum O, Suter F, Gerber B, et al. VEGF-A promotes intussusceptive angiogenesis in the developing chicken chorioallantoic membrane. Microcirculation 2010; 17: 447–457.
  • Richardson, M.; Singh, G. Observations on the use of the avian chorioallantoic membrane (CAM) model in investigations into angiogenesis. Curr. Drug Targets-Cardiovasc. Haematol. Disord 2003; 3:155-185.
  • Ribatti D, Nico B, Vacca A, et al. Chorioallantoic membrane capillary bed: a useful target for studying angiogenesis and anti-angiogenesis in vivo. Anat. Rec 2001; 264:317-324.
  • Ribatti D, Presta M. The role of fibroblast growth factor-2 in the vascularization of the chick embryo chorioallantoic membrane. J. Cell Mol. Med. 2002; 6: 439-446.
  • Schlatter P, Konig MF, Karlsson LM, et al. Quantitative study of intussusceptive capillary growth in the chorioallantoic membrane (CAM) of the chicken embryo. Microvasc. Res. 1997; 54: 65-73.
  • Miller SA, Bresee KL, Michaelson CL, et al. Domains of differential cell proliferation and formation of amnion folds in chick embryo ectoderm. Anat. Rec 1994; 238: 225-236.
  • DeFouw DO, RizzoVJ, Steinfeld R, et al. Mapping of the microcirculation in the chick chorioallantoic membrane during normal angiogenesis. Microvasc. Res 1989; 38: 136-147.
  • Wangenstein D, Weibel ER. Morphometric evaluation of chorioallantoic oxygen transport in the chick embryo. Respir. Physiol. 1982; 47: 1-20.
  • Ausprunk DH, Knighton DR, Folkman J. Differentiation of vascular endothelium in the chick chorioallantois: a structural and autoradiographic study. Dev. Biol 1974; 38: 237-248.
  • Makanya AN, Dimova I, Koller T, et al. Dynamics of the developing chick chorioallantoic membrane assessed by stereology, allometry, immunohistochemistry and molecular analysis. PLoS One. 2016; 5: e0152821.
  • Marinaccio C, Nico B, Ribatti D. Differential expression of angiogenic and anti-angiogenic molecules in the chick embryo chorioallantoic membrane and selected organs during embryonic development. Int J Dev Biol 2013; 57: 907-16.
  • Presta M, Dell'Era P, Mitola S, et al. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 2005;16: 159-78.
  • Kano MR, Morishita Y, Iwata C, et al. VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFR-beta signaling. J Cell Sci 2005; 118: 3759-68.
  • Ribatti D, Urbinati C, Nico B, et al. Endogenous basic fibroblast growth factor is implicated in the vascularization of the chick embryo chorioallantoic membrane. Dev Biol. 1995; 170: 39-49.
  • Yang X, Liaw L, Prudovsky I, et al. Fibroblast growth factor signaling in the vasculature. Curr Atheroscler Rep 2015; 17: 509.
  • Pedram A, Razandi M, Levin ER. Natriuretic peptides suppress vascular endothelial cell growth factor signaling to angiogenesis. Endocrinology. 2001; 142: 1578-86.

Analysis of the mRNA Expression of C-Type Natriuretic Peptide-3 and Natriuretic Peptide Reseptor-2 in Angiogenesis of Chick Chorioallantoic Membrane: A Descriptive Study

Yıl 2021, Cilt: 47 Sayı: 2, 165 - 175, 01.08.2021
https://doi.org/10.32708/uutfd.909943

Öz

The chick chorioallantoic membrane (CAM) is a widely used model to follow the developmental processes in angiogenesis studies. This study aims to describe the putative involvement of CNP-3, the chick homolog of human CNP, and its receptor natriuretic peptide receptor (NPR)-B besides known angiogenic factors and their receptors, vascular endothelial growth factor (VEGF)-A/ vascular endothelial growth factor receptor (VEGFR)-2 and fibroblast growth factor (FGF)-2/fibroblast growth factor receptor (FGFR)-2, in angiogenesis of the CAM. CAM samples between developmental days E7 and E20 were collected for light microscopic and transmission electron microscopic analyses. Expression of CNP-3/NPR-B, VEGF-A/VEGR-2, FGF-2/FGFR-2 mRNA in these CAM samples were also studied between E7 and E20. Light microscopy and electron microscopy analyzes showed that, vascular organization was mostly within the chorionic mesenchyme as endothelial tube-like structures on E7-E8 days. On E9 and later, advanced blood vessels were observed within the mesenchyme. VEGF-A and FGF-2 expression were observed in the early stages of CAM development (E7-E9) with a peak at E8. These molecules showed a second peak at around E16. Co- expression of VEGF-A, FGF-2 and CNP-3 were seen at E16-E20. VEGFR-2 expression was observed between E7-E12, whereas expression of FGFR-2 showed its first peak between E7-E9 and its second peak between E16-20. NPR-B expression, on the other hand, was observed between E7-E20 with its highest level at E16. In conclusion, the results revealed that CNP-3 may have a role in vascular organization via its NPR-B receptor in the later stages, i.e., E16-E20, of CAM development.

Proje Numarası

DA20/14

Kaynakça

  • Noden DM. Embryonic origins and assembly of blood vessels. Am Rev Respir Dis 1989; 140: 1097–1103.
  • Poole TJ, Coffin JD. Vasculogenesis and angiogenesis: two distinct morphogenetic mechanisms establish embryonic vascular pattern. J Exp Zool 1989; 251: 224–231.
  • Risau, W. Vasculogenesis, angiogenesis and endothelial cell differentiation during embryonic development; in Feinberger, R.N., G.K. Sherer, R. Auerbach (eds): The Development of the Vascular System. Issues in Biomedicine. Basel Karger 1991; 14: 58–68.
  • Edward MC, De´sire´ C, Peter C. Molecular mechanisms of blood vessel growth. Cardiovascular Research 2001; 49: 507–521.
  • Naito H, Iba T, Takakura N. Mechanisms of new blood-vessel formation and proliferative heterogeneity of endothelial cells. Int Immunol 2020; 32: 295-305.
  • Giles JJ, Bannigan JG. The effects of lithium on vascular development in the chick area vasculosa. J Anat 1999; 194: 197-205.
  • Patan S. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol 2000; 50: 1-15.
  • Tufan A.C., Satıroglu-Tufan N.L. The effect of ethanol exposure on extraembryonic vascular development in the chick area vasculosa. Cells Tissues Organs 2003; 175:85-97
  • Risau W. Mechanism of angiogenesis. Nature 1997; 386: 671-4.
  • Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000; 6(4): 389-95.
  • Kachooei SA, Rahmani R, Zareh N, et al. Down-regulation of TGF-β, VEGF, and bFGF in vascular endothelial cells of chicken induced by a brittle star (Ophiocoma erinaceus) extract. Heliyon 2020; 6: e03199.
  • Cébe-Suarez S, Zehnder-Fjällman A, Ballmer-Hofer K. The role of VEGF receptors in angiogenesis; complex partnerships. Cell Mol Life Sci 2006; 63(5): 601–615.
  • Cao R, Eriksson A, Kubo H, et al. Comparative Evaluation of FGF-2–, VEGF-A–, and VEGF-C induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circulation Research 2004; 94:664–670.
  • Yancopoulos GD, Davis S, Gale NW, et al. Vascular-specific growth factors and blood vessel formation. Nature 2000; 14;407(6801):242-8.
  • Leconte I, Fox JC, Baldwin HS, et al. Adenoviral-mediated expression of antisense RNA to fibroblast growth factors disrupts murine vascular development. Dev Dyn. 1998; 213: 421-30.
  • Lee SH, Schloss DJ, Swain JL. Maintenance of vacsular integrity in the embryo requires signaling through the fibroblast growth factor receptor. J Biol Chem 2000; 275: 33679-87.
  • Javerzat S, Auguste P, Bikfalvi A. The role of fibroblast growth factors in vascular development. Trends Mol Med. 2002; 8: 483-9.
  • Bikfalvi A, Klein S, Pintucci G, et al. Biological roles of fibroblast growth factor-2. Endocr Rev 1997; 18: 26-45.
  • Bahramsoltani M, Spiegelaere WD, Janczyk P, et al. Quantitation of angiogenesis in vitro induced by VEGF-A and FGF-2 in two different human endothelial cultures – an all-in-one assay. Clin Hemorheol and Microcirc 2010; 46:189-202.
  • Joseph-Silverstein J, Rifkin DB. Endothelial cell growth factors and the vessel wall. Semin Thromb Hemost 1987; 13: 504-13.
  • Klagsbrun M, D'Amore PA. Regulators of angiogenesis. Annu Rev Physiol 1991; 53: 217-39.
  • Olney RC, Bukulmez H, Bartels CF, et al. Heterozygous mutations in natriuretic peptide receptor- B (NPR2) are associated with short stature. J Clin Endocrinol Metab 2006; 91: 1229–1232.
  • Alan T, Tufan AC. C-Type Natriuretic Peptide Regulation of Limb Mesenchymal Chondrogenesis is Accompanied by Altered N-Cadherin and Collagen Type X-Related Functions. J. Cell Biochem 2008; 105: 227-235.
  • Stingo AJ, Clavell AL, Heublein DM, et al. Presence of C-type natriuretic peptide in cultured human endothelial cells and plasma. Am J Physiol 1992; 263: H1318-21.
  • Špiranec K, Chen W, Werner F, et al. Endothelial c-type natriuretic peptide acts on pericytes to regulate microcirculatory flow and blood pressure. Circulation 2018; 138: 494-508.
  • Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev. 2006; 27: 47-72.
  • Rose RA, Giles WR. Natriuretic peptide c receptor signaling in the heart and vasculature. J Physiol 2008; 586: 353–366.
  • Suga S, Nakao K, Itoh H, et al. Endothelial production of c-type natriuretic peptide and its marked augmentation by transforming growth factor-beta. Possible existence of "vascular natriuretic peptide system". J Clin Invest. 1992; 90: 1145-9.
  • Moyes AJ, Hobbs AJ. C-type natriuretic peptide: a multifaceted paracrine regulator in the heart and vasculature. Int J Mol Sci. 2019; 20: 2281.
  • Lumsden NG, Khambata RS, Hobbs AJ. c-type natriuretic peptide (CNP): cardiovascular roles and potential as a therapeutic target. Curr Pharm Des. 2010; 16: 4080-8.
  • Bubb KJ, Aubdool AA, Moyes AJ, et al. Endothelial c-type natriuretic peptide is a critical regulator of angiogenesis and vascular remodeling. Circulation. 2019; 139: 1612-1628.
  • Umaru B, Pyriochou A, Kotsikoris V, et al. ATP-sensitive potassium channel activation induces angiogenesis in vitro and in vivo. J Pharmacol Exp Ther 2015; 354: 79-87.
  • Woodard GE, Rosado JA, Brown J. Expression and control of c-type natriuretic peptide in rat vascular smooth muscle cells. Am J Physiol Regul Integr Comp Physiol. 2002; 282: R156-65.
  • Houweling AC, Somi S, Massink MP, et al. Comparative analysis of the natriuretic peptide precursor gene cluster in vertebrates reveals loss of ANF and retention of cnp-3 in chicken. Dev Dyn 2005; 233: 1076–1082.
  • Kocamaz E, Gok D, Cetinkaya A, et al. Implication of c-type natriuretic peptide-3 signaling in glycosaminoglycan synthesis and chondrocyte hypertrophy during TGF-β1 induced chondrogenic differentiation of chicken bone marrow-derived mesenchymal stem cells. J Mol Histol 2012; 43: 497-508.
  • Merckx G, Tay H, Lo Monaco M, et al. Chorioallantoic membrane assay as model for angiogenesis in tissue engineering: focus on stem cells. Tissue Eng Part B Rev 2020; doi: 10.1089/ten.TEB.2020.0048.
  • Ribatti D. The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model. Mech Dev 2016; 141: 70-77.
  • Patrycja NS, Tatiana S, M. Luisa IA. The chicken chorioallantoic membrane model in biology, medicine and bioengineering, Angiogenesis 2014; 17: 779-804.
  • Ergin C, Tufan AC, Yılmaz C. Bartonella Henselae tarafından uyarılan anjiogenezin, in vivo model olarak yumurta açığında, kabuksuz tavuk embriyosu kültürü üzerinde, koryoallantoik membranda gösterilmesi. Nobel Med 2012: 8: 108-112.
  • Tufan AC, Satiroglu-Tufan NL. The chick embryo chorioallantoic membrane as a model system for the study of tumor angiogenesis, invasion and development of anti-angiogenic agents. Curr Cancer Drug Targets 2005; 5: 249-66.
  • Baum O, Suter F, Gerber B, et al. VEGF-A promotes intussusceptive angiogenesis in the developing chicken chorioallantoic membrane. Microcirculation 2010; 17: 447–457.
  • Richardson, M.; Singh, G. Observations on the use of the avian chorioallantoic membrane (CAM) model in investigations into angiogenesis. Curr. Drug Targets-Cardiovasc. Haematol. Disord 2003; 3:155-185.
  • Ribatti D, Nico B, Vacca A, et al. Chorioallantoic membrane capillary bed: a useful target for studying angiogenesis and anti-angiogenesis in vivo. Anat. Rec 2001; 264:317-324.
  • Ribatti D, Presta M. The role of fibroblast growth factor-2 in the vascularization of the chick embryo chorioallantoic membrane. J. Cell Mol. Med. 2002; 6: 439-446.
  • Schlatter P, Konig MF, Karlsson LM, et al. Quantitative study of intussusceptive capillary growth in the chorioallantoic membrane (CAM) of the chicken embryo. Microvasc. Res. 1997; 54: 65-73.
  • Miller SA, Bresee KL, Michaelson CL, et al. Domains of differential cell proliferation and formation of amnion folds in chick embryo ectoderm. Anat. Rec 1994; 238: 225-236.
  • DeFouw DO, RizzoVJ, Steinfeld R, et al. Mapping of the microcirculation in the chick chorioallantoic membrane during normal angiogenesis. Microvasc. Res 1989; 38: 136-147.
  • Wangenstein D, Weibel ER. Morphometric evaluation of chorioallantoic oxygen transport in the chick embryo. Respir. Physiol. 1982; 47: 1-20.
  • Ausprunk DH, Knighton DR, Folkman J. Differentiation of vascular endothelium in the chick chorioallantois: a structural and autoradiographic study. Dev. Biol 1974; 38: 237-248.
  • Makanya AN, Dimova I, Koller T, et al. Dynamics of the developing chick chorioallantoic membrane assessed by stereology, allometry, immunohistochemistry and molecular analysis. PLoS One. 2016; 5: e0152821.
  • Marinaccio C, Nico B, Ribatti D. Differential expression of angiogenic and anti-angiogenic molecules in the chick embryo chorioallantoic membrane and selected organs during embryonic development. Int J Dev Biol 2013; 57: 907-16.
  • Presta M, Dell'Era P, Mitola S, et al. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 2005;16: 159-78.
  • Kano MR, Morishita Y, Iwata C, et al. VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFR-beta signaling. J Cell Sci 2005; 118: 3759-68.
  • Ribatti D, Urbinati C, Nico B, et al. Endogenous basic fibroblast growth factor is implicated in the vascularization of the chick embryo chorioallantoic membrane. Dev Biol. 1995; 170: 39-49.
  • Yang X, Liaw L, Prudovsky I, et al. Fibroblast growth factor signaling in the vasculature. Curr Atheroscler Rep 2015; 17: 509.
  • Pedram A, Razandi M, Levin ER. Natriuretic peptides suppress vascular endothelial cell growth factor signaling to angiogenesis. Endocrinology. 2001; 142: 1578-86.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Anatomi
Bölüm Özgün Araştırma Makaleleri
Yazarlar

Ekin Efe 0000-0001-6955-9839

Attila Dağdeviren Bu kişi benim 0000-0001-8990-8282

F. Figen Kaymaz Bu kişi benim 0000-0001-8896-2471

Ahmet Çevik Tufan 0000-0002-5920-0475

Proje Numarası DA20/14
Yayımlanma Tarihi 1 Ağustos 2021
Kabul Tarihi 4 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 47 Sayı: 2

Kaynak Göster

APA Efe, E., Dağdeviren, A., Kaymaz, F. F., Tufan, A. Ç. (2021). Tavuk Embriyosu Koryoallantoik Membranında Görülen Anjiyogenez Sürecinde C-Tipi Natriüretik Peptid-3 ve Natriüretik Peptid Reseptör-B mRNA İfadelerinin Analizi: Tanımlayıcı Bir Çalışma. Uludağ Üniversitesi Tıp Fakültesi Dergisi, 47(2), 165-175. https://doi.org/10.32708/uutfd.909943
AMA Efe E, Dağdeviren A, Kaymaz FF, Tufan AÇ. Tavuk Embriyosu Koryoallantoik Membranında Görülen Anjiyogenez Sürecinde C-Tipi Natriüretik Peptid-3 ve Natriüretik Peptid Reseptör-B mRNA İfadelerinin Analizi: Tanımlayıcı Bir Çalışma. Uludağ Tıp Derg. Ağustos 2021;47(2):165-175. doi:10.32708/uutfd.909943
Chicago Efe, Ekin, Attila Dağdeviren, F. Figen Kaymaz, ve Ahmet Çevik Tufan. “Tavuk Embriyosu Koryoallantoik Membranında Görülen Anjiyogenez Sürecinde C-Tipi Natriüretik Peptid-3 Ve Natriüretik Peptid Reseptör-B MRNA İfadelerinin Analizi: Tanımlayıcı Bir Çalışma”. Uludağ Üniversitesi Tıp Fakültesi Dergisi 47, sy. 2 (Ağustos 2021): 165-75. https://doi.org/10.32708/uutfd.909943.
EndNote Efe E, Dağdeviren A, Kaymaz FF, Tufan AÇ (01 Ağustos 2021) Tavuk Embriyosu Koryoallantoik Membranında Görülen Anjiyogenez Sürecinde C-Tipi Natriüretik Peptid-3 ve Natriüretik Peptid Reseptör-B mRNA İfadelerinin Analizi: Tanımlayıcı Bir Çalışma. Uludağ Üniversitesi Tıp Fakültesi Dergisi 47 2 165–175.
IEEE E. Efe, A. Dağdeviren, F. F. Kaymaz, ve A. Ç. Tufan, “Tavuk Embriyosu Koryoallantoik Membranında Görülen Anjiyogenez Sürecinde C-Tipi Natriüretik Peptid-3 ve Natriüretik Peptid Reseptör-B mRNA İfadelerinin Analizi: Tanımlayıcı Bir Çalışma”, Uludağ Tıp Derg, c. 47, sy. 2, ss. 165–175, 2021, doi: 10.32708/uutfd.909943.
ISNAD Efe, Ekin vd. “Tavuk Embriyosu Koryoallantoik Membranında Görülen Anjiyogenez Sürecinde C-Tipi Natriüretik Peptid-3 Ve Natriüretik Peptid Reseptör-B MRNA İfadelerinin Analizi: Tanımlayıcı Bir Çalışma”. Uludağ Üniversitesi Tıp Fakültesi Dergisi 47/2 (Ağustos 2021), 165-175. https://doi.org/10.32708/uutfd.909943.
JAMA Efe E, Dağdeviren A, Kaymaz FF, Tufan AÇ. Tavuk Embriyosu Koryoallantoik Membranında Görülen Anjiyogenez Sürecinde C-Tipi Natriüretik Peptid-3 ve Natriüretik Peptid Reseptör-B mRNA İfadelerinin Analizi: Tanımlayıcı Bir Çalışma. Uludağ Tıp Derg. 2021;47:165–175.
MLA Efe, Ekin vd. “Tavuk Embriyosu Koryoallantoik Membranında Görülen Anjiyogenez Sürecinde C-Tipi Natriüretik Peptid-3 Ve Natriüretik Peptid Reseptör-B MRNA İfadelerinin Analizi: Tanımlayıcı Bir Çalışma”. Uludağ Üniversitesi Tıp Fakültesi Dergisi, c. 47, sy. 2, 2021, ss. 165-7, doi:10.32708/uutfd.909943.
Vancouver Efe E, Dağdeviren A, Kaymaz FF, Tufan AÇ. Tavuk Embriyosu Koryoallantoik Membranında Görülen Anjiyogenez Sürecinde C-Tipi Natriüretik Peptid-3 ve Natriüretik Peptid Reseptör-B mRNA İfadelerinin Analizi: Tanımlayıcı Bir Çalışma. Uludağ Tıp Derg. 2021;47(2):165-7.

ISSN: 1300-414X, e-ISSN: 2645-9027

Uludağ Üniversitesi Tıp Fakültesi Dergisi "Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License" ile lisanslanmaktadır.


Creative Commons License
Journal of Uludag University Medical Faculty is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

2023