Araştırma Makalesi
BibTex RIS Kaynak Göster

Contribution of THRIVE Sequence in Magnetic Resonance Myelography with Intrathecal Gadolinium

Yıl 2022, Cilt: 48 Sayı: 2, 249 - 254, 15.09.2022
https://doi.org/10.32708/uutfd.1140325

Öz

Magnetic Resonance Myelography with Intrathecal Gadolinium (IG-MRM) is an examination method to investigate the etiology of spontaneous intracranial hypotension (SIH). In the examination, the fat supressed 2-dimensional T1-weighted turbo spin echo (2D-T1W TSE) sequence is generally preferred. “T1-weighted high-resolution isotropic volume examination” (THRIVE) sequence is a new generation 3D gradient echo (GRE) imaging technique that offers high resolution fat-suppressed T1 imaging. We aimed to evaluate the diagnostic success of the THRIVE sequence in detecting IG-MRM findings associated with intracranial hypotension by comparing it with the 2D-T1W TSE. Sixteen patients who were diagnosed with SID according to their clinical and radiological findings and underwent IG-MRM between March 2018 and November 2019 were included. 2D-T1A TSE and THRIVE sequences were compared for cerebrospinal fluid (CSF) opacification grade at the cervical, thoracic, and lumbar levels, and counts of epidural CSF collections, dural defects, and meningeal diverticula. CSF opacification grades in THRIVE sequence at cervical and thoracic levels were significantly lower than 2D-T1W TSE (p<0.05). Significantly more dural defects (33-15, p=0.001) and meningeal diverticula (20-4, p=0.027) were detected in the THRIVE sequence than in the 2D-T1W TSE. There was no significant difference between the two examinations in terms of opacification at the lumbar level and the number of epidural CSF collections detected (p>0.05). Small dural defects and meningeal diverticula may be detected more easily using THRIVE sequence in IG-MRM of SIH cases when compared with routine sequences. However, since THRIVE is a gradient echo-based sequence, CSF areas may not be sufficiently opacified, especially at the cervical and thoracic level.

Kaynakça

  • 1. Schievink WI. Spontaneous spinal cerebrospinal fluid leaks and intracranial hypotension. JAMA. 2006;295:2286-96.
  • 2. Schievink WI, Reimer R, Folger WN. Surgical treatment of spontaneous intracranial hypotension associated with a spinal arachnoid diverticulum. Case report. J Neurosurg. 1994;80:736-9.
  • 3. Luetzen N, Dovi-Akue P, Fung C, Beck J, Urbach H. Spontaneous intracranial hypotension: diagnostic and therapeutic workup. Neuroradiology. 2021;63:1765-72.
  • 4. Bond KM, Benson JC, Cutsforth-Gregory JK, et al. Spontaneous Intracranial Hypotension: Atypical Radiologic Appearances, Imaging Mimickers, and Clinical Look-Alikes. AJNR Am J Neuroradiol. 2020;41:1339-47.
  • 5. Smith KA. Spontaneous intracranial hypotension: Targeted or blind blood patch. J Clin Neurosci. 2016;25:10-2.
  • 6. Kranz PG, Luetmer PH, Diehn FE, et al. Myelographic Techniques for the Detection of Spinal CSF Leaks in Spontaneous Intracranial Hypotension. AJR Am J Roentgenol. 2016;206:8-19.
  • 7. Akbar JJ, Luetmer PH, Schwartz KM, et al. The role of MR myelography with intrathecal gadolinium inlocalization of spinal CSF leaks in patients with spontaneous intracranial hypotension. AJNR Am J Neuroradiol 2012;33:535–40.
  • 8. Chazen JL, Talbott JF, Lantos JE, et al. MR myelography for identification of spinal CSF leak in spontaneous intracranial hypotension. AJNR Am J Neuroradiol 2014;35:2007–12.
  • 9. Ahn SS, Kim J, An C, et al. Preoperative imaging evaluation of head and neck cancer: comparison of 2D spin-echo and 3D THRIVE MRI techniques with resected tumours. Clin Radiol. 2012;67:e98-104.
  • 10. Carlton Jones L, Butteriss D, Scoffings D. Spontaneous intracranial hypotension: the role of radiology in diagnosis and management. Clin Radiol. 2022;77:e181-194.
  • 11. Schievink WI, Maya MM, Louy C, Moser FG, Tourje J. Diagnostic criteria for spontaneous spinal CSF leaks and intracranial hypotension. AJNR Am J Neuroradiol. 2008;29:853-6.
  • 12. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia. 2018;38:1-211.
  • 13. Lee SH, Yun SJ, Yoon Y. Diagnostic performance of shoulder magnetic resonance arthrography for labral tears having surgery as reference: comparison of high-resolution isotropic 3D sequence (THRIVE) with standard protocol. Radiol Med. 2018;123:620-30.
  • 14. Onoda M, Hyodo T, Murakami T, et al. Optimizing signal intensity correction during evaluation of hepatic parenchymal enhancement on gadoxetate disodium-enhanced MRI: comparison of three methods. Eur J Radiol. 2015;84:339-45.
  • 15. Moschetta M, Telegrafo M, Rella L, et al. Effect of gadolinium injection on diffusion-weighted imaging with background body signal suppression (DWIBS) imaging of breast lesions. Magn Reson Imaging. 2014;32:1242-6.
  • 16. Yoo MG, Kim J, Bae S, et al. Detection of clinically occult primary tumours in patients with cervical metastases of unknown primary tumours: comparison of three-dimensional THRIVE MRI, two-dimensional spin-echo MRI, and contrast-enhanced CT. Clin Radiol. 2018;73:410.e9-410.e15.
  • 17. Lee YH, Choi YR, Kim S, Song HT, Suh JS. Intrinsic ligament and triangular fibrocartilage complex (TFCC) tears of the wrist: comparison of isovolumetric 3D-THRIVE sequence MR arthrography and conventional MR image at 3 T. Magn Reson Imaging. 2013;31:221-6.
  • 18. Mırçık E, Hakyemez B. New technique: the use of the THRIVE sequence in the follow-up of patients who received endovascular intracranial aneurysm treatment. Neuroradiology. 2021;63:399-407.
  • 19. Furutani K, Harada M, Mawlan M, Nishitani H. Difference in enhancement between spin echo and 3-dimensional fast spoiled gradient recalled acquisition in steady state magnetic resonance imaging of brain metastasis at 3-T magnetic resonance imaging. J Comput Assist Tomogr. 2008;32:313-9.
  • 20. Hasiloglu ZI, Albayram S, Gorucu Y, et al. Assessment of CSF flow dynamics using PC-MRI in spontaneous intracranial hypotension. Headache. 2012;52:808-19.

İntratekal Gadolinyumlu Manyetik Rezonans Myelografide THRIVE Sekansının Katkısı

Yıl 2022, Cilt: 48 Sayı: 2, 249 - 254, 15.09.2022
https://doi.org/10.32708/uutfd.1140325

Öz

İntratekal Gadolinyumlu Manyetik Rezonans Myelografi (İG-MRM) spontan intrakraniyal hipotansiyonun (SİH) etyolojisini araştırmak için yapılan bir inceleme yöntemidir. İncelemede genellikle yağ baskılı 2 boyutlu T1A turbo spin eko (2B-T1A TSE) sekansı tercih edilmektedir. “T1-weighted high-resolution isotropic volume examination” (THRIVE) sekansı; yüksek çözünürlüklü yağ baskılı T1 görüntüleme imkanı sunan, yeni nesil 3 boyutlu gradient eko (GRE) görüntüleme tekniğidir. Bu çalışmada; THRIVE sekansının intrakraniyal hipotansiyon ile ilişkili İG-MRM bulgularını saptamadaki tanısal başarısını 2B-T1A TSE ile karşılaştırarak değerlendirmeyi amaçladık. Mart 2018 – Kasım 2019 tarihleri arasında klinik ve radyolojik bulgularına göre SİH tanısı konan ve İG-MRM yapılan 16 hasta dahil edildi. 2B-T1A TSE ve THRIVE sekansları; servikal, torakal ve lomber düzeydeki beyin omurilik sıvısı (BOS) opasifikasyon düzeyleri, tekniklerin her birinde saptanan epidural BOS kolleksiyonu, dural defekt ve meningeal divertikül bulgularının sayısı açısından karşılaştırıldı. Servikal ve torakal düzeyde THRIVE sekansındaki BOS opasifikasyon düzeyi 2B-T1A TSE’ye göre anlamlı düzeyde daha düşüktü (p<0,05). THRIVE sekansında 2B-T1A TSE’ye göre anlamlı ölçüde daha çok sayıda dural defekt (33 – 15, p=0,001) ve meningeal divertikül (20 – 4, p=0,027) saptandı. Lomber düzeydeki opasifikasyon ve saptanan epidural BOS kolleksiyon sayısı yönünden her iki tetkik arasında anlamlı farklılık saptanmadı (p>0,05). SİH olgularının İG-MRM’sinde THRIVE sekansının kullanımı ile küçük dural defektler ve meningeal divertiküller rutin sekanslara göre daha kolay saptanabilir. Ancak sekansın gradient eko tabanlı olması nedeni ile özellikle servikal ve torakal düzeyde BOS alanları yeterince opasifiye olmayabilir.

Kaynakça

  • 1. Schievink WI. Spontaneous spinal cerebrospinal fluid leaks and intracranial hypotension. JAMA. 2006;295:2286-96.
  • 2. Schievink WI, Reimer R, Folger WN. Surgical treatment of spontaneous intracranial hypotension associated with a spinal arachnoid diverticulum. Case report. J Neurosurg. 1994;80:736-9.
  • 3. Luetzen N, Dovi-Akue P, Fung C, Beck J, Urbach H. Spontaneous intracranial hypotension: diagnostic and therapeutic workup. Neuroradiology. 2021;63:1765-72.
  • 4. Bond KM, Benson JC, Cutsforth-Gregory JK, et al. Spontaneous Intracranial Hypotension: Atypical Radiologic Appearances, Imaging Mimickers, and Clinical Look-Alikes. AJNR Am J Neuroradiol. 2020;41:1339-47.
  • 5. Smith KA. Spontaneous intracranial hypotension: Targeted or blind blood patch. J Clin Neurosci. 2016;25:10-2.
  • 6. Kranz PG, Luetmer PH, Diehn FE, et al. Myelographic Techniques for the Detection of Spinal CSF Leaks in Spontaneous Intracranial Hypotension. AJR Am J Roentgenol. 2016;206:8-19.
  • 7. Akbar JJ, Luetmer PH, Schwartz KM, et al. The role of MR myelography with intrathecal gadolinium inlocalization of spinal CSF leaks in patients with spontaneous intracranial hypotension. AJNR Am J Neuroradiol 2012;33:535–40.
  • 8. Chazen JL, Talbott JF, Lantos JE, et al. MR myelography for identification of spinal CSF leak in spontaneous intracranial hypotension. AJNR Am J Neuroradiol 2014;35:2007–12.
  • 9. Ahn SS, Kim J, An C, et al. Preoperative imaging evaluation of head and neck cancer: comparison of 2D spin-echo and 3D THRIVE MRI techniques with resected tumours. Clin Radiol. 2012;67:e98-104.
  • 10. Carlton Jones L, Butteriss D, Scoffings D. Spontaneous intracranial hypotension: the role of radiology in diagnosis and management. Clin Radiol. 2022;77:e181-194.
  • 11. Schievink WI, Maya MM, Louy C, Moser FG, Tourje J. Diagnostic criteria for spontaneous spinal CSF leaks and intracranial hypotension. AJNR Am J Neuroradiol. 2008;29:853-6.
  • 12. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia. 2018;38:1-211.
  • 13. Lee SH, Yun SJ, Yoon Y. Diagnostic performance of shoulder magnetic resonance arthrography for labral tears having surgery as reference: comparison of high-resolution isotropic 3D sequence (THRIVE) with standard protocol. Radiol Med. 2018;123:620-30.
  • 14. Onoda M, Hyodo T, Murakami T, et al. Optimizing signal intensity correction during evaluation of hepatic parenchymal enhancement on gadoxetate disodium-enhanced MRI: comparison of three methods. Eur J Radiol. 2015;84:339-45.
  • 15. Moschetta M, Telegrafo M, Rella L, et al. Effect of gadolinium injection on diffusion-weighted imaging with background body signal suppression (DWIBS) imaging of breast lesions. Magn Reson Imaging. 2014;32:1242-6.
  • 16. Yoo MG, Kim J, Bae S, et al. Detection of clinically occult primary tumours in patients with cervical metastases of unknown primary tumours: comparison of three-dimensional THRIVE MRI, two-dimensional spin-echo MRI, and contrast-enhanced CT. Clin Radiol. 2018;73:410.e9-410.e15.
  • 17. Lee YH, Choi YR, Kim S, Song HT, Suh JS. Intrinsic ligament and triangular fibrocartilage complex (TFCC) tears of the wrist: comparison of isovolumetric 3D-THRIVE sequence MR arthrography and conventional MR image at 3 T. Magn Reson Imaging. 2013;31:221-6.
  • 18. Mırçık E, Hakyemez B. New technique: the use of the THRIVE sequence in the follow-up of patients who received endovascular intracranial aneurysm treatment. Neuroradiology. 2021;63:399-407.
  • 19. Furutani K, Harada M, Mawlan M, Nishitani H. Difference in enhancement between spin echo and 3-dimensional fast spoiled gradient recalled acquisition in steady state magnetic resonance imaging of brain metastasis at 3-T magnetic resonance imaging. J Comput Assist Tomogr. 2008;32:313-9.
  • 20. Hasiloglu ZI, Albayram S, Gorucu Y, et al. Assessment of CSF flow dynamics using PC-MRI in spontaneous intracranial hypotension. Headache. 2012;52:808-19.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Radyoloji ve Organ Görüntüleme
Bölüm Özgün Araştırma Makaleleri
Yazarlar

Rifat Özpar 0000-0001-6649-9287

Ömer Fatih Nas 0000-0001-6211-4191

Mehmet Fatih İnecikli 0000-0002-9796-8223

Gökhan Öngen 0000-0002-7348-0813

Emel Oğuz-akarsu 0000-0002-0465-4218

Bahattin Hakyemez 0000-0002-3425-0740

Yayımlanma Tarihi 15 Eylül 2022
Kabul Tarihi 4 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 48 Sayı: 2

Kaynak Göster

APA Özpar, R., Nas, Ö. F., İnecikli, M. F., Öngen, G., vd. (2022). İntratekal Gadolinyumlu Manyetik Rezonans Myelografide THRIVE Sekansının Katkısı. Uludağ Üniversitesi Tıp Fakültesi Dergisi, 48(2), 249-254. https://doi.org/10.32708/uutfd.1140325
AMA Özpar R, Nas ÖF, İnecikli MF, Öngen G, Oğuz-akarsu E, Hakyemez B. İntratekal Gadolinyumlu Manyetik Rezonans Myelografide THRIVE Sekansının Katkısı. Uludağ Tıp Derg. Eylül 2022;48(2):249-254. doi:10.32708/uutfd.1140325
Chicago Özpar, Rifat, Ömer Fatih Nas, Mehmet Fatih İnecikli, Gökhan Öngen, Emel Oğuz-akarsu, ve Bahattin Hakyemez. “İntratekal Gadolinyumlu Manyetik Rezonans Myelografide THRIVE Sekansının Katkısı”. Uludağ Üniversitesi Tıp Fakültesi Dergisi 48, sy. 2 (Eylül 2022): 249-54. https://doi.org/10.32708/uutfd.1140325.
EndNote Özpar R, Nas ÖF, İnecikli MF, Öngen G, Oğuz-akarsu E, Hakyemez B (01 Eylül 2022) İntratekal Gadolinyumlu Manyetik Rezonans Myelografide THRIVE Sekansının Katkısı. Uludağ Üniversitesi Tıp Fakültesi Dergisi 48 2 249–254.
IEEE R. Özpar, Ö. F. Nas, M. F. İnecikli, G. Öngen, E. Oğuz-akarsu, ve B. Hakyemez, “İntratekal Gadolinyumlu Manyetik Rezonans Myelografide THRIVE Sekansının Katkısı”, Uludağ Tıp Derg, c. 48, sy. 2, ss. 249–254, 2022, doi: 10.32708/uutfd.1140325.
ISNAD Özpar, Rifat vd. “İntratekal Gadolinyumlu Manyetik Rezonans Myelografide THRIVE Sekansının Katkısı”. Uludağ Üniversitesi Tıp Fakültesi Dergisi 48/2 (Eylül 2022), 249-254. https://doi.org/10.32708/uutfd.1140325.
JAMA Özpar R, Nas ÖF, İnecikli MF, Öngen G, Oğuz-akarsu E, Hakyemez B. İntratekal Gadolinyumlu Manyetik Rezonans Myelografide THRIVE Sekansının Katkısı. Uludağ Tıp Derg. 2022;48:249–254.
MLA Özpar, Rifat vd. “İntratekal Gadolinyumlu Manyetik Rezonans Myelografide THRIVE Sekansının Katkısı”. Uludağ Üniversitesi Tıp Fakültesi Dergisi, c. 48, sy. 2, 2022, ss. 249-54, doi:10.32708/uutfd.1140325.
Vancouver Özpar R, Nas ÖF, İnecikli MF, Öngen G, Oğuz-akarsu E, Hakyemez B. İntratekal Gadolinyumlu Manyetik Rezonans Myelografide THRIVE Sekansının Katkısı. Uludağ Tıp Derg. 2022;48(2):249-54.

ISSN: 1300-414X, e-ISSN: 2645-9027

Uludağ Üniversitesi Tıp Fakültesi Dergisi "Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License" ile lisanslanmaktadır.


Creative Commons License
Journal of Uludag University Medical Faculty is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

2023