Yıl 2020,
Cilt: 11 Sayı: 2, 80 - 114, 28.08.2020
Begüm Yurdakök Dikmen
,
Yağız Pat
Ergin Dilekoz
Gökçe Yağmur Summak
Oguz Kul
Ayhan Filazi
Öz
SARS-CoV-2'nin neden olduğu yeni koronavirüs hastalığı (COVID-19) global bir pandemi olarak tanımlanmıştır. Tüm dünyada yoğun araştırmalara karşın halen etkili bir tedavisi veya aşısı bulunmamaktadır. Bu nedenle korunma, erken virüs tespiti ve tanımlanma yöntemleri hastalığın kontrolü için önem taşımaktadır. Kontrollü randomize klinik araştırmaların sonuçları ile sürekli olarak tedavi protokolleri güncellenmektedir; ancak çok sayıda hasta ile yapılan araştırmaların çoğunluğu halen devam etmektedir. Bireysel farklılıklara (değişen fenotip, diğer kronik hastalıklar gibi) bağlı ilaç etkinliği ve güvenirliğine ilişkin değişiklikler nedeniyle tedavide tek tip ilaç uygulaması bulunmamaktadır. Tedavi protokolleri sürekli güncellenmektedir ve yapay zeka/in siliko araştırmalarla yeni ilaçların geliştirilmesi ve ilaç yeniden konumlandırma araştırmaları hızla devam etmektedir. Bu derleme, COVID-19 tedavisinde kullanılan bazı ajanlar hakkında güncel bilgi sunmaktadır.
Teşekkür
Değerli bilimsel katkı ve yönlendirici önerilerinden dolayı Prof.Dr. Ş.Şefik Alkan'a teşekkürlerimizi sunarız.
Kaynakça
- Allen, V. G., Pond, K. R., Saker, K. E., Fontenot, J. P., Bagley, C. P., Ivy, R. L., Evans, R. R., Brown, C. P., Miller, M. F., Montgomery, J. L., Dettle, T. M., & Wester, D. B. (2001). Tasco-Forage: III. Influence of a seaweed extract on performance, monocyte immune cell response, and carcass characteristics in feedlot-finished steers. Journal of Animal Science, 79(4), 1032–1040. http://www.ncbi.nlm.nih.gov/pubmed/11325177
- Ankcorn, M., Gallacher, J., Ijaz, S., Taha, Y., Harvala, H., Maclennan, S., Thomson, E. C., Davis, C., Singer, J. B., da Silva Filipe, A., Smollett, K., Niebel, M., Semple, M. G., Tedder, R. S., & McPherson, S. (2019). Convalescent plasma therapy for persistent hepatitis E virus infection. In Journal of Hepatology (Vol. 71, Issue 2, pp. 434–438). Elsevier B.V. https://doi.org/10.1016/j.jhep.2019.04.008
- Antonelli, M., Donelli, D., Maggini, V., & Firenzuoli, F. (2020). Phytotherapic compounds against coronaviruses: Possible streams for future research. Phytotherapy Research, 34(7), 1469–1470. https://doi.org/10.1002/ptr.6712
- Arabi, Y. M., Al-Enezi, F., Longuere, K.-S., Balkhy, H. H., Al-Sultan, M., Al-Omari, A., Al-Hameed, F. M., Carson, G., Shindo, N., & Fowler, R. (2015). Feasibility of a randomized controlled trial to assess treatment of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection in Saudi Arabia: a survey of physicians. BMC Anesthesiology, 16(1), 36. https://doi.org/10.1186/s12871-016-0198-x
- Bahrami, M., Kamalinejad, M., Latifi, S. A., Seif, F., & Dadmehr, M. (2020). Cytokine storm in COVID‐19 and parthenolide: Preclinical evidence. Phytotherapy Research, ptr.6776. https://doi.org/10.1002/ptr.6776
- Barlow, A., Landolf, K. M., Barlow, B., Yeung, S. Y. A., Heavner, J. J., Claassen, C. W., & Heavner, M. S. (2020). Review of Emerging Pharmacotherapy for the Treatment of Coronavirus Disease 2019. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 40(5), 416–437. https://doi.org/10.1002/phar.2398
- Baron, S. A., Devaux, C., Colson, P., Raoult, D., & Rolain, J. M. (2020). Teicoplanin: an alternative drug for the treatment of COVID-19? In International Journal of Antimicrobial Agents (Vol. 55, Issue 4, p. 105944). Elsevier B.V. https://doi.org/10.1016/j.ijantimicag.2020.105944
- Bell, T. J., Brand, O. J., Morgan, D. J., Salek-Ardakani, S., Jagger, C., Fujimori, T., Cholewa, L., Tilakaratna, V., Östling, J., Thomas, M., Day, A. J., Snelgrove, R. J., & Hussell, T. (2019). Defective lung function following influenza virus is due to prolonged, reversible hyaluronan synthesis. Matrix Biology, 80, 14–28. https://doi.org/10.1016/j.matbio.2018.06.006
- Berton, A. M., Prencipe, N., Giordano, R., Ghigo, E., & Grottoli, S. (2020). Systemic steroids in patients with COVID-19: pros and contras, an endocrinological point of view. Journal of Endocrinological Investigation, 1. https://doi.org/10.1007/s40618-020-01325-2
- Brown, A. J., Won, J. J., Graham, R. L., Dinnon, K. H., Sims, A. C., Feng, J. Y., Cihlar, T., Denison, M. R., Baric, R. S., & Sheahan, T. P. (2019). Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Research, 169. https://doi.org/10.1016/j.antiviral.2019.104541
- Cai, Q., Yang, M., Liu, D., Chen, J., Shu, D., Xia, J., Liao, X., Gu, Y., Cai, Q., Yang, Y., Shen, C., Li, X., Peng, L., Huang, D., Zhang, J., Zhang, S., Wang, F., Liu, J., Chen, L., … Liu, L. (2020). Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study. Engineering. https://doi.org/10.1016/j.eng.2020.03.007
- Caly, L., Druce, J. D., Catton, M. G., Jans, D. A., & Wagstaff, K. M. (2020). The FDA-approved Drug Ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research, 104787. https://doi.org/10.1016/J.ANTIVIRAL.2020.104787
- Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Ruan, L., Song, B., Cai, Y., Wei, M., Li, X., Xia, J., Chen, N., Xiang, J., Yu, T., Bai, T., Xie, X., Zhang, L., Li, C., … Wang, C. (2020). A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. New England Journal of Medicine, 382(19), 1787–1799. https://doi.org/10.1056/NEJMoa2001282
- Casadevall, A., & Pirofski, L. A. (2020). The convalescent sera option for containing COVID-19. In Journal of Clinical Investigation (Vol. 130, Issue 4, pp. 1545–1548). American Society for Clinical Investigation. https://doi.org/10.1172/JCI138003
- Ceccarelli, G., Alessandri, F., d’Ettorre, G., Borrazzo, C., Spagnolello, O., Oliva, A., Ruberto, F., Mastroianni, C. M., Pugliese, F., & Venditti, M. (2020). Is teicoplanin a complementary treatment option for COVID-19? The question remains. International Journal of Antimicrobial Agents, 106029. https://doi.org/10.1016/j.ijantimicag.2020.106029
- Chaccour, C., Hammann, F., & Rabinovich, N. R. (2017). Ivermectin to reduce malaria transmission I. Pharmacokinetic and pharmacodynamic considerations regarding efficacy and safety. In Malaria Journal (Vol. 16, Issue 1, p. 161). BioMed Central Ltd. https://doi.org/10.1186/s12936-017-1801-4
- Chaccour, C., Hammann, F., Ramón-García, S., & Rabinovich, N. R. (2020). Ivermectin and COVID-19: Keeping rigor in times of urgency. In American Journal of Tropical Medicine and Hygiene (Vol. 102, Issue 6, pp. 1156–1157). American Society of Tropical Medicine and Hygiene. https://doi.org/10.4269/ajtmh.20-0271
- Chen, C., Huang, J., Cheng, Z., Wu, J., Chen, S., Zhang, Y., Chen, B., Lu, M., Luo, Y., Zhang, J., Yin, P., & Wang, X. (2020). Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial. MedRxiv, 2020.03.17.20037432. https://doi.org/10.1101/2020.03.17.20037432
- Chen, H., Zhang, Z., Wang, L., Huang, Z., Gong, F., Li, X., Chen, Y., & Wu, J. J. (2020). First Clinical Study Using HCV Protease Inhibitor Danoprevir to Treat Naïve and Experienced COVID-19 Patients. MedRxiv, 2020.03.22.20034041. https://doi.org/10.1101/2020.03.22.20034041
- Chen, L., Xiong, J., Bao, L., & Shi, Y. (2020). Convalescent plasma as a potential therapy for COVID-19. In The Lancet Infectious Diseases (Vol. 20, Issue 4, pp. 398–400). Lancet Publishing Group. https://doi.org/10.1016/S1473-3099(20)30141-9
- Cheng, Y., Wong, R., Soo, Y. O. Y., Wong, W. S., Lee, C. K., Ng, M. H. L., Chan, P., Wong, K. C., Leung, C. B., & Cheng, G. (2005). Use of convalescent plasma therapy in SARS patients in Hong Kong. European Journal of Clinical Microbiology and Infectious Diseases, 24(1), 44–46. https://doi.org/10.1007/s10096-004-1271-9
- Chowdhurry ATMM, Shahbaz M, Karim MdR, Islam J, Dan G, S. H. (2020). A Randomized TrialofIvermectin-Doxycycline and Hydroxychloroquine-Azithromycin therapy on COVID19 patients. https://doi.org/10.13140/RG.2.2.22193.81767/3
- Clerkin, K. J., Fried, J. A., Raikhelkar, J., Sayer, G., Griffin, J. M., Masoumi, A., Jain, S. S., Burkhoff, D., Kumaraiah, D., Rabbani, L. R., Schwartz, A., & Uriel, N. (2020). COVID-19 and Cardiovascular Disease. In Circulation (Vol. 141, Issue 20, pp. 1648–1655). Lippincott Williams and Wilkins. https://doi.org/10.1161/CIRCULATIONAHA.120.046941
- Cortegiani, A., Ingoglia, G., Ippolito, M., Giarratano, A., & Einav, S. (2020). A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. Journal of Critical Care, 57, 279–283. https://doi.org/10.1016/j.jcrc.2020.03.005
- Crunkhorn, S. (2020). Gasdermin D inhibitor protects against sepsis. In Nature reviews. Drug discovery (Vol. 19, Issue 6, p. 388). NLM (Medline). https://doi.org/10.1038/d41573-020-00084-2
- Cumhur Cure, M., Kucuk, A., & Cure, E. (2020). Colchicine may not be effective in COVID-19 infection; it may even be harmful? In Clinical Rheumatology (Vol. 39, Issue 7, pp. 2101–2102). Springer. https://doi.org/10.1007/s10067-020-05144-x
- Deftereos, S. G., Siasos, G., Giannopoulos, G., Vrachatis, D. A., Angelidis, C., Giotaki, S. G., Gargalianos, P., Giamarellou, H., Gogos, C., Daikos, G., Lazanas, M., Lagiou, P., Saroglou, G., Sipsas, N., Tsiodras, S., Chatzigeorgiou, D., Moussas, N., Kotanidou, A., Koulouris, N., … Stefanadis, C. (2020). The Greek study in the effects of colchicine in COvid-19 complications prevention (GRECCO-19 study): Rationale and study design. Hellenic Journal of Cardiology, 61(1), 42–45.
- Devaux, C. A., Rolain, J. M., Colson, P., & Raoult, D. (2020). New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? International Journal of Antimicrobial Agents, 55(5), 105938. https://doi.org/10.1016/j.ijantimicag.2020.105938
- Dorward J, G. K. (2020). Lopinavir/ritonavir: A rapid review of effectiveness in COVID-19. Oxford COVID-19 Evidence Service Team. evidence-cov.id/lopinavir
Dosing and Pharmacologic Considerations for Medications Under Investigation Aganist COVID-19. (2020).
- Ekici H, & Yarsan E. (2020). Some Drugs Used in the Treatment of COVID-19 and Pharmacological Evaluation. Eurasian Journal of Health Sciences, 3(COVID-19 Special Issue), 120–129.
- Elfiky, A. A. (2020). Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sciences, 253. https://doi.org/10.1016/j.lfs.2020.117592
- Escobar, L. E., Molina-Cruz, A., & Barillas-Mury, C. (2020). BCG vaccine protection from severe coronavirus disease 2019 (COVID-19). Proceedings of the National Academy of Sciences, 13, 202008410. https://doi.org/10.1073/pnas.2008410117
- Fu, B., Xu, X., & Wei, H. (2020). Why tocilizumab could be an effective treatment for severe COVID-19? In Journal of Translational Medicine (Vol. 18, Issue 1, p. 164). BioMed Central Ltd. https://doi.org/10.1186/s12967-020-02339-3
- FURUTA, Y., KOMENO, T., & NAKAMURA, T. (2017). Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proceedings of the Japan Academy, Series B, 93(7), 449–463. https://doi.org/10.2183/pjab.93.027
- Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang, T., Sun, Q., Ming, Z., Zhang, L., Ge, J., Zheng, L., Zhang, Y., Wang, H., Zhu, Y., Zhu, C., Hu, T., Hua, T., Zhang, B., … Rao, Z. (2020). Structure of RNA-dependent RNA polymerase from 2019-nCoV, a major antiviral drug target. BioRxiv, 2020.03.16.993386. https://doi.org/10.1101/2020.03.16.993386
- GlobalData Healthcare. (2020, April 13). Protease inhibitors for Covid-19: did disease severity impact results? https://www.pharmaceutical-technology.com/comment/protease-inhibitors-covid-19/
- Golchin, A., Seyedjafari, E., & Ardeshirylajimi, A. (2020). Mesenchymal Stem Cell Therapy for COVID-19: Present or Future. In Stem Cell Reviews and Reports (Vol. 16, Issue 3, pp. 427–433). Springer. https://doi.org/10.1007/s12015-020-09973-w
- Graci, J. D., & Cameron, C. E. (2006). Mechanisms of action of ribavirin against distinct viruses. In Reviews in Medical Virology (Vol. 16, Issue 1, pp. 37–48). https://doi.org/10.1002/rmv.483
- Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., Tan, K. Sen, Wang, D. Y., & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak- A n update on the status. In Military Medical Research (Vol. 7, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s40779-020-00240-0
- Gürsel M. (2020). Yeni Koronavirüse Karşı Geliştirilecek Aşının Faz-1 Klinik Denemelere Hazırlanması Ve Sağlıklı Bireylerin Enfeksiyondan Korunmasına Yönelik Diğer Yaklaşımlar. TUBITAK. https://covid19.tubitak.gov.tr/sites/default/files/konferans-sunum/MaydaGursel_Oturum3.pdf
- Gurwitz, D. (2020). Angiotensin receptor blockers as tentative SARS‐CoV‐2 therapeutics. Drug Development Research, ddr.21656. https://doi.org/10.1002/ddr.21656
- Guzzo, C. A., Furtek, C. I., Porras, A. G., Chen, C., Tipping, R., Clineschmidt, C. M., Sciberras, D. G., Hsieh, J. Y. K., & Lasseter, K. C. (2002). Safety, tolerability, and pharmacokinetics of escalating high doses of ivermectin in healthy adult subjects. Journal of Clinical Pharmacology, 42(10), 1122–1133. https://doi.org/10.1177/009127002401382731
- Haffizulla, J., Hartman, A., Hoppers, M., Resnick, H., Samudrala, S., Ginocchio, C., Bardin, M., & Rossignol, J. F. (2014). Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: A double-blind, randomised, placebo-controlled, phase 2b/3 trial. The Lancet Infectious Diseases, 14(7), 609–618. https://doi.org/10.1016/S1473-3099(14)70717-0
- Halacli, B., & Topeli, A. (2020). Treatment of the Cytokine Storm in COVID-19. J Crit Intensive Care, 11, 36–40. https://doi.org/10.37678/dcybd.2020.2434
Haq, F. U., Roman, M., Ahmad, K., Rahman, S. U., Shah, S. M. A., Suleman, N., Ullah, S., Ahmad, I., & Ullah, W. (2020). Artemisia annua : trials are needed for <scp>COVID</scp> ‐19. Phytotherapy Research, ptr.6733. https://doi.org/10.1002/ptr.6733
- He, G., Li, Q., Li, W., Ruan, Y., Xiong, X., Song, X., & Zeng, F. (2020). Effect of ulinastatin on interleukins and pulmonary function in bypass patients: a meta-analysis of randomized controlled trials. In Herz (Vol. 45, Issue 4, pp. 335–346). Springer Medizin. https://doi.org/10.1007/s00059-018-4732-0
- Ho, D. (2020). Addressing COVID‐19 Drug Development with Artificial Intelligence. Advanced Intelligent Systems, 2(5), 2000070. https://doi.org/10.1002/aisy.202000070
- Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181(2), 271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052
- Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
- Huang, H., Hospital, C., Hu, P.-F., Sun, L.-L., Guo, Y.-B., Wang, Q., Liu, Z.-M., Yin, J.-Z., Shi, P.-M., Yuan, Z.-L., Tan, Y., Zhou, C., Liu, Y.-L., Chen, C., Song, H.-H., & Xie, W. (n.d.). Treatment of Covid-19 Patients With High Dose of Ulinastatin. https://doi.org/10.21203/rs.3.rs-32627/v1
- Huang, N., Singh, N., Yoon, K., Loiacono, C. M., Kohut, M. L., & Birt, D. F. (2013). The Immuno-Regulatory Impact of Orally-Administered Hypericum perforatum Extract on Balb/C Mice Inoculated with H1n1 Influenza A Virus. PLoS ONE, 8(9), e76491. https://doi.org/10.1371/journal.pone.0076491
- Jean, S. S., Lee, P. I., & Hsueh, P. R. (2020). Treatment options for COVID-19: The reality and challenges. In Journal of Microbiology, Immunology and Infection (Vol. 53, Issue 3, pp. 436–443). Elsevier Ltd. https://doi.org/10.1016/j.jmii.2020.03.034
- Jesús Naveja, J., Dueñas-González, A., & Medina-Franco, J. L. (2016). Drug Repurposing for Epigenetic Targets Guided by Computational Methods. In Epi-Informatics: Discovery and Development of Small Molecule Epigenetic Drugs and Probes. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802808-7.00012-5
- Kamu Hastaneleri Genel Müdürlüğü. (2020). COVID-19 tedavisinde kullanılan ilaçlar:İlaç etkileşimleri. moz-extension://406a04e0-e5f5-4fb6-bc58-683cf96c45d0/enhanced-reader.html?openApp&pdf=https%3A%2F%2Fcovid19bilgi.saglik.gov.tr%2Fdepo%2Ftedavi%2FCOVID-19_TEDAVISINDE_KULLANILAN_ILACLAR-ILAC_ETKILESIMLERI.pdf
- Kelleni, M. T. (2020). Nitazoxanide/azithromycin combination for COVID-19: A suggested new protocol for early management. In Pharmacological Research (Vol. 157, p. 104874). Academic Press. https://doi.org/10.1016/j.phrs.2020.104874
- Keni, R., Alexander, A., Nayak, P. G., Mudgal, J., & Nandakumar, K. (2020). COVID-19: Emergence, Spread, Possible Treatments, and Global Burden. Frontiers in Public Health, 8, 216. https://doi.org/10.3389/fpubh.2020.00216
- Khalili, J. S., Zhu, H., Mak, N. S. A., Yan, Y., & Zhu, Y. (2020). Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID-19. In Journal of Medical Virology (Vol. 92, Issue 7, pp. 740–746). John Wiley and Sons Inc. https://doi.org/10.1002/jmv.25798
- Khashkhusha, T. R., Chan, J. S. K., & Harky, A. (2020). ACE inhibitors and COVID‐19: We don’t know yet. Journal of Cardiac Surgery, 35(6), 1172–1173. https://doi.org/10.1111/jocs.14582
- Kiplin Guy, R., DiPaola, R. S., Romanelli, F., & Dutch, R. E. (2020). Rapid repurposing of drugs for COVID-19. Science, 368(6493), 829–830. https://doi.org/10.1126/science.abb9332
- Kobak, S. (2020). COVID-19 infection in a patient with FMF: does colchicine have a protective effect? Annals of the Rheumatic Diseases. https://doi.org/10.1136/ANNRHEUMDIS-2020-217882
- Kortuem, K. M., & Stewart, A. K. (2013). Carfilzomib. In Blood (Vol. 121, Issue 6, pp. 893–897). https://doi.org/10.1182/blood-2012-10-459883
- Kouznetsova, V., Huang, D., & Tsigelny, I. F. (2020). Potential COVID-19 Protease Inhibitors: Repurposing FDAapproved Drugs. ChemRxiv, 1, Preprint. https://doi.org/10.26434/CHEMRXIV.12093900.V1
- Kronbichler, A., Effenberger, M., Eisenhut, M., Lee, K. H., & Shin, J. Il. (2020). Seven recommendations to rescue the patients and reduce the mortality from COVID-19 infection: An immunological point of view. In Autoimmunity Reviews (Vol. 19, Issue 7, p. 102570). Elsevier B.V. https://doi.org/10.1016/j.autrev.2020.102570
- Lazaros, G., Imazio, M., Brucato, A., Vlachopoulos, C., Lazarou, E., Vassilopoulos, D., & Tousoulis, D. (2018). The role of colchicine in pericardial syndromes. Current Pharmaceutical Design, 24(6). https://doi.org/10.2174/1381612824666180116101823
- Lei, C., Huiguo, L., Wei, L., Jing, L., Kui, L., Jin, S., Yan, D., & Shuang, W. (2020). Analysis of Clinical Features of 29 Patients With 2019 Novel Coronavirus Pneumonia. Chinese Journal of Tuberculosis and Respiratory Diseases, 43(00), E005–E005. https://doi.org/10.3760/CMA.J.ISSN.1001-0939.2020.0005
- Leng, Z., Zhu, R., Hou, W., Feng, Y., Yang, Y., Han, Q., Shan, G., Meng, F., Du, D., Wang, S., Fan, J., Wang, W., Deng, L., Shi, H., Li, H., Hu, Z., Zhang, F., Gao, J., Liu, H., … Zhao, R. C. (2020). Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. Aging and Disease, 11(2), 216. https://doi.org/10.14336/AD.2020.0228
- Li, S. Y., Chen, C., Zhang, H. Q., Guo, H. Y., Wang, H., Wang, L., Zhang, X., Hua, S. N., Yu, J., Xiao, P. G., Li, R. S., & Tan, X. (2005). Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Research, 67(1), 18–23. https://doi.org/10.1016/j.antiviral.2005.02.007
- Lian, N., Xie, H., Lin, S., Huang, J., Zhao, J., & Lin, Q. (2020). Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: a retrospective study. Clinical Microbiology and Infection, 26(7), 917–921. https://doi.org/10.1016/j.cmi.2020.04.026
- Liao, J., Way, G., & Madahar, V. (2020). Target Virus or Target Ourselves for COVID-19 Drugs Discovery?-Lessons learned from anti-influenzas virus therapies. Medicine in Drug Discovery, 5, 100037. https://doi.org/10.1016/j.medidd.2020.100037
- Lin, M. H., Moses, D. C., Hsieh, C. H., Cheng, S. C., Chen, Y. H., Sun, C. Y., & Chou, C. Y. (2018). Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antiviral Research, 150, 155–163. https://doi.org/10.1016/j.antiviral.2017.12.015
- Lotfi, M., Hamblin, M. R., & Rezaei, N. (2020). COVID-19: Transmission, prevention, and potential therapeutic opportunities. In Clinica Chimica Acta (Vol. 508, pp. 254–266). Elsevier B.V. https://doi.org/10.1016/j.cca.2020.05.044
- Lundberg, L., Pinkham, C., Baer, A., Amaya, M., Narayanan, A., Wagstaff, K. M., Jans, D. A., & Kehn-Hall, K. (2013). Nuclear import and export inhibitors alter capsid protein distribution in mammalian cells and reduce Venezuelan Equine Encephalitis Virus replication. Antiviral Research, 100(3), 662–672. https://doi.org/10.1016/J.ANTIVIRAL.2013.10.004
- Luo, P., Liu, Y., Qiu, L., Liu, X., Liu, D., & Li, J. (2020). Tocilizumab treatment in COVID-19: A single center experience. Journal of Medical Virology, 92(7), 814–818. https://doi.org/10.1002/jmv.25801
- Masiello, P., Novelli, M., Beffy, P., & Menegazzi, M. (2020). Can Hypericum perforatum(SJW) prevent cytokine storm in <scp>COVID</scp> ‐19 patients? Phytotherapy Research, 34(7), 1471–1473. https://doi.org/10.1002/ptr.6764
- Mehra, M. R., Desai, S. S., Ruschitzka, F., & Patel, A. N. (2020). RETRACTED:Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. The Lancet, 0(0). https://doi.org/10.1016/S0140-6736(20)31180-6
- Mei, X., Lee, H. C., Diao, K. yue, Huang, M., Lin, B., Liu, C., Xie, Z., Ma, Y., Robson, P. M., Chung, M., Bernheim, A., Mani, V., Calcagno, C., Li, K., Li, S., Shan, H., Lv, J., Zhao, T., Xia, J., … Yang, Y. (2020). Artificial intelligence–enabled rapid diagnosis of patients with COVID-19. Nature Medicine, 1–5. https://doi.org/10.1038/s41591-020-0931-3
- Michot, J. M., Albiges, L., Chaput, N., Saada, V., Pommeret, F., Griscelli, F., Balleyguier, C., Besse, B., Marabelle, A., Netzer, F., Merad, M., Robert, C., Barlesi, F., Gachot, B., & Stoclin, A. (2020). Tocilizumab, an anti-IL-6 receptor antibody, to treat COVID-19-related respiratory failure: a case report. In Annals of Oncology (Vol. 31, Issue 7). Elsevier Ltd. https://doi.org/10.1016/j.annonc.2020.03.300
- Millet, J. K., Séron, K., Labitt, R. N., Danneels, A., Palmer, K. E., Whittaker, G. R., Dubuisson, J., & Belouzard, S. (2016). Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral Research, 133, 1–8. https://doi.org/10.1016/j.antiviral.2016.07.011
- Mishima, E., Anzai, N., Miyazaki, M., & Abe, T. (2020). Uric Acid Elevation by Favipiravir, an Antiviral Drug. The Tohoku Journal of Experimental Medicine, 251(2), 87–90. https://doi.org/10.1620/tjem.251.87
- Momattin, H., Mohammed, K., Zumla, A., Memish, Z. A., & Al-Tawfiq, J. A. (2013). Therapeutic Options for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) - possible lessons from a systematic review of SARS-CoV therapy. International Journal of Infectious Diseases, 17(10). https://doi.org/10.1016/j.ijid.2013.07.002
- Mong, M. A., Awkal, J. A., & Marik, P. E. (2020). Accelerated hyaluronan concentration as the primary driver of morbidity and mortality in high-risk COVID-19 patients: with therapeutic introduction of an oral hyaluronan inhibitor in the prevention of “Induced Hyaluronan Storm” Syndrome. MedRxiv. https://doi.org/10.1101/2020.04.19.20071647
- Monteil, V., Kwon, H., Prado, P., Hagelkrüys, A., Wimmer, R. A., Stahl, M., Leopoldi, A., Garreta, E., Hurtado del Pozo, C., Prosper, F., Romero, J. P., Wirnsberger, G., Zhang, H., Slutsky, A. S., Conder, R., Montserrat, N., Mirazimi, A., & Penninger, J. M. (2020). Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade
Soluble Human ACE2. Cell, 181(4), 905-913.e7. https://doi.org/10.1016/j.cell.2020.04.004
- Monti, S., Balduzzi, S., Delvino, P., Bellis, E., Quadrelli, V. S., & Montecucco, C. (2020). Clinical course of COVID-19 in a series of patients with chronic arthritis treated with immunosuppressive targeted therapies. In Annals of the Rheumatic Diseases (Vol. 79, Issue 5, pp. 667–668). BMJ Publishing Group. https://doi.org/10.1136/annrheumdis-2020-217424
- Moreira-silva, F., Camilo, V., Gaspar, V., Mano, J. F., Henrique, R., & Jerónimo, C. (2020). Repurposing old drugs into new epigenetic inhibitors: Promising candidates for cancer treatment? Pharmaceutics, 12(5), 1–16. https://doi.org/10.3390/pharmaceutics12050410
- O’Connor, E., Teh, J., Kamat, A. M., & Lawrentschuk, N. (2020). Bacillus Calmette Guérin (BCG) vaccination use in the fight against COVID-19 – what’s old is new again? Future Oncology, 16(19), 1323–1325. https://doi.org/10.2217/fon-2020-0381
- O’Neill, L. A. J., & Netea, M. G. (2020). BCG-induced trained immunity: can it offer protection against COVID-19? In Nature Reviews Immunology (Vol. 20, Issue 6, pp. 335–337). Nature Research. https://doi.org/10.1038/s41577-020-0337-y
- Ou, X., Liu, Y., Lei, X., Li, P., Mi, D., Ren, L., Guo, L., Guo, R., Chen, T., Hu, J., Xiang, Z., Mu, Z., Chen, X., Chen, J., Hu, K., Jin, Q., Wang, J., & Qian, Z. (2020). Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature Communications, 11(1), 1–12. https://doi.org/10.1038/s41467-020-15562-9
- Ozkan, S., & Koyuturk, M. (2020). Mesenchymal Stem Cell Therapy and New Approaches in Covid-19 Patients. Cerrahpasa Medical Journal. https://doi.org/10.5152/cjm.2020.20017
- Park, T. Y., Jang, Y., Kim, W., Shin, J., Toh, H. T., Kim, C. H., Yoon, H. S., Leblanc, P., & Kim, K. S. (2019). Chloroquine modulates inflammatory autoimmune responses through Nurr1 in autoimmune diseases. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-52085-w
- Parra-Medina, R., Sarmiento-Monroy, J. C., Rojas-Villarraga, A., Garavito, E., Montealegre-Gómez, G., & Gómez-López, A. (2020). Colchicine as a possible therapeutic option in COVID-19 infection. In Clinical Rheumatology (Vol. 39, Issue 8, pp. 2485–2486). Springer. https://doi.org/10.1007/s10067-020-05247-5
- Pereira, L., & Critchley, A. T. (2020). The COVID 19 novel coronavirus pandemic 2020: seaweeds to the rescue? Why does substantial, supporting research about the antiviral properties of seaweed polysaccharides seem to go unrecognized by the pharmaceutical community in these desperate times? Journal of Applied Phycology, 32, 1875–1877. https://doi.org/10.1007/s10811-020-02143-y/Published
- Pharmaceuticals, B. (2020). A Study to Evaluate the Safety, Pharmacokinetics and Antiviral Effects of Galidesivir in Yellow Fever or COVID-19 - Full Text View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03891420
- Pilkington, V., Pepperrell, T., & Hill, A. (2020). A review of the safety of favipiravir-a potential treatment in the COVID-19 pandemic? In Journal of Virus Eradication (Vol. 6).
- Pokhrel, R., Chapagain, P., & Siltberg-Liberles, J. (2020). Potential RNA-dependent RNA polymerase inhibitors as prospective therapeutics against SARS-CoV-2. Journal of Medical Microbiology, 69(6), 864–873. https://doi.org/10.1099/jmm.0.001203
- Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper, S., Wells, A., Doig, A., Guilliams, T., Latimer, J., McNamee, C., Norris, A., Sanseau, P., Cavalla, D., & Pirmohamed, M. (2018). Drug repurposing: Progress, challenges and recommendations. Nature Reviews Drug Discovery, 18(1), 41–58. https://doi.org/10.1038/nrd.2018.168
- Remdesivir Clinical Trials. (n.d.). Retrieved July 7, 2020, from https://www.gilead.com/purpose/advancing-global-health/covid-19/remdesivir-clinical-trials
Ren, J. ling, Zhang, A. H., & Wang, X. J. (2020). Traditional Chinese medicine for COVID-19 treatment. In Pharmacological Research (Vol. 155, p. 104743). Academic Press. https://doi.org/10.1016/j.phrs.2020.104743
- Rodell, C. B. (2020). An ACE therapy for COVID-19. Science Translational Medicine, 12(541), eabb5676. https://doi.org/10.1126/scitranslmed.abb5676
- Rossignol, J. F. (2016). Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. Journal of Infection and Public Health, 9(3), 227–230. https://doi.org/10.1016/j.jiph.2016.04.001
- Roy, A., Sarkar, B., Celik, C., Ghosh, A., Basu, U., Jana, M., Jana, A., Gencay, A., Can Sezgin, G., Ildiz, N., Dam, P., Mandal, A. K., & Ocsoy, I. (2020). Can concomitant use of zinc and curcumin with other immunity‐boosting nutraceuticals be the arsenal against <scp>COVID</scp> ‐19? Phytotherapy Research, ptr.6766. https://doi.org/10.1002/ptr.6766
- Ruan, Q., Yang, K., Wang, W., Jiang, L., & Song, J. (2020). Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. In Intensive Care Medicine (Vol. 46, Issue 5, pp. 846–848). Springer. https://doi.org/10.1007/s00134-020-05991-x
- Sathyamoorthy, N. K., Chintamaneni, P. K., & Chinni, S. (2020). Plausible role of combination of Chlorpromazine hydrochloride and Teicoplanin against COVID-19. In Medical Hypotheses (Vol. 144). Churchill Livingstone. https://doi.org/10.1016/j.mehy.2020.110011
- Savarino, A., Boelaert, J. R., Cassone, A., Majori, G., & Cauda, R. (2003). Effects of chloroquine on viral infections: An old drug against today’s diseases? In Lancet Infectious Diseases (Vol. 3, Issue 11, pp. 722–727). Lancet Publishing Group. https://doi.org/10.1016/S1473-3099(03)00806-5
- Schrezenmeier, E., & Dörner, T. (2020). Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. In Nature Reviews Rheumatology (Vol. 16, Issue 3, pp. 155–166). Nature Research. https://doi.org/10.1038/s41584-020-0372-x
- Seitz, M., Valbracht, J., Quach, J., & Lotz, M. (2003). Gold Sodium Thiomalate and Chloroquine Inhibit Cytokine Production in Monocytic THP-1 Cells Through Distinct Transcriptional and Posttranslational Mechanisms. Journal of Clinical Immunology, 23(6), 477–484. https://doi.org/10.1023/B:JOCI.0000010424.41475.17
- Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A., & Li, F. (2020). Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 117(21), 11727–11734. https://doi.org/10.1073/pnas.2003138117
- Shanmugaraj, B., Siriwattananon, K., Wangkanont, K., & Phoolcharoen, W. (2020). Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19). In Asian Pacific Journal of Allergy and Immunology (Vol. 38, Issue 1, pp. 10–18). Allergy and Immunology Society of Thailand. https://doi.org/10.12932/AP-200220-0773
- Sheahan, T. P., Sims, A. C., Zhou, S., Graham, R. L., Pruijssers, A. J., Agostini, M. L., Leist, S. R., Schäfer, A., Dinnon, K. H., Stevens, L. J., Chappell, J. D., Lu, X., Hughes, T. M., George, A. S., Hill, C. S., Montgomery, S. A., Brown, A. J., Bluemling, G. R., Natchus, M. G., … Baric, R. S. (2020). An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Science Translational Medicine, 12(541), 5883.
- Shen, C., Wang, Z., Zhao, F., Yang, Y., Li, J., Yuan, J., Wang, F., Li, D., Yang, M., Xing, L., Wei, J., Xiao, H., Yang, Y., Qu, J., Qing, L., Chen, L., Xu, Z., Peng, L., Li, Y., … Liu, L. (2020). Treatment of 5 Critically Ill Patients with COVID-19 with Convalescent Plasma. JAMA - Journal of the American Medical Association, 323(16), 1582–1589. https://doi.org/10.1001/jama.2020.4783
- Shipstone, M. (2014). Antiparasitics for Integumentary Disease - Pharmacology - Veterinary Manual. MSD Manual Veteriary Manual. https://www.msdvetmanual.com/pharmacology/systemic-pharmacotherapeutics-of-the-integumentary-system/antiparasitics-for-integumentary-disease
- Soo, Y. O. Y., Cheng, Y., Wong, R., Hui, D. S., Lee, C. K., Tsang, K. K. S., Ng, M. H. L., Chan, P., Cheng, G., & Sung, J. J. Y. (2004). Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clinical Microbiology and Infection, 10(7), 676–678. https://doi.org/10.1111/j.1469-0691.2004.00956.x
- Tai, W., He, L., Zhang, X., Pu, J., Voronin, D., Jiang, S., Zhou, Y., & Du, L. (2020). Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular and Molecular Immunology, 17(6), 613–620. https://doi.org/10.1038/s41423-020-0400-4
- Tedeschi, E., Menegazzi, M., Margotto, D., Suzuki, H., Förstermann, U., & Kleinert, H. (2003). Anti-inflammatory actions of St. John’s Wort: Inhibition of human inducible nitric-oxide synthase expression by down-regulating signal transducer and activator of transcription-1α (STAT-1α) activation. Journal of Pharmacology and Experimental Therapeutics, 307(1), 254–261.
- Thomson, G. (2020). COVID‐19: Social distancing, ACE 2 receptors, protease inhibitors and beyond? International Journal of Clinical Practice, 74(7). https://doi.org/10.1111/ijcp.13503
- Tian, X., Li, C., Huang, A., Xia, S., Lu, S., Shi, Z., Lu, L., Jiang, S., Yang, Z., Wu, Y., & Ying, T. (2020). Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. In Emerging Microbes and Infections (Vol. 9, Issue 1, pp. 382–385). Taylor and Francis Ltd. https://doi.org/10.1080/22221751.2020.1729069
- Türk Farmakoloji Derneği. (2020). Türk Farmakoloji Derneği, Klinik Farmakoloji Çalışma Grubu, COVID-19 klinik araştırmaları. TDF. http://www.tfd.org.tr/sites/default/files/Klasor/Dosyalar/TFD-KFCG SARS-CoV-2 infection %28COVID-19%29 23032020-VF %282%29.pdf
Venkat Kumar, G., Jeyanthi, V., & Ramakrishnan, S. (2020). A short review on antibody therapy for COVID-19. In New Microbes and New Infections (Vol. 35, p. 100682). Elsevier Ltd.
- Wagstaff, K. M., Sivakumaran, H., Heaton, S. M., Harrich, D., & Jans, D. A. (2012). Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochemical Journal, 443(3), 851–856. https://doi.org/10.1042/BJ20120150
- Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 181(2), 281-292.e6. https://doi.org/10.1016/j.cell.2020.02.058
- Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020a). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. In Cell Research (Vol. 30, Issue 3, pp. 269–271). Springer Nature. https://doi.org/10.1038/s41422-020-0282-0
- Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020b). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. In Cell Research (Vol. 30, Issue 3, pp. 269–271). Springer Nature. https://doi.org/10.1038/s41422-020-0282-0
- Wang, X., Cao, R., Zhang, H., Liu, J., Xu, M., Hu, H., Li, Y., Zhao, L., Li, W., Sun, X., Yang, X., Shi, Z., Deng, F., Hu, Z., Zhong, W., & Wang, M. (2020). The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. In Cell Discovery (Vol. 6, Issue 1, p. 28). Springer Nature. https://doi.org/10.1038/s41421-020-0169-8
- Wang, Y., Guo, M., Ren, Y., Jia, L., & Yu, G. (2019). Drug repositioning based on individual bi-random walks on a heterogeneous network. BMC Bioinformatics, 20(Suppl 15), 1–13. https://doi.org/10.1186/s12859-019-3117-6
- Weston, S., Haupt, R., Logue, J., Matthews, K., & Frieman, M. (2020). FDA approved drugs with broad anti-coronaviral activity inhibit SARS-CoV-2 in vitro. BioRxiv, 3, 2020.03.25.008482. https://doi.org/10.1101/2020.03.25.008482
- WHO. (2020). Coronavirus disease 2019. https://www.who.int/emergencies/diseases/novel-coronavirus-2019
- WHO discontinues hydroxychloroquine and lopinavir/ritonavir treatment arms for COVID-19. (2020). World Health Organization. https://www.who.int/news-room/detail/04-07-2020-who-discontinues-hydroxychloroquine-and-lopinavir-ritonavir-treatment-arms-for-covid-19
- World Health Organization. (2020). Bacille Calmette-Guérin (BCG) vaccination and COVID-19. https://www.who.int/news-room/commentaries/detail/bacille-calmette-guérin-(bcg)-vaccination-and-covid-19
- Xu, X., Han, M., Li, T., Sun, W., Wang, D., Fu, B., Zhou, Y., Zheng, X., Yang, Y., Li, X., Zhang, X., Pan, A., & Wei, H. (2020). Effective treatment of severe COVID-19 patients with tocilizumab. Proceedings of the National Academy of Sciences, 202005615. https://doi.org/10.1073/pnas.2005615117
- Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., Liu, S., Zhao, P., Liu, H., Zhu, L., Tai, Y., Bai, C., Gao, T., Song, J., Xia, P., Dong, J., Zhao, J., & Wang, F. S. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine, 8(4), 420–422. https://doi.org/10.1016/S2213-2600(20)30076-X
- Yamasmith, E., Fadhil, A.-H. S.-A., Avirutnan, P., Angkasekwinai, N., Mairiang, D., Wongsawat, E., Tanrumluk, S., Fongsri, U., & Suputtamongkol, Y. (2018). The 34 th Annual Meeting The Royal College of Physicians of Thailand “Internal Medicine and One Health” 26 th-28 th. In PEACH Royal Cliff Beach Resort.
- Yang, C., Ke, C., Yue, D., Li, W., Hu, Z., Liu, W., Hu, S., Wang, S., & Liu, J. (2020). Effectiveness of Arbidol for COVID-19 Prevention in Health Professionals. Frontiers in Public Health, 8, 249. https://doi.org/10.3389/fpubh.2020.00249
- Ye, Z., Wang, Y., Colunga-Lozano, L. E., Prasad, M., Tangamornsuksan, W., Rochwerg, B., Yao, L., Motaghi, S., Couban, R. J., Ghadimi, M., Bala, M. M., Gomaa, H., Fang, F., Xiao, Y., & Guyatt, G. H. (2020). Efficacy and safety of corticosteroids in COVID-19 based on evidence for COVID-19, other coronavirus infections, influenza, community-acquired pneumonia and acute respiratory distress syndrome: a systematic review and meta-analysis. Canadian Medical Association Journal,
192(27), E756–E767.
- Yin, Y., & Wunderink, R. G. (2018). MERS, SARS and other coronaviruses as causes of pneumonia. In Respirology (Vol. 23, Issue 2, pp. 130–137). Blackwell Publishing. https://doi.org/10.1111/resp.13196
- Yörük F, M. O. (2020). COVID-19 (G. V Memikoglu O (Ed.); 1st ed.). Ankara Üniversitesi Basımevi.
Zhang, J., Ma, X., Yu, F., Liu, J., Zou, F., Pan, T., & Zhang, H. (2020). Teicoplanin potently blocks the cell entry of 2019-nCoV. BioRxiv, 2020.02.05.935387. https://doi.org/10.1101/2020.02.05.935387
- Zhang, X., Song, K., Tong, F., Fei, M., Guo, H., Lu, Z., Wang, J., & Zheng, C. (2020). First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Advances, 4(7), 1307–1310. https://doi.org/10.1182/bloodadvances.2020001907
- Zhang, Z., Zhou, L., Xie, N., Nice, E. C., Zhang, T., Cui, Y., & Huang, C. (2020). Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduction and Targeted Therapy, 5(1). https://doi.org/10.1038/s41392-020-00213-8
- Zhou, N., Pan, T., Zhang, J., Li, Q., Zhang, X., Bai, C., Huang, F., Peng, T., Zhang, J., Liu, C., Tao, L., & Zhang, H. (2016). Glycopeptide antibiotics potently inhibit cathepsin l in the late endosome/lysosome and block the entry of ebola virus, middle east respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV). Journal of Biological Chemistry, 291(17), 9218–9232.
PHARMACOTHERAPY of COVID-19
Yıl 2020,
Cilt: 11 Sayı: 2, 80 - 114, 28.08.2020
Begüm Yurdakök Dikmen
,
Yağız Pat
Ergin Dilekoz
Gökçe Yağmur Summak
Oguz Kul
Ayhan Filazi
Öz
The novel coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been described as a global pandemic. Regardless the efforts all over the world, there is still no effective treatment or vaccine. Therefore, prevention, early virus detection and identification methods are crutially important for disease control. Treatment protocols are constantly updated with the results of controlled randomized clinical trials; however, the majority of research with a large number of patients are still not concluded. Individualized medicine is forefront since there is no uniform drug application in treatment as the drug efficacy and safety changes with respect to individual differences (such as changing phenotype, other chronic diseases). Treatment protocols are constantly being updated and drug research using artificial intelligence/in silico methods for new compounds and drug repurposing gained prominence. This review provides updated information on some of the agents used in the treatment of COVID-19.
Kaynakça
- Allen, V. G., Pond, K. R., Saker, K. E., Fontenot, J. P., Bagley, C. P., Ivy, R. L., Evans, R. R., Brown, C. P., Miller, M. F., Montgomery, J. L., Dettle, T. M., & Wester, D. B. (2001). Tasco-Forage: III. Influence of a seaweed extract on performance, monocyte immune cell response, and carcass characteristics in feedlot-finished steers. Journal of Animal Science, 79(4), 1032–1040. http://www.ncbi.nlm.nih.gov/pubmed/11325177
- Ankcorn, M., Gallacher, J., Ijaz, S., Taha, Y., Harvala, H., Maclennan, S., Thomson, E. C., Davis, C., Singer, J. B., da Silva Filipe, A., Smollett, K., Niebel, M., Semple, M. G., Tedder, R. S., & McPherson, S. (2019). Convalescent plasma therapy for persistent hepatitis E virus infection. In Journal of Hepatology (Vol. 71, Issue 2, pp. 434–438). Elsevier B.V. https://doi.org/10.1016/j.jhep.2019.04.008
- Antonelli, M., Donelli, D., Maggini, V., & Firenzuoli, F. (2020). Phytotherapic compounds against coronaviruses: Possible streams for future research. Phytotherapy Research, 34(7), 1469–1470. https://doi.org/10.1002/ptr.6712
- Arabi, Y. M., Al-Enezi, F., Longuere, K.-S., Balkhy, H. H., Al-Sultan, M., Al-Omari, A., Al-Hameed, F. M., Carson, G., Shindo, N., & Fowler, R. (2015). Feasibility of a randomized controlled trial to assess treatment of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection in Saudi Arabia: a survey of physicians. BMC Anesthesiology, 16(1), 36. https://doi.org/10.1186/s12871-016-0198-x
- Bahrami, M., Kamalinejad, M., Latifi, S. A., Seif, F., & Dadmehr, M. (2020). Cytokine storm in COVID‐19 and parthenolide: Preclinical evidence. Phytotherapy Research, ptr.6776. https://doi.org/10.1002/ptr.6776
- Barlow, A., Landolf, K. M., Barlow, B., Yeung, S. Y. A., Heavner, J. J., Claassen, C. W., & Heavner, M. S. (2020). Review of Emerging Pharmacotherapy for the Treatment of Coronavirus Disease 2019. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 40(5), 416–437. https://doi.org/10.1002/phar.2398
- Baron, S. A., Devaux, C., Colson, P., Raoult, D., & Rolain, J. M. (2020). Teicoplanin: an alternative drug for the treatment of COVID-19? In International Journal of Antimicrobial Agents (Vol. 55, Issue 4, p. 105944). Elsevier B.V. https://doi.org/10.1016/j.ijantimicag.2020.105944
- Bell, T. J., Brand, O. J., Morgan, D. J., Salek-Ardakani, S., Jagger, C., Fujimori, T., Cholewa, L., Tilakaratna, V., Östling, J., Thomas, M., Day, A. J., Snelgrove, R. J., & Hussell, T. (2019). Defective lung function following influenza virus is due to prolonged, reversible hyaluronan synthesis. Matrix Biology, 80, 14–28. https://doi.org/10.1016/j.matbio.2018.06.006
- Berton, A. M., Prencipe, N., Giordano, R., Ghigo, E., & Grottoli, S. (2020). Systemic steroids in patients with COVID-19: pros and contras, an endocrinological point of view. Journal of Endocrinological Investigation, 1. https://doi.org/10.1007/s40618-020-01325-2
- Brown, A. J., Won, J. J., Graham, R. L., Dinnon, K. H., Sims, A. C., Feng, J. Y., Cihlar, T., Denison, M. R., Baric, R. S., & Sheahan, T. P. (2019). Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Research, 169. https://doi.org/10.1016/j.antiviral.2019.104541
- Cai, Q., Yang, M., Liu, D., Chen, J., Shu, D., Xia, J., Liao, X., Gu, Y., Cai, Q., Yang, Y., Shen, C., Li, X., Peng, L., Huang, D., Zhang, J., Zhang, S., Wang, F., Liu, J., Chen, L., … Liu, L. (2020). Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study. Engineering. https://doi.org/10.1016/j.eng.2020.03.007
- Caly, L., Druce, J. D., Catton, M. G., Jans, D. A., & Wagstaff, K. M. (2020). The FDA-approved Drug Ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research, 104787. https://doi.org/10.1016/J.ANTIVIRAL.2020.104787
- Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Ruan, L., Song, B., Cai, Y., Wei, M., Li, X., Xia, J., Chen, N., Xiang, J., Yu, T., Bai, T., Xie, X., Zhang, L., Li, C., … Wang, C. (2020). A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. New England Journal of Medicine, 382(19), 1787–1799. https://doi.org/10.1056/NEJMoa2001282
- Casadevall, A., & Pirofski, L. A. (2020). The convalescent sera option for containing COVID-19. In Journal of Clinical Investigation (Vol. 130, Issue 4, pp. 1545–1548). American Society for Clinical Investigation. https://doi.org/10.1172/JCI138003
- Ceccarelli, G., Alessandri, F., d’Ettorre, G., Borrazzo, C., Spagnolello, O., Oliva, A., Ruberto, F., Mastroianni, C. M., Pugliese, F., & Venditti, M. (2020). Is teicoplanin a complementary treatment option for COVID-19? The question remains. International Journal of Antimicrobial Agents, 106029. https://doi.org/10.1016/j.ijantimicag.2020.106029
- Chaccour, C., Hammann, F., & Rabinovich, N. R. (2017). Ivermectin to reduce malaria transmission I. Pharmacokinetic and pharmacodynamic considerations regarding efficacy and safety. In Malaria Journal (Vol. 16, Issue 1, p. 161). BioMed Central Ltd. https://doi.org/10.1186/s12936-017-1801-4
- Chaccour, C., Hammann, F., Ramón-García, S., & Rabinovich, N. R. (2020). Ivermectin and COVID-19: Keeping rigor in times of urgency. In American Journal of Tropical Medicine and Hygiene (Vol. 102, Issue 6, pp. 1156–1157). American Society of Tropical Medicine and Hygiene. https://doi.org/10.4269/ajtmh.20-0271
- Chen, C., Huang, J., Cheng, Z., Wu, J., Chen, S., Zhang, Y., Chen, B., Lu, M., Luo, Y., Zhang, J., Yin, P., & Wang, X. (2020). Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial. MedRxiv, 2020.03.17.20037432. https://doi.org/10.1101/2020.03.17.20037432
- Chen, H., Zhang, Z., Wang, L., Huang, Z., Gong, F., Li, X., Chen, Y., & Wu, J. J. (2020). First Clinical Study Using HCV Protease Inhibitor Danoprevir to Treat Naïve and Experienced COVID-19 Patients. MedRxiv, 2020.03.22.20034041. https://doi.org/10.1101/2020.03.22.20034041
- Chen, L., Xiong, J., Bao, L., & Shi, Y. (2020). Convalescent plasma as a potential therapy for COVID-19. In The Lancet Infectious Diseases (Vol. 20, Issue 4, pp. 398–400). Lancet Publishing Group. https://doi.org/10.1016/S1473-3099(20)30141-9
- Cheng, Y., Wong, R., Soo, Y. O. Y., Wong, W. S., Lee, C. K., Ng, M. H. L., Chan, P., Wong, K. C., Leung, C. B., & Cheng, G. (2005). Use of convalescent plasma therapy in SARS patients in Hong Kong. European Journal of Clinical Microbiology and Infectious Diseases, 24(1), 44–46. https://doi.org/10.1007/s10096-004-1271-9
- Chowdhurry ATMM, Shahbaz M, Karim MdR, Islam J, Dan G, S. H. (2020). A Randomized TrialofIvermectin-Doxycycline and Hydroxychloroquine-Azithromycin therapy on COVID19 patients. https://doi.org/10.13140/RG.2.2.22193.81767/3
- Clerkin, K. J., Fried, J. A., Raikhelkar, J., Sayer, G., Griffin, J. M., Masoumi, A., Jain, S. S., Burkhoff, D., Kumaraiah, D., Rabbani, L. R., Schwartz, A., & Uriel, N. (2020). COVID-19 and Cardiovascular Disease. In Circulation (Vol. 141, Issue 20, pp. 1648–1655). Lippincott Williams and Wilkins. https://doi.org/10.1161/CIRCULATIONAHA.120.046941
- Cortegiani, A., Ingoglia, G., Ippolito, M., Giarratano, A., & Einav, S. (2020). A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. Journal of Critical Care, 57, 279–283. https://doi.org/10.1016/j.jcrc.2020.03.005
- Crunkhorn, S. (2020). Gasdermin D inhibitor protects against sepsis. In Nature reviews. Drug discovery (Vol. 19, Issue 6, p. 388). NLM (Medline). https://doi.org/10.1038/d41573-020-00084-2
- Cumhur Cure, M., Kucuk, A., & Cure, E. (2020). Colchicine may not be effective in COVID-19 infection; it may even be harmful? In Clinical Rheumatology (Vol. 39, Issue 7, pp. 2101–2102). Springer. https://doi.org/10.1007/s10067-020-05144-x
- Deftereos, S. G., Siasos, G., Giannopoulos, G., Vrachatis, D. A., Angelidis, C., Giotaki, S. G., Gargalianos, P., Giamarellou, H., Gogos, C., Daikos, G., Lazanas, M., Lagiou, P., Saroglou, G., Sipsas, N., Tsiodras, S., Chatzigeorgiou, D., Moussas, N., Kotanidou, A., Koulouris, N., … Stefanadis, C. (2020). The Greek study in the effects of colchicine in COvid-19 complications prevention (GRECCO-19 study): Rationale and study design. Hellenic Journal of Cardiology, 61(1), 42–45.
- Devaux, C. A., Rolain, J. M., Colson, P., & Raoult, D. (2020). New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? International Journal of Antimicrobial Agents, 55(5), 105938. https://doi.org/10.1016/j.ijantimicag.2020.105938
- Dorward J, G. K. (2020). Lopinavir/ritonavir: A rapid review of effectiveness in COVID-19. Oxford COVID-19 Evidence Service Team. evidence-cov.id/lopinavir
Dosing and Pharmacologic Considerations for Medications Under Investigation Aganist COVID-19. (2020).
- Ekici H, & Yarsan E. (2020). Some Drugs Used in the Treatment of COVID-19 and Pharmacological Evaluation. Eurasian Journal of Health Sciences, 3(COVID-19 Special Issue), 120–129.
- Elfiky, A. A. (2020). Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sciences, 253. https://doi.org/10.1016/j.lfs.2020.117592
- Escobar, L. E., Molina-Cruz, A., & Barillas-Mury, C. (2020). BCG vaccine protection from severe coronavirus disease 2019 (COVID-19). Proceedings of the National Academy of Sciences, 13, 202008410. https://doi.org/10.1073/pnas.2008410117
- Fu, B., Xu, X., & Wei, H. (2020). Why tocilizumab could be an effective treatment for severe COVID-19? In Journal of Translational Medicine (Vol. 18, Issue 1, p. 164). BioMed Central Ltd. https://doi.org/10.1186/s12967-020-02339-3
- FURUTA, Y., KOMENO, T., & NAKAMURA, T. (2017). Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proceedings of the Japan Academy, Series B, 93(7), 449–463. https://doi.org/10.2183/pjab.93.027
- Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang, T., Sun, Q., Ming, Z., Zhang, L., Ge, J., Zheng, L., Zhang, Y., Wang, H., Zhu, Y., Zhu, C., Hu, T., Hua, T., Zhang, B., … Rao, Z. (2020). Structure of RNA-dependent RNA polymerase from 2019-nCoV, a major antiviral drug target. BioRxiv, 2020.03.16.993386. https://doi.org/10.1101/2020.03.16.993386
- GlobalData Healthcare. (2020, April 13). Protease inhibitors for Covid-19: did disease severity impact results? https://www.pharmaceutical-technology.com/comment/protease-inhibitors-covid-19/
- Golchin, A., Seyedjafari, E., & Ardeshirylajimi, A. (2020). Mesenchymal Stem Cell Therapy for COVID-19: Present or Future. In Stem Cell Reviews and Reports (Vol. 16, Issue 3, pp. 427–433). Springer. https://doi.org/10.1007/s12015-020-09973-w
- Graci, J. D., & Cameron, C. E. (2006). Mechanisms of action of ribavirin against distinct viruses. In Reviews in Medical Virology (Vol. 16, Issue 1, pp. 37–48). https://doi.org/10.1002/rmv.483
- Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., Tan, K. Sen, Wang, D. Y., & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak- A n update on the status. In Military Medical Research (Vol. 7, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s40779-020-00240-0
- Gürsel M. (2020). Yeni Koronavirüse Karşı Geliştirilecek Aşının Faz-1 Klinik Denemelere Hazırlanması Ve Sağlıklı Bireylerin Enfeksiyondan Korunmasına Yönelik Diğer Yaklaşımlar. TUBITAK. https://covid19.tubitak.gov.tr/sites/default/files/konferans-sunum/MaydaGursel_Oturum3.pdf
- Gurwitz, D. (2020). Angiotensin receptor blockers as tentative SARS‐CoV‐2 therapeutics. Drug Development Research, ddr.21656. https://doi.org/10.1002/ddr.21656
- Guzzo, C. A., Furtek, C. I., Porras, A. G., Chen, C., Tipping, R., Clineschmidt, C. M., Sciberras, D. G., Hsieh, J. Y. K., & Lasseter, K. C. (2002). Safety, tolerability, and pharmacokinetics of escalating high doses of ivermectin in healthy adult subjects. Journal of Clinical Pharmacology, 42(10), 1122–1133. https://doi.org/10.1177/009127002401382731
- Haffizulla, J., Hartman, A., Hoppers, M., Resnick, H., Samudrala, S., Ginocchio, C., Bardin, M., & Rossignol, J. F. (2014). Effect of nitazoxanide in adults and adolescents with acute uncomplicated influenza: A double-blind, randomised, placebo-controlled, phase 2b/3 trial. The Lancet Infectious Diseases, 14(7), 609–618. https://doi.org/10.1016/S1473-3099(14)70717-0
- Halacli, B., & Topeli, A. (2020). Treatment of the Cytokine Storm in COVID-19. J Crit Intensive Care, 11, 36–40. https://doi.org/10.37678/dcybd.2020.2434
Haq, F. U., Roman, M., Ahmad, K., Rahman, S. U., Shah, S. M. A., Suleman, N., Ullah, S., Ahmad, I., & Ullah, W. (2020). Artemisia annua : trials are needed for <scp>COVID</scp> ‐19. Phytotherapy Research, ptr.6733. https://doi.org/10.1002/ptr.6733
- He, G., Li, Q., Li, W., Ruan, Y., Xiong, X., Song, X., & Zeng, F. (2020). Effect of ulinastatin on interleukins and pulmonary function in bypass patients: a meta-analysis of randomized controlled trials. In Herz (Vol. 45, Issue 4, pp. 335–346). Springer Medizin. https://doi.org/10.1007/s00059-018-4732-0
- Ho, D. (2020). Addressing COVID‐19 Drug Development with Artificial Intelligence. Advanced Intelligent Systems, 2(5), 2000070. https://doi.org/10.1002/aisy.202000070
- Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181(2), 271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052
- Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
- Huang, H., Hospital, C., Hu, P.-F., Sun, L.-L., Guo, Y.-B., Wang, Q., Liu, Z.-M., Yin, J.-Z., Shi, P.-M., Yuan, Z.-L., Tan, Y., Zhou, C., Liu, Y.-L., Chen, C., Song, H.-H., & Xie, W. (n.d.). Treatment of Covid-19 Patients With High Dose of Ulinastatin. https://doi.org/10.21203/rs.3.rs-32627/v1
- Huang, N., Singh, N., Yoon, K., Loiacono, C. M., Kohut, M. L., & Birt, D. F. (2013). The Immuno-Regulatory Impact of Orally-Administered Hypericum perforatum Extract on Balb/C Mice Inoculated with H1n1 Influenza A Virus. PLoS ONE, 8(9), e76491. https://doi.org/10.1371/journal.pone.0076491
- Jean, S. S., Lee, P. I., & Hsueh, P. R. (2020). Treatment options for COVID-19: The reality and challenges. In Journal of Microbiology, Immunology and Infection (Vol. 53, Issue 3, pp. 436–443). Elsevier Ltd. https://doi.org/10.1016/j.jmii.2020.03.034
- Jesús Naveja, J., Dueñas-González, A., & Medina-Franco, J. L. (2016). Drug Repurposing for Epigenetic Targets Guided by Computational Methods. In Epi-Informatics: Discovery and Development of Small Molecule Epigenetic Drugs and Probes. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802808-7.00012-5
- Kamu Hastaneleri Genel Müdürlüğü. (2020). COVID-19 tedavisinde kullanılan ilaçlar:İlaç etkileşimleri. moz-extension://406a04e0-e5f5-4fb6-bc58-683cf96c45d0/enhanced-reader.html?openApp&pdf=https%3A%2F%2Fcovid19bilgi.saglik.gov.tr%2Fdepo%2Ftedavi%2FCOVID-19_TEDAVISINDE_KULLANILAN_ILACLAR-ILAC_ETKILESIMLERI.pdf
- Kelleni, M. T. (2020). Nitazoxanide/azithromycin combination for COVID-19: A suggested new protocol for early management. In Pharmacological Research (Vol. 157, p. 104874). Academic Press. https://doi.org/10.1016/j.phrs.2020.104874
- Keni, R., Alexander, A., Nayak, P. G., Mudgal, J., & Nandakumar, K. (2020). COVID-19: Emergence, Spread, Possible Treatments, and Global Burden. Frontiers in Public Health, 8, 216. https://doi.org/10.3389/fpubh.2020.00216
- Khalili, J. S., Zhu, H., Mak, N. S. A., Yan, Y., & Zhu, Y. (2020). Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID-19. In Journal of Medical Virology (Vol. 92, Issue 7, pp. 740–746). John Wiley and Sons Inc. https://doi.org/10.1002/jmv.25798
- Khashkhusha, T. R., Chan, J. S. K., & Harky, A. (2020). ACE inhibitors and COVID‐19: We don’t know yet. Journal of Cardiac Surgery, 35(6), 1172–1173. https://doi.org/10.1111/jocs.14582
- Kiplin Guy, R., DiPaola, R. S., Romanelli, F., & Dutch, R. E. (2020). Rapid repurposing of drugs for COVID-19. Science, 368(6493), 829–830. https://doi.org/10.1126/science.abb9332
- Kobak, S. (2020). COVID-19 infection in a patient with FMF: does colchicine have a protective effect? Annals of the Rheumatic Diseases. https://doi.org/10.1136/ANNRHEUMDIS-2020-217882
- Kortuem, K. M., & Stewart, A. K. (2013). Carfilzomib. In Blood (Vol. 121, Issue 6, pp. 893–897). https://doi.org/10.1182/blood-2012-10-459883
- Kouznetsova, V., Huang, D., & Tsigelny, I. F. (2020). Potential COVID-19 Protease Inhibitors: Repurposing FDAapproved Drugs. ChemRxiv, 1, Preprint. https://doi.org/10.26434/CHEMRXIV.12093900.V1
- Kronbichler, A., Effenberger, M., Eisenhut, M., Lee, K. H., & Shin, J. Il. (2020). Seven recommendations to rescue the patients and reduce the mortality from COVID-19 infection: An immunological point of view. In Autoimmunity Reviews (Vol. 19, Issue 7, p. 102570). Elsevier B.V. https://doi.org/10.1016/j.autrev.2020.102570
- Lazaros, G., Imazio, M., Brucato, A., Vlachopoulos, C., Lazarou, E., Vassilopoulos, D., & Tousoulis, D. (2018). The role of colchicine in pericardial syndromes. Current Pharmaceutical Design, 24(6). https://doi.org/10.2174/1381612824666180116101823
- Lei, C., Huiguo, L., Wei, L., Jing, L., Kui, L., Jin, S., Yan, D., & Shuang, W. (2020). Analysis of Clinical Features of 29 Patients With 2019 Novel Coronavirus Pneumonia. Chinese Journal of Tuberculosis and Respiratory Diseases, 43(00), E005–E005. https://doi.org/10.3760/CMA.J.ISSN.1001-0939.2020.0005
- Leng, Z., Zhu, R., Hou, W., Feng, Y., Yang, Y., Han, Q., Shan, G., Meng, F., Du, D., Wang, S., Fan, J., Wang, W., Deng, L., Shi, H., Li, H., Hu, Z., Zhang, F., Gao, J., Liu, H., … Zhao, R. C. (2020). Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. Aging and Disease, 11(2), 216. https://doi.org/10.14336/AD.2020.0228
- Li, S. Y., Chen, C., Zhang, H. Q., Guo, H. Y., Wang, H., Wang, L., Zhang, X., Hua, S. N., Yu, J., Xiao, P. G., Li, R. S., & Tan, X. (2005). Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Research, 67(1), 18–23. https://doi.org/10.1016/j.antiviral.2005.02.007
- Lian, N., Xie, H., Lin, S., Huang, J., Zhao, J., & Lin, Q. (2020). Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: a retrospective study. Clinical Microbiology and Infection, 26(7), 917–921. https://doi.org/10.1016/j.cmi.2020.04.026
- Liao, J., Way, G., & Madahar, V. (2020). Target Virus or Target Ourselves for COVID-19 Drugs Discovery?-Lessons learned from anti-influenzas virus therapies. Medicine in Drug Discovery, 5, 100037. https://doi.org/10.1016/j.medidd.2020.100037
- Lin, M. H., Moses, D. C., Hsieh, C. H., Cheng, S. C., Chen, Y. H., Sun, C. Y., & Chou, C. Y. (2018). Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antiviral Research, 150, 155–163. https://doi.org/10.1016/j.antiviral.2017.12.015
- Lotfi, M., Hamblin, M. R., & Rezaei, N. (2020). COVID-19: Transmission, prevention, and potential therapeutic opportunities. In Clinica Chimica Acta (Vol. 508, pp. 254–266). Elsevier B.V. https://doi.org/10.1016/j.cca.2020.05.044
- Lundberg, L., Pinkham, C., Baer, A., Amaya, M., Narayanan, A., Wagstaff, K. M., Jans, D. A., & Kehn-Hall, K. (2013). Nuclear import and export inhibitors alter capsid protein distribution in mammalian cells and reduce Venezuelan Equine Encephalitis Virus replication. Antiviral Research, 100(3), 662–672. https://doi.org/10.1016/J.ANTIVIRAL.2013.10.004
- Luo, P., Liu, Y., Qiu, L., Liu, X., Liu, D., & Li, J. (2020). Tocilizumab treatment in COVID-19: A single center experience. Journal of Medical Virology, 92(7), 814–818. https://doi.org/10.1002/jmv.25801
- Masiello, P., Novelli, M., Beffy, P., & Menegazzi, M. (2020). Can Hypericum perforatum(SJW) prevent cytokine storm in <scp>COVID</scp> ‐19 patients? Phytotherapy Research, 34(7), 1471–1473. https://doi.org/10.1002/ptr.6764
- Mehra, M. R., Desai, S. S., Ruschitzka, F., & Patel, A. N. (2020). RETRACTED:Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. The Lancet, 0(0). https://doi.org/10.1016/S0140-6736(20)31180-6
- Mei, X., Lee, H. C., Diao, K. yue, Huang, M., Lin, B., Liu, C., Xie, Z., Ma, Y., Robson, P. M., Chung, M., Bernheim, A., Mani, V., Calcagno, C., Li, K., Li, S., Shan, H., Lv, J., Zhao, T., Xia, J., … Yang, Y. (2020). Artificial intelligence–enabled rapid diagnosis of patients with COVID-19. Nature Medicine, 1–5. https://doi.org/10.1038/s41591-020-0931-3
- Michot, J. M., Albiges, L., Chaput, N., Saada, V., Pommeret, F., Griscelli, F., Balleyguier, C., Besse, B., Marabelle, A., Netzer, F., Merad, M., Robert, C., Barlesi, F., Gachot, B., & Stoclin, A. (2020). Tocilizumab, an anti-IL-6 receptor antibody, to treat COVID-19-related respiratory failure: a case report. In Annals of Oncology (Vol. 31, Issue 7). Elsevier Ltd. https://doi.org/10.1016/j.annonc.2020.03.300
- Millet, J. K., Séron, K., Labitt, R. N., Danneels, A., Palmer, K. E., Whittaker, G. R., Dubuisson, J., & Belouzard, S. (2016). Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral Research, 133, 1–8. https://doi.org/10.1016/j.antiviral.2016.07.011
- Mishima, E., Anzai, N., Miyazaki, M., & Abe, T. (2020). Uric Acid Elevation by Favipiravir, an Antiviral Drug. The Tohoku Journal of Experimental Medicine, 251(2), 87–90. https://doi.org/10.1620/tjem.251.87
- Momattin, H., Mohammed, K., Zumla, A., Memish, Z. A., & Al-Tawfiq, J. A. (2013). Therapeutic Options for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) - possible lessons from a systematic review of SARS-CoV therapy. International Journal of Infectious Diseases, 17(10). https://doi.org/10.1016/j.ijid.2013.07.002
- Mong, M. A., Awkal, J. A., & Marik, P. E. (2020). Accelerated hyaluronan concentration as the primary driver of morbidity and mortality in high-risk COVID-19 patients: with therapeutic introduction of an oral hyaluronan inhibitor in the prevention of “Induced Hyaluronan Storm” Syndrome. MedRxiv. https://doi.org/10.1101/2020.04.19.20071647
- Monteil, V., Kwon, H., Prado, P., Hagelkrüys, A., Wimmer, R. A., Stahl, M., Leopoldi, A., Garreta, E., Hurtado del Pozo, C., Prosper, F., Romero, J. P., Wirnsberger, G., Zhang, H., Slutsky, A. S., Conder, R., Montserrat, N., Mirazimi, A., & Penninger, J. M. (2020). Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade
Soluble Human ACE2. Cell, 181(4), 905-913.e7. https://doi.org/10.1016/j.cell.2020.04.004
- Monti, S., Balduzzi, S., Delvino, P., Bellis, E., Quadrelli, V. S., & Montecucco, C. (2020). Clinical course of COVID-19 in a series of patients with chronic arthritis treated with immunosuppressive targeted therapies. In Annals of the Rheumatic Diseases (Vol. 79, Issue 5, pp. 667–668). BMJ Publishing Group. https://doi.org/10.1136/annrheumdis-2020-217424
- Moreira-silva, F., Camilo, V., Gaspar, V., Mano, J. F., Henrique, R., & Jerónimo, C. (2020). Repurposing old drugs into new epigenetic inhibitors: Promising candidates for cancer treatment? Pharmaceutics, 12(5), 1–16. https://doi.org/10.3390/pharmaceutics12050410
- O’Connor, E., Teh, J., Kamat, A. M., & Lawrentschuk, N. (2020). Bacillus Calmette Guérin (BCG) vaccination use in the fight against COVID-19 – what’s old is new again? Future Oncology, 16(19), 1323–1325. https://doi.org/10.2217/fon-2020-0381
- O’Neill, L. A. J., & Netea, M. G. (2020). BCG-induced trained immunity: can it offer protection against COVID-19? In Nature Reviews Immunology (Vol. 20, Issue 6, pp. 335–337). Nature Research. https://doi.org/10.1038/s41577-020-0337-y
- Ou, X., Liu, Y., Lei, X., Li, P., Mi, D., Ren, L., Guo, L., Guo, R., Chen, T., Hu, J., Xiang, Z., Mu, Z., Chen, X., Chen, J., Hu, K., Jin, Q., Wang, J., & Qian, Z. (2020). Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature Communications, 11(1), 1–12. https://doi.org/10.1038/s41467-020-15562-9
- Ozkan, S., & Koyuturk, M. (2020). Mesenchymal Stem Cell Therapy and New Approaches in Covid-19 Patients. Cerrahpasa Medical Journal. https://doi.org/10.5152/cjm.2020.20017
- Park, T. Y., Jang, Y., Kim, W., Shin, J., Toh, H. T., Kim, C. H., Yoon, H. S., Leblanc, P., & Kim, K. S. (2019). Chloroquine modulates inflammatory autoimmune responses through Nurr1 in autoimmune diseases. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-52085-w
- Parra-Medina, R., Sarmiento-Monroy, J. C., Rojas-Villarraga, A., Garavito, E., Montealegre-Gómez, G., & Gómez-López, A. (2020). Colchicine as a possible therapeutic option in COVID-19 infection. In Clinical Rheumatology (Vol. 39, Issue 8, pp. 2485–2486). Springer. https://doi.org/10.1007/s10067-020-05247-5
- Pereira, L., & Critchley, A. T. (2020). The COVID 19 novel coronavirus pandemic 2020: seaweeds to the rescue? Why does substantial, supporting research about the antiviral properties of seaweed polysaccharides seem to go unrecognized by the pharmaceutical community in these desperate times? Journal of Applied Phycology, 32, 1875–1877. https://doi.org/10.1007/s10811-020-02143-y/Published
- Pharmaceuticals, B. (2020). A Study to Evaluate the Safety, Pharmacokinetics and Antiviral Effects of Galidesivir in Yellow Fever or COVID-19 - Full Text View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03891420
- Pilkington, V., Pepperrell, T., & Hill, A. (2020). A review of the safety of favipiravir-a potential treatment in the COVID-19 pandemic? In Journal of Virus Eradication (Vol. 6).
- Pokhrel, R., Chapagain, P., & Siltberg-Liberles, J. (2020). Potential RNA-dependent RNA polymerase inhibitors as prospective therapeutics against SARS-CoV-2. Journal of Medical Microbiology, 69(6), 864–873. https://doi.org/10.1099/jmm.0.001203
- Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper, S., Wells, A., Doig, A., Guilliams, T., Latimer, J., McNamee, C., Norris, A., Sanseau, P., Cavalla, D., & Pirmohamed, M. (2018). Drug repurposing: Progress, challenges and recommendations. Nature Reviews Drug Discovery, 18(1), 41–58. https://doi.org/10.1038/nrd.2018.168
- Remdesivir Clinical Trials. (n.d.). Retrieved July 7, 2020, from https://www.gilead.com/purpose/advancing-global-health/covid-19/remdesivir-clinical-trials
Ren, J. ling, Zhang, A. H., & Wang, X. J. (2020). Traditional Chinese medicine for COVID-19 treatment. In Pharmacological Research (Vol. 155, p. 104743). Academic Press. https://doi.org/10.1016/j.phrs.2020.104743
- Rodell, C. B. (2020). An ACE therapy for COVID-19. Science Translational Medicine, 12(541), eabb5676. https://doi.org/10.1126/scitranslmed.abb5676
- Rossignol, J. F. (2016). Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. Journal of Infection and Public Health, 9(3), 227–230. https://doi.org/10.1016/j.jiph.2016.04.001
- Roy, A., Sarkar, B., Celik, C., Ghosh, A., Basu, U., Jana, M., Jana, A., Gencay, A., Can Sezgin, G., Ildiz, N., Dam, P., Mandal, A. K., & Ocsoy, I. (2020). Can concomitant use of zinc and curcumin with other immunity‐boosting nutraceuticals be the arsenal against <scp>COVID</scp> ‐19? Phytotherapy Research, ptr.6766. https://doi.org/10.1002/ptr.6766
- Ruan, Q., Yang, K., Wang, W., Jiang, L., & Song, J. (2020). Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. In Intensive Care Medicine (Vol. 46, Issue 5, pp. 846–848). Springer. https://doi.org/10.1007/s00134-020-05991-x
- Sathyamoorthy, N. K., Chintamaneni, P. K., & Chinni, S. (2020). Plausible role of combination of Chlorpromazine hydrochloride and Teicoplanin against COVID-19. In Medical Hypotheses (Vol. 144). Churchill Livingstone. https://doi.org/10.1016/j.mehy.2020.110011
- Savarino, A., Boelaert, J. R., Cassone, A., Majori, G., & Cauda, R. (2003). Effects of chloroquine on viral infections: An old drug against today’s diseases? In Lancet Infectious Diseases (Vol. 3, Issue 11, pp. 722–727). Lancet Publishing Group. https://doi.org/10.1016/S1473-3099(03)00806-5
- Schrezenmeier, E., & Dörner, T. (2020). Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. In Nature Reviews Rheumatology (Vol. 16, Issue 3, pp. 155–166). Nature Research. https://doi.org/10.1038/s41584-020-0372-x
- Seitz, M., Valbracht, J., Quach, J., & Lotz, M. (2003). Gold Sodium Thiomalate and Chloroquine Inhibit Cytokine Production in Monocytic THP-1 Cells Through Distinct Transcriptional and Posttranslational Mechanisms. Journal of Clinical Immunology, 23(6), 477–484. https://doi.org/10.1023/B:JOCI.0000010424.41475.17
- Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A., & Li, F. (2020). Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 117(21), 11727–11734. https://doi.org/10.1073/pnas.2003138117
- Shanmugaraj, B., Siriwattananon, K., Wangkanont, K., & Phoolcharoen, W. (2020). Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19). In Asian Pacific Journal of Allergy and Immunology (Vol. 38, Issue 1, pp. 10–18). Allergy and Immunology Society of Thailand. https://doi.org/10.12932/AP-200220-0773
- Sheahan, T. P., Sims, A. C., Zhou, S., Graham, R. L., Pruijssers, A. J., Agostini, M. L., Leist, S. R., Schäfer, A., Dinnon, K. H., Stevens, L. J., Chappell, J. D., Lu, X., Hughes, T. M., George, A. S., Hill, C. S., Montgomery, S. A., Brown, A. J., Bluemling, G. R., Natchus, M. G., … Baric, R. S. (2020). An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Science Translational Medicine, 12(541), 5883.
- Shen, C., Wang, Z., Zhao, F., Yang, Y., Li, J., Yuan, J., Wang, F., Li, D., Yang, M., Xing, L., Wei, J., Xiao, H., Yang, Y., Qu, J., Qing, L., Chen, L., Xu, Z., Peng, L., Li, Y., … Liu, L. (2020). Treatment of 5 Critically Ill Patients with COVID-19 with Convalescent Plasma. JAMA - Journal of the American Medical Association, 323(16), 1582–1589. https://doi.org/10.1001/jama.2020.4783
- Shipstone, M. (2014). Antiparasitics for Integumentary Disease - Pharmacology - Veterinary Manual. MSD Manual Veteriary Manual. https://www.msdvetmanual.com/pharmacology/systemic-pharmacotherapeutics-of-the-integumentary-system/antiparasitics-for-integumentary-disease
- Soo, Y. O. Y., Cheng, Y., Wong, R., Hui, D. S., Lee, C. K., Tsang, K. K. S., Ng, M. H. L., Chan, P., Cheng, G., & Sung, J. J. Y. (2004). Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clinical Microbiology and Infection, 10(7), 676–678. https://doi.org/10.1111/j.1469-0691.2004.00956.x
- Tai, W., He, L., Zhang, X., Pu, J., Voronin, D., Jiang, S., Zhou, Y., & Du, L. (2020). Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular and Molecular Immunology, 17(6), 613–620. https://doi.org/10.1038/s41423-020-0400-4
- Tedeschi, E., Menegazzi, M., Margotto, D., Suzuki, H., Förstermann, U., & Kleinert, H. (2003). Anti-inflammatory actions of St. John’s Wort: Inhibition of human inducible nitric-oxide synthase expression by down-regulating signal transducer and activator of transcription-1α (STAT-1α) activation. Journal of Pharmacology and Experimental Therapeutics, 307(1), 254–261.
- Thomson, G. (2020). COVID‐19: Social distancing, ACE 2 receptors, protease inhibitors and beyond? International Journal of Clinical Practice, 74(7). https://doi.org/10.1111/ijcp.13503
- Tian, X., Li, C., Huang, A., Xia, S., Lu, S., Shi, Z., Lu, L., Jiang, S., Yang, Z., Wu, Y., & Ying, T. (2020). Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. In Emerging Microbes and Infections (Vol. 9, Issue 1, pp. 382–385). Taylor and Francis Ltd. https://doi.org/10.1080/22221751.2020.1729069
- Türk Farmakoloji Derneği. (2020). Türk Farmakoloji Derneği, Klinik Farmakoloji Çalışma Grubu, COVID-19 klinik araştırmaları. TDF. http://www.tfd.org.tr/sites/default/files/Klasor/Dosyalar/TFD-KFCG SARS-CoV-2 infection %28COVID-19%29 23032020-VF %282%29.pdf
Venkat Kumar, G., Jeyanthi, V., & Ramakrishnan, S. (2020). A short review on antibody therapy for COVID-19. In New Microbes and New Infections (Vol. 35, p. 100682). Elsevier Ltd.
- Wagstaff, K. M., Sivakumaran, H., Heaton, S. M., Harrich, D., & Jans, D. A. (2012). Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochemical Journal, 443(3), 851–856. https://doi.org/10.1042/BJ20120150
- Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 181(2), 281-292.e6. https://doi.org/10.1016/j.cell.2020.02.058
- Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020a). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. In Cell Research (Vol. 30, Issue 3, pp. 269–271). Springer Nature. https://doi.org/10.1038/s41422-020-0282-0
- Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020b). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. In Cell Research (Vol. 30, Issue 3, pp. 269–271). Springer Nature. https://doi.org/10.1038/s41422-020-0282-0
- Wang, X., Cao, R., Zhang, H., Liu, J., Xu, M., Hu, H., Li, Y., Zhao, L., Li, W., Sun, X., Yang, X., Shi, Z., Deng, F., Hu, Z., Zhong, W., & Wang, M. (2020). The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. In Cell Discovery (Vol. 6, Issue 1, p. 28). Springer Nature. https://doi.org/10.1038/s41421-020-0169-8
- Wang, Y., Guo, M., Ren, Y., Jia, L., & Yu, G. (2019). Drug repositioning based on individual bi-random walks on a heterogeneous network. BMC Bioinformatics, 20(Suppl 15), 1–13. https://doi.org/10.1186/s12859-019-3117-6
- Weston, S., Haupt, R., Logue, J., Matthews, K., & Frieman, M. (2020). FDA approved drugs with broad anti-coronaviral activity inhibit SARS-CoV-2 in vitro. BioRxiv, 3, 2020.03.25.008482. https://doi.org/10.1101/2020.03.25.008482
- WHO. (2020). Coronavirus disease 2019. https://www.who.int/emergencies/diseases/novel-coronavirus-2019
- WHO discontinues hydroxychloroquine and lopinavir/ritonavir treatment arms for COVID-19. (2020). World Health Organization. https://www.who.int/news-room/detail/04-07-2020-who-discontinues-hydroxychloroquine-and-lopinavir-ritonavir-treatment-arms-for-covid-19
- World Health Organization. (2020). Bacille Calmette-Guérin (BCG) vaccination and COVID-19. https://www.who.int/news-room/commentaries/detail/bacille-calmette-guérin-(bcg)-vaccination-and-covid-19
- Xu, X., Han, M., Li, T., Sun, W., Wang, D., Fu, B., Zhou, Y., Zheng, X., Yang, Y., Li, X., Zhang, X., Pan, A., & Wei, H. (2020). Effective treatment of severe COVID-19 patients with tocilizumab. Proceedings of the National Academy of Sciences, 202005615. https://doi.org/10.1073/pnas.2005615117
- Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., Liu, S., Zhao, P., Liu, H., Zhu, L., Tai, Y., Bai, C., Gao, T., Song, J., Xia, P., Dong, J., Zhao, J., & Wang, F. S. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine, 8(4), 420–422. https://doi.org/10.1016/S2213-2600(20)30076-X
- Yamasmith, E., Fadhil, A.-H. S.-A., Avirutnan, P., Angkasekwinai, N., Mairiang, D., Wongsawat, E., Tanrumluk, S., Fongsri, U., & Suputtamongkol, Y. (2018). The 34 th Annual Meeting The Royal College of Physicians of Thailand “Internal Medicine and One Health” 26 th-28 th. In PEACH Royal Cliff Beach Resort.
- Yang, C., Ke, C., Yue, D., Li, W., Hu, Z., Liu, W., Hu, S., Wang, S., & Liu, J. (2020). Effectiveness of Arbidol for COVID-19 Prevention in Health Professionals. Frontiers in Public Health, 8, 249. https://doi.org/10.3389/fpubh.2020.00249
- Ye, Z., Wang, Y., Colunga-Lozano, L. E., Prasad, M., Tangamornsuksan, W., Rochwerg, B., Yao, L., Motaghi, S., Couban, R. J., Ghadimi, M., Bala, M. M., Gomaa, H., Fang, F., Xiao, Y., & Guyatt, G. H. (2020). Efficacy and safety of corticosteroids in COVID-19 based on evidence for COVID-19, other coronavirus infections, influenza, community-acquired pneumonia and acute respiratory distress syndrome: a systematic review and meta-analysis. Canadian Medical Association Journal,
192(27), E756–E767.
- Yin, Y., & Wunderink, R. G. (2018). MERS, SARS and other coronaviruses as causes of pneumonia. In Respirology (Vol. 23, Issue 2, pp. 130–137). Blackwell Publishing. https://doi.org/10.1111/resp.13196
- Yörük F, M. O. (2020). COVID-19 (G. V Memikoglu O (Ed.); 1st ed.). Ankara Üniversitesi Basımevi.
Zhang, J., Ma, X., Yu, F., Liu, J., Zou, F., Pan, T., & Zhang, H. (2020). Teicoplanin potently blocks the cell entry of 2019-nCoV. BioRxiv, 2020.02.05.935387. https://doi.org/10.1101/2020.02.05.935387
- Zhang, X., Song, K., Tong, F., Fei, M., Guo, H., Lu, Z., Wang, J., & Zheng, C. (2020). First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Advances, 4(7), 1307–1310. https://doi.org/10.1182/bloodadvances.2020001907
- Zhang, Z., Zhou, L., Xie, N., Nice, E. C., Zhang, T., Cui, Y., & Huang, C. (2020). Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduction and Targeted Therapy, 5(1). https://doi.org/10.1038/s41392-020-00213-8
- Zhou, N., Pan, T., Zhang, J., Li, Q., Zhang, X., Bai, C., Huang, F., Peng, T., Zhang, J., Liu, C., Tao, L., & Zhang, H. (2016). Glycopeptide antibiotics potently inhibit cathepsin l in the late endosome/lysosome and block the entry of ebola virus, middle east respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV). Journal of Biological Chemistry, 291(17), 9218–9232.