Araştırma Makalesi
BibTex RIS Kaynak Göster

Türkiye’de sanayiye aktarılan sütün Box-Jenkins ve Winter’s Üstel Düzgünleştirme yöntemleri ile modellenmesi

Yıl 2020, , 49 - 60, 15.01.2020
https://doi.org/10.33188/vetheder.643824

Öz

Türkiye’de sanayiye aktarılan inek sütü miktarı
üzerinden gerçekleştirilecek analizler, geleceğe yönelik çiğ süt
projeksiyonları ve sektörün yorumlanması noktasında paydaşlara en doğru sonucu
verebilecek yöntemlerden birisidir. Bu nedenle üretilen toplam çiğ süt miktarı
yerine sanayine aktarılan çiğ süt miktarının kullanımı ve bunun üzerinden bir
takım projeksiyonların yapılması önem arz etmektedir. Yapılan bu çalışmayla,
2013/01-2018/03 dönemleri arası Türkiye’de süt sanayine aktarılan çiğ süt
miktarı zaman serisinin Box-Jenkins ve Winter’s Üstel Düzgünleştirme yöntemleri
ile modellenmesi ve bu modellerin öngörüleriyle Türkiye’de çiğ süt üretimi ve
süt sektörünün geleceği açısından analizi amaçlanmıştır.

Yapılan analizlar sonucunda Winter’s Üstel Düzgünleştirme modelinin sanayiye
aktarılan süt miktarının karar verme kriteri ve geleceğe yönelik kestirim
değeri bakımından Box-Jenkins modelinden daha tutarlı sonuç vereceği
belirlenmiştir.

Kaynakça

  • Akın AC (2016): Türkiye süt sanayi işletmelerinin analizi ve sektöre ilişkin sorunların tespiti. PhD, Ankara Üniversitesi. Ankara. Türkiye.
  • TURKSTAT (2019): Sağılan hayvan sayısı ve süt üretim miktarı. Türkiye İstatistik Kurumu. Erişim adresi: http://tuik.gov.tr/PreTablo.do?alt_id=1002 Erişim tarihi: 18 March 2019.
  • TZOB (2011): Türkiye Ziraat Odaları Birliği Zirai ve İktisadi Rapor 2007-2010. Aydoğdu Ofset. Ankara. Türkiye.
  • Kaya Kuyululu ÇY (2009): Süt üretiminde arz yönetimi. Aydın İli Damızlık Sığır Yetiştiricileri Birliği Yayınları 2. Ankara.
  • State Planning Organisation (2001): 8. Beş Yıllık Kalkınma Planı Gıda Sanayii Özel İhtisas Komisyonu Raporu Süt ve Süt Ürünleri Sanayii Alt Komisyon Raporu. Ankara. Türkiye.
  • Günlü A (2011): Avrupa Birliği uyum sürecinde Türkiye süt sektöründe sorunlar ve çözüm önerileri. AB Uyum Sürecinde Türkiye Hayvancılık Kongresi; Ankara, Türkiye.
  • Guan Z, Philpott AB (2011): A multistage stochastic programming model for the New Zealand dairy industry. International Journal of Production Economics, 134 (2), 289-299.
  • Özen D (2017): Türkiye’de küçükbaş hayvan sayısının Box-Jenkis yöntemiyle modellenmesi ve ileriye yönelik projeksiyonu, II. Ulusal Hayvancılık Ekonomisi Kongresi Bildiri Kitabı. Antalya, Türkiye, 170.
  • Akter S, Rahman S (2010): Agribusiness forecasting with univariate time series modelling techniques: The case of a dairy cooperative in the UK. Journal of Farm Management, 13(11), 747-764.
  • Arun Patil B (2015): A study of growth rates on milk and milk products of bijapur and bagalkoat co-operative milk union limited (BIMUL). PhD, Professor Jayashankar Telangana State Agricultural University. Hyderabad.
  • Sankar TJ, Prabakaran R (2012): Forecasting milk production in Tamilnadu. International Multidisciplinary Research Journal, (1), 10-15.
  • Ahmed F, Shah H, Raza I, Saboor A (2011). Forecasting milk production in Pakistan. Pakistan Journal of Agricultural Research, 24(1-4), 82-85.
  • Deshmukh SS, Paramasivam R (2016): Forecasting of milk production in India with ARIMA and VAR time series models. Asian Journal of Dairy & Food Research, 35(1), 17-22.
  • Hansen BG (2015): Different methods to forecast milk delivery to dairy: a comparison for forecasting. International Journal of Agricultural Management, 4(3), 132-140.
  • Hansen BG, Li Y (2017): An analysis of past world market prices of feed and milk and predictions for the future. Agribusiness, 33(2), 175-193.
  • Tekindal MA, Güllü Ö, Yazıcı AC, Yavuz Y (2016): The modelling of time-series and the evaluation of forecasts for the future: the case of the number of persons per physician in Turkey between 1928 and 2010. Biomedical Research, 27(3), 965-971.
  • Fischer B (1995): Decomposition of time series comparing different methods in theory and practice. Eurostat Working Paper.
  • Gujarati DN. (2003): Basic Econometrics. (4th Edition). McGraw‐Hill. New York. pp:797.
  • Yenice S, Tekindal MA (2015): Forecasting the stock indexes of fragile five countries through Box-Jenkins methods. International Journal of Business and Social Science, 6(8), 180-191.
  • Dickey DA, Fuller WA (1981): Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49(4), 1057-1072.
  • Box GEP, Jenkins GM (1976): Time series Analysis; Forecasting and Control. Holden – Day Inc., USA.
  • Wickramarachchi AR, Herath HMLK, Jayasinghe-Mudalige UK, Edirisinghe JC, Udugama MM, Lokuge LDMN, Wijesuriya W (2017): An Analysis of Price Behavior of Major Poultry Products in Sri Lanka. The Journal of Agricultural Sciences, 12(2), 138-148.
  • Brockwell P, Davis R (2002): Introduction to Time Series and Forecasting. 2nd. Ed., Springer.
  • Yaffee R, McGee M (2002): An Introduction to Time Series Analysis and Forecasting: With Applications of SAS and SPSS. Academic Presss, Inc, New York, pp 39-43.
  • Akaike H (1974): A New Look at the Statistical Model Identification. In: Parzen E., Tanabe K., Kitagawa G. (eds) Selected Papers of Hirotugu Akaike. Springer Series in Statistics (Perspectives in Statistics). Springer, New York, NY.
  • Günlü A (2011): Çiğ süt pazarlanmasında süt sanayi işletmelerinde firma yoğunlaşma oranlarının araştırılması Burdur ili örneği. Kafkas Univ Vet Fak Derg, 17(1), 101-106.
  • FAO (2007): AB giriş süreci çerçevesinde Türkiye’de süt ve süt ürünleri sektörüne genel bakış. Birleşmiş Milletler Gıda ve Tarım Örgütü, Roma.
  • Cenan N, Gürcan IS (2011): Türkiye çiftlik hayvan sayılarının ileriye dönük projeksiyonu: ARIMA modellemesi, Veteriner Hekimler Derneği Dergisi, 81(1), 35-42.
  • Kaygısız F, Sezgin FH (2017): Forecasting Goat Milk Production In Turkey Using Artificial Neural Networks And Box-Jenkins Models. Animal Review, 4(3), 45-52.
  • Guan Z, Philpott AB (2011): A multistage stochastic programming model for the New Zealand dairy industry. International Journal of Production Economics, 134(2), 289-299.
  • Hossain MJ, Hassan MF (2013): Forecasting of milk, meat and egg production in Bangladesh. Research Journal of Animal, Veterinary and Fishery Sciences, 1(9), 7-13.
  • Kaymaz Ö (2018): Forecasting of commercial egg production in Turkey with Box-Jenkins and Winter’s Exponential Smoothing Methods. Eurasian J Vet Sci, 34(3), 142-149.
  • Lewis CD (1997): Demand Forecasting and Inventory Control, Wiley, New York, USA.
  • Temuçin T, Temiz İ (2016): Türkiye dış ticaret ihracat hacminin projeksiyonu: Holt- inters ve Box-Jenkins modellerinin bir kıyaslaması. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Dergisi, 21(3), 937-960.
  • Kam HJ, Sung JO, Park RW (2010): Prediction of Daily Patient Numbers for a Regional Emergency Medical Center using Time Series Analysis. Healthc Inform Res, 16(3), 158-165.
  • Özen D, Tekindal MA, Çevrimli MB (2019): Modeling and forecasting meat consumption per Capita in Turkey. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 16(2), 122-129.
  • Sankar TJ, Prabakaran R (2012): Forecasting milk production in Tamilnadu. International Multidisciplinary Research Journal, 2(1), 10-15.

Modelling of the milk supplied to the industry in Turkey through Box-Jenkins and Winters' Exponential Smoothing methods

Yıl 2020, , 49 - 60, 15.01.2020
https://doi.org/10.33188/vetheder.643824

Öz

Analysis of the
quantity of cow milk supplied to the industry in Turkey is one of the methods
that could provide stakeholders with the most accurate results from the
perspective of raw milk projections and the interpretation of the sector.
Therefore, it is important that the amount of milk supplied to the industry is
used instead of the total amount of milk produced in the projections of the
sector. The present study is intended to model the time series data of the
amount of milk supplied to the dairy industry in Turkey between 2013/01 and
2018/03 using Box-Jenkins and Winters' Exponential Smoothing methods, and to
analyse the production of milk and the future of the dairy industry in Turkey
utilising the forecasts obtained from such models. The results of the analyses
indicate that the Winters' Exponential Smoothing model gives more consistent
results than the Box-Jenkins model with respect to the future forecast value
and decision-making criterion of the amount of milk supplied to the industry.

Kaynakça

  • Akın AC (2016): Türkiye süt sanayi işletmelerinin analizi ve sektöre ilişkin sorunların tespiti. PhD, Ankara Üniversitesi. Ankara. Türkiye.
  • TURKSTAT (2019): Sağılan hayvan sayısı ve süt üretim miktarı. Türkiye İstatistik Kurumu. Erişim adresi: http://tuik.gov.tr/PreTablo.do?alt_id=1002 Erişim tarihi: 18 March 2019.
  • TZOB (2011): Türkiye Ziraat Odaları Birliği Zirai ve İktisadi Rapor 2007-2010. Aydoğdu Ofset. Ankara. Türkiye.
  • Kaya Kuyululu ÇY (2009): Süt üretiminde arz yönetimi. Aydın İli Damızlık Sığır Yetiştiricileri Birliği Yayınları 2. Ankara.
  • State Planning Organisation (2001): 8. Beş Yıllık Kalkınma Planı Gıda Sanayii Özel İhtisas Komisyonu Raporu Süt ve Süt Ürünleri Sanayii Alt Komisyon Raporu. Ankara. Türkiye.
  • Günlü A (2011): Avrupa Birliği uyum sürecinde Türkiye süt sektöründe sorunlar ve çözüm önerileri. AB Uyum Sürecinde Türkiye Hayvancılık Kongresi; Ankara, Türkiye.
  • Guan Z, Philpott AB (2011): A multistage stochastic programming model for the New Zealand dairy industry. International Journal of Production Economics, 134 (2), 289-299.
  • Özen D (2017): Türkiye’de küçükbaş hayvan sayısının Box-Jenkis yöntemiyle modellenmesi ve ileriye yönelik projeksiyonu, II. Ulusal Hayvancılık Ekonomisi Kongresi Bildiri Kitabı. Antalya, Türkiye, 170.
  • Akter S, Rahman S (2010): Agribusiness forecasting with univariate time series modelling techniques: The case of a dairy cooperative in the UK. Journal of Farm Management, 13(11), 747-764.
  • Arun Patil B (2015): A study of growth rates on milk and milk products of bijapur and bagalkoat co-operative milk union limited (BIMUL). PhD, Professor Jayashankar Telangana State Agricultural University. Hyderabad.
  • Sankar TJ, Prabakaran R (2012): Forecasting milk production in Tamilnadu. International Multidisciplinary Research Journal, (1), 10-15.
  • Ahmed F, Shah H, Raza I, Saboor A (2011). Forecasting milk production in Pakistan. Pakistan Journal of Agricultural Research, 24(1-4), 82-85.
  • Deshmukh SS, Paramasivam R (2016): Forecasting of milk production in India with ARIMA and VAR time series models. Asian Journal of Dairy & Food Research, 35(1), 17-22.
  • Hansen BG (2015): Different methods to forecast milk delivery to dairy: a comparison for forecasting. International Journal of Agricultural Management, 4(3), 132-140.
  • Hansen BG, Li Y (2017): An analysis of past world market prices of feed and milk and predictions for the future. Agribusiness, 33(2), 175-193.
  • Tekindal MA, Güllü Ö, Yazıcı AC, Yavuz Y (2016): The modelling of time-series and the evaluation of forecasts for the future: the case of the number of persons per physician in Turkey between 1928 and 2010. Biomedical Research, 27(3), 965-971.
  • Fischer B (1995): Decomposition of time series comparing different methods in theory and practice. Eurostat Working Paper.
  • Gujarati DN. (2003): Basic Econometrics. (4th Edition). McGraw‐Hill. New York. pp:797.
  • Yenice S, Tekindal MA (2015): Forecasting the stock indexes of fragile five countries through Box-Jenkins methods. International Journal of Business and Social Science, 6(8), 180-191.
  • Dickey DA, Fuller WA (1981): Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49(4), 1057-1072.
  • Box GEP, Jenkins GM (1976): Time series Analysis; Forecasting and Control. Holden – Day Inc., USA.
  • Wickramarachchi AR, Herath HMLK, Jayasinghe-Mudalige UK, Edirisinghe JC, Udugama MM, Lokuge LDMN, Wijesuriya W (2017): An Analysis of Price Behavior of Major Poultry Products in Sri Lanka. The Journal of Agricultural Sciences, 12(2), 138-148.
  • Brockwell P, Davis R (2002): Introduction to Time Series and Forecasting. 2nd. Ed., Springer.
  • Yaffee R, McGee M (2002): An Introduction to Time Series Analysis and Forecasting: With Applications of SAS and SPSS. Academic Presss, Inc, New York, pp 39-43.
  • Akaike H (1974): A New Look at the Statistical Model Identification. In: Parzen E., Tanabe K., Kitagawa G. (eds) Selected Papers of Hirotugu Akaike. Springer Series in Statistics (Perspectives in Statistics). Springer, New York, NY.
  • Günlü A (2011): Çiğ süt pazarlanmasında süt sanayi işletmelerinde firma yoğunlaşma oranlarının araştırılması Burdur ili örneği. Kafkas Univ Vet Fak Derg, 17(1), 101-106.
  • FAO (2007): AB giriş süreci çerçevesinde Türkiye’de süt ve süt ürünleri sektörüne genel bakış. Birleşmiş Milletler Gıda ve Tarım Örgütü, Roma.
  • Cenan N, Gürcan IS (2011): Türkiye çiftlik hayvan sayılarının ileriye dönük projeksiyonu: ARIMA modellemesi, Veteriner Hekimler Derneği Dergisi, 81(1), 35-42.
  • Kaygısız F, Sezgin FH (2017): Forecasting Goat Milk Production In Turkey Using Artificial Neural Networks And Box-Jenkins Models. Animal Review, 4(3), 45-52.
  • Guan Z, Philpott AB (2011): A multistage stochastic programming model for the New Zealand dairy industry. International Journal of Production Economics, 134(2), 289-299.
  • Hossain MJ, Hassan MF (2013): Forecasting of milk, meat and egg production in Bangladesh. Research Journal of Animal, Veterinary and Fishery Sciences, 1(9), 7-13.
  • Kaymaz Ö (2018): Forecasting of commercial egg production in Turkey with Box-Jenkins and Winter’s Exponential Smoothing Methods. Eurasian J Vet Sci, 34(3), 142-149.
  • Lewis CD (1997): Demand Forecasting and Inventory Control, Wiley, New York, USA.
  • Temuçin T, Temiz İ (2016): Türkiye dış ticaret ihracat hacminin projeksiyonu: Holt- inters ve Box-Jenkins modellerinin bir kıyaslaması. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Dergisi, 21(3), 937-960.
  • Kam HJ, Sung JO, Park RW (2010): Prediction of Daily Patient Numbers for a Regional Emergency Medical Center using Time Series Analysis. Healthc Inform Res, 16(3), 158-165.
  • Özen D, Tekindal MA, Çevrimli MB (2019): Modeling and forecasting meat consumption per Capita in Turkey. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 16(2), 122-129.
  • Sankar TJ, Prabakaran R (2012): Forecasting milk production in Tamilnadu. International Multidisciplinary Research Journal, 2(1), 10-15.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Cerrahi
Bölüm Araştırma Makalesi
Yazarlar

Ahmet Cumhur Akın 0000-0003-3732-0529

Mustafa Agah Tekindal 0000-0002-4060-7048

Mehmet Saltuk Arıkan Bu kişi benim 0000-0003-4862-1706

Mustafa Bahadır Çevrimli 0000-0001-5888-242X

Yayımlanma Tarihi 15 Ocak 2020
Gönderilme Tarihi 6 Kasım 2019
Kabul Tarihi 12 Aralık 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

Vancouver Akın AC, Tekindal MA, Arıkan MS, Çevrimli MB. Modelling of the milk supplied to the industry in Turkey through Box-Jenkins and Winters’ Exponential Smoothing methods. Vet Hekim Der Derg. 2020;91(1):49-60.

Veteriner Hekimler Derneği Dergisi açık erişimli bir dergi olup, derginin yayın modeli Budapeşte Erişim Girişimi (BOAI) bildirisine dayanmaktadır. Yayınlanan tüm içerik, çevrimiçi ve ücretsiz olarak sunulan Creative Commons CC BY-NC 4.0 lisansı altında lisanslanmıştır. Yazarlar, Veteriner Hekimler Derneği Dergisi'nde yayınlanan eserlerinin telif haklarını saklı tutarlar.


Veteriner Hekimler Derneği / Turkish Veterinary Medical Society