Derleme
BibTex RIS Kaynak Göster

MikroRNAs and mikroRNAs using areas in livestock

Yıl 2020, Cilt: 91 Sayı: 2, 193 - 202, 15.06.2020
https://doi.org/10.33188/vetheder.674850

Öz

In recent years, advances in genetics have led to different selection approaches in animal husbandry. The molecules composed of approximately 22 nucleotides, called microRNA, that can effect the expression of 25% of the genes. On the other hand, to be expressed to some correlations between economically important feature and miRNA coding gene SNPs. In recent studies, investigation of the expression and function of miRNAs have been made progress. Therefore, became a current issue to the using of miRNAs as biomarker for detection of production traits in livestock species. In this review have been informed about miRNAs and using area of miRNA in livestock.

Kaynakça

  • Referans1 Abd El Naby WS, Hagos TH, Hossain MM, Salilew-Wondim D, Gad AY, Rings F, Cinar MU, Tholen E, Looft C, Schellander K, Hoelker M, Tesfaye D (2011). Expressİon analysis of regulatory microRNAs in bovine cumulus oocyte complex and preimplantation embryos. Zygote, 11: 1–21. Referans2 Akçapınar H, Özbeyaz C (1999). Hayvan Yetiştiriciliği Temel Bilgiler 1. Baskı, Kariyer Matbaacılık. ISBN: 975-96978-0-7. Ankara. Referans3 Annen E, Stiening C, Crooker B, Fitzgerald A, Collier R (2008). Effect of continuous milking and prostaglandin E2 on milk production and mammary epithelial cell turnover, ultrastructure, and gene expression. J Anim Sci, 86: 1132–1144. Referans4 Anonim (2014). Vikipedi. Erişim Adresi: http://en.wikipedia.org Erişim Tarihi: 21.08.2014 Referans5 Bannister SC, Tizard ML, Doran TJ, Sinclair AH, Smith CA (2009). Sexually dimorphic microRNA expression during chicken embryonic gonadal development. Biology of Reproduction, 81: 165–176. Referans6 Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116: 281–297. Referans7 Berry C, Thomas M, Langley B, Sharma M, Kambadur R (2002). Single cysteine to tyrosine transition inactivates the growth inhibitory function of Piedmontese myostatin. American Journal of Physiology Cell Physiology, 283: 135–141. Referans8 Chen X, Gao C, Li H, Huang L, Sun Q, Dong Y, Tian C, Gao S, Dong H, Guan D, Hu X, Zhao S, Li L, Zhu L, Yan Q, Zhang J, Zen K, Zhang CY (2010) Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res, 20: 1128–1137. Referans9 Chen C, Deng B, Qiao M, Zheng R, Chai J, Ding Y, Peng J, Jiang S (2012). Solexa sequencing identification of conserved and novel microRNAs in backfat of Large White and Chinese Meishan pigs. PLoS One, 7: e31426. Referans10 Cirera S, Birck M, Busk PK, Fredholm M (2010). Expression profiles of miRNA-122 and its target CAT1 in minipigs (Sus scrofa) fed a high-cholesterol diet. Comparative Medicine, 60: 136–141. Referans11 Clancy S (2008). RNA functions. Nature Education, 1 (1):1047. Referans12 Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, Bouix J, Caiment F, Elsen JM, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M (2006). A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genetics, 38: 813–818. Referans13 Curry E, Safranski TJ, Pratt SL (2011). Differential expression of porcine sperm microRNAs and their association with sperm morphology and motility. Theriogenology, 7: 1532–1539. Referans14 Darnell DK, Kaur S, Stanislaw S, Konieczka JH, Yatskievych TA, Antin PB (2006). MicroRNA expression during chick embryo development. Developmental Dynamics, 235: 3156–3165. Referans15 Desjardin C, Vaiman A, Mata Legendre R, Laubier J, Kennedy SP, Laloe D, Barrey D, Jacques C, Cribiu EP, Schibler L (2014). Next-generation sequencing identifies equine cartilage and subchondral bone miRNAs and suggests their involvement in osteochondrosis physiopathology. BMC Genomics, 15: 798. Referans16 Di Leva G, Calin GA, Croce CM (2006) MicroRNAs: fundamental facts and involvement in human diseases. Birth Defects Res C Embryo Today, 78(2): 180-9. Referans17 Eivers SS, Mcgivney BA, Fonseca RG, Machugh DE, Menson K, Park SD, Rivero JL, Taylor CT, Katz LM, Hill EW (2010). Alterations in oxidative gene expression in equine skeletal muscle following exercise and training. Physiol. Genomics, 40: 83–93. Referans18 Fatima A, Morris DG (2013). MicroRNAs in domestic livestock. Physiol. Genomics, 45: 685-696. Referans19 Galio L, Droineau S, Yeboah P, Boudiaf H, Bouet S, Truchet S, Devinoy E. (2013). MicroRNA in the ovine mammary gland during early pregnancy: spatial and temporal expression of miR-21, miR-205, and miR-200. Physiol Genomics, 45: 151–161. Referans20 Gima JA, Ayarpadikannana S, Eoa J, Kwona Yj, Choia Y, Leeb, HY, Parkb KD, Yangc YM, Chod BW, Kima HS (2014). Transcriptional expression changes of glucose metabolism genes after exercise in thoroughbred horses. Gene, 547: 152–158. Referans21 Gu Z, Eleswarapu S, Jiang H (2007). Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland. FEBS Lett, 581: 981–988. Referans22 Guan YJ, Yang X, Wei L, Chen Q (2011). MiR-365: a mechanosensitive microRNA stimulates chondrocyte differentiation through targeting histone deacetylase 4. FASEB Journal 25: 4457–4466. Referans23 Hou Q, Huang J, Ju Z, Li Q, Li L, Wang C, Sun T, Wang L, Hou M, Hang S, Zhong J (2011). Identification of splice variants, targeted microRNAs and functional single nucleotide polymorphisms of the BOLA-DQA2 gene in dairy cattle. DNA Cell Biol, 15: 15. Referans24 Huang P, Gong Y, Peng X, Li S, Yang Y, Feng Y (2010). Cloning, identification, and expression analysis at the stage of gonadal sex differentiation of chicken miR-363 and 363*. Acta Biochimica et Biophysica Sinica, 42: 522–529. Referans25 Jevsinek Skok, D, Godnic, İ, Zorc M, Horvat S, Dovc,P, Kovac M, Kunej T. (2013). Genome-wide in silico screening for microRNA genetic variability in livestock species. Animal Genetics Volume 44 (6): 669–677. Referans26 Jin W, Dodson MV, Moore SS, Basarab JA, Guan LL (2010). Characterization of microRNA expression in bovine adipose tissues: a potential regulatory mechanism of subcutaneous adipose tissue development. BMC Molecular Biology, 11: 29. Referans27 Kim D, Song J, Jin EJ (2010). MicroRNA-221 regulates chondrogenic differentiation through promoting proteosomal degradation of slug by targeting Mdm2. Journal of Biological Chemistry, 285: 26900–26907. Referans28 Kim D, Song J, Kim S, Chun CH, Jin EJ (2011a). MicroRNA-34a regulates migration of chondroblast and IL-1beta-induced degeneration of chondrocytes by targeting EphA5. Biochemical and Biophysical Research Communications, 415: 551–557. Referans29 Kim D, Song J, Kim S, Kang SS, Jin EJ (2011b). MicroRNA-142-3p regulates TGF-beta3-mediated region-dependent chondrogenesis by regulating ADAM9. Biochemical and Biophysical Research Communications, 414: 653–659. Referans30 Küçükhüseyin Ö, Öztürk O (2013). miRNA’lar ve Meme Kanserindeki Etkileri. Deneysel Tıp Araştırma Enstitüsü Dergisi, 3 (5):13-24. Referans31 Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001). Identification of novel genes coding for small expressed RNAs. Science, 294: 853–858. Referans32 Lee RC, Feinbaum RL, Ambros V (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell 75: 843–854. Referans33 Lee SI, Lee BR, Hwang YS, Lee HC, Rengaraj D, Song G, Park TS, Han JY (2011). MicroRNA-mediated posttranscriptional regulation is required for maintaining undifferentiated properties of blastoderm and primordial germ cells in chickens. Proceedings of the National Academy of Sciences of the United States of America, 108: 10426–10431. Referans34 Lei B, Gao S, Luo LF, Xia XY, Jiang SW, Deng CY, Xiong YZ, Li FE (2011). A SNP in the miR-27a gene is associated with litter size in pigs. Molecular Biology Reports, 38: 3725–3729. Referans35 Li H, Zhang Z, Zhou X, Wang Z, Wang G, Han Z (2011a). Effects of microRNA-143 in the differentiation and proliferation of bovine intramuscular preadipocytes. Molecular Biology Reports 38: 4273–4280. Referans36 Li T, Wu R, Zhang Y, Zhu D ( 2011b). A systematic analysis of the skeletal muscle miRNA transcriptome of chicken varieties with divergent skeletal muscle growth identifies novel miRNAs and differentially expressed miRNAs. BMC Genomics, 12: 186. Referans37 Li C, He H, Zhu M, Zhao S, Li X (2013). Molecular characterisation of porcine miR-155 and its regulatory roles in the TLR3/TLR4 pathways. Developmental and Comparative Immunology, 39: 110–116. Referans38 Lingenfelter BM, Tripurani SK, Tejomurtula J, Smith GW, Yao J (2011). Molecular cloning and expression of bovine nucleoplasmin 2 (NPM2): a maternal effect gene regulated by miR-181a. Reproductive Biology and Endocrinology, 9: 40. Referans39 Luo L, Ye L, Liu G, Shao G, Zheng R, Ren Z, Zuo B, Xu D, Lei M, Jiang S, Deng C, Xiong Y, Li F (2010). Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature and mature testes. PLoS One, 5: e11744 Referans40 Maak S, Boettcher D, Komolka K, Tetens J, Wimmers K, Reinsch N, Swalve HH, Thaller G (2010). Exclusion of sequence polymorphisms in the porcine ITGA5 and MIR148B loci as causal variation for congenital splay leg in piglets. Animal Genetics, 41: 447–448. Referans41 Miles JR, Mcdaneld TG, Wiedmann RT, Cushman RA, Echternkamp SE, Vallet JL, Smith TP (2012). MicroRNA expression profile in bovine cumulus-oocyte complexes: possible role of let-7 and miR-106a in the development of bovine oocytes. Animal Reproduction Science, 130: 16–26. Referans42 Mondou E, Dufort I, Gohin M, Fournier E, Sirard MA (2012). Analysis of microRNAs and their precursors in bovine early embryonic development. Molecular Human Reproduction, 18: 425–434. Referans43 Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S, Harel-Bellan A (2006). The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nature Cell Biology, 8: 278–284. Referans44 Ogorevc J, Kunej T, Razpet A, Dovc P (2009). Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim Genet, 40: 832–851, 2009. Referans45 Reinhart BJ, Slack FJ, Basson, M, Pasquinelli AE, Bettinger JC, Rougvie AE, ... & Ruvkun G (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabdi¬tis elegans. Nature, 403: 901–906. Referans46 Rengaraj D, Lee BR, Lee SI, Seo Hw, Han JY (2011). Expression patterns and miRNA regulation of DNA methyltransferases in chicken primordial germ cells. PLoS One, 6: e19524. Referans47 Ribas L, Pardo BG, Fernandez C, Alvarez-Dios JA, Gomez-Tato A, Quiroga MI, Planas JV, Sitja-Bobadilla A, Martinez P, Piferrer F (2013). A combined strategy involving Sanger and 454 pyrosequencing increases genomic resources to aid in the management of reproduction, disease control and genetic selection in the turbot (Scophthalmus maximus). BMC GENOMICS, 14: 180. Referans48 Romao JM, Jin W, He M, Mcallister T, Guan LL (2012). Altered microRNA expression in bovine subcutaneous and visceral adipose tissues from cattle under different diet. PLoS One 7: e40605. Referans49 Saydam F, Değirmenci İ, Güneş HV (2011). MiRNA’lar ve kanser. Dicle Tıp Dergisi, 38 (1): 113-120. Referans50 Sharbati S, Friedlander Mr, Sharbati J, Hoeke L, Chen W, Keller A, Stahler Pf, Rajewsky N, Einspanier R (2010). Deciphering the porcine intestinal microRNA transcriptome. BMC Genomics, 11: 275. Referans51 Torley KJ, Da Silveira JC, Smith P, Anthony RV, Veeramachaneni DN, Winger QA, Bouma GJ (2011). Expression of miRNAs in ovine fetal gonads: potential role in gonadal differentiation. Reproductive Biology and Endocrinology, 9: 2. Referans52 Townley-Tilson WH, Callis TE, Wang D (2010). MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease. The International Journal of Biochemistry & Cell Biology 42: 1252–1255. Referans53 Tripurani SK, Lee KB, Wee G, Smith GW, Yao J (2011). MicroRNA-196a regulates bovine newborn ovary homeobox gene (NOBOX) expression during early embryogenesis. BMC Developmental Biology, 11: 25. Referans54 Tunalı NE, Tiryakioğlu NO (2010). Kanserde MiRNA’ların Rolü Türkiye Klinikleri J Med Sci, 30 (5): 1690-700. Referans55 Van Rooij E (2011). The art of microRNA research. Circ Res, 108 (2): 219-234. Referans56 Wang M, Moisa S, Khan MJ, Wang J, Bu D, Loor JJ (2012a). MicroRNA expression patterns in the bovine mammary gland are affected by stage of lactation. J Dairy Sci, 6: 6. Referans57 Wang XG, Yu JF, Zhang Y, Gong DQ, Gu ZL (2012b). Identification and characterization of microRNA from chicken adipose tissue and skeletal muscle. Poultry Science, 91: 139–149. Referans58 Wang X, Gua Z, Jianga H (2013). MicroRNAs in farm animals. Animal, 7: 1567-1575. Referans59 Wenguang Z, Jianghong W, Jinquan L, Yashizawa M (2007). A subset of skinexpressed microRNAs with possible roles in goat and sheep hair growth based on expression profiling of mammalian microRNAs. OMICS, 11: 385–396. Referans60 Wightman B, Ha I, Ruvkun G (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75 (5): 855-862. Referans61 Wijnhoven BP, Michael MZ, Watson DI (2007). MicroRNAs and cancer. Br J Surg, 94: 23–30. Referans62 Xu H, Wang X, Du Z, Li N (2006). Identification of microRNAs from different tissues of chicken embryo and adult chicken. FEBS Letters 580: 3610–3616. Referans63 Xu H, Yao Y, Smith LP, Nair V (2010). MicroRNA-26a-mediated regulation of interleukin-2 expression in transformed avian lymphocyte lines. Cancer Cell International, 10, 15. Referans64 Xu S, Linher-Melville K, Yang BB, Wu D, Li J (2011). Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase. Endocrinology, 152: 3941–3951. Referans65 Zhao C, Tian F, Yu Y, Liu G, Zan L, Updike MS, Song J (2012a). miRNA dysregulation associated with tenderness variation induced by acute stress in Angus cattle. Journal of Animal Science and Biotechnology, 3: 12. Referans66 Zhao S, Zhang J, Hou X, Zan L, Wang N, Tang Z, Li K (2012b). OLFML3 expression is decreased during prenatal muscle development and regulated by microRNA-155 in pigs. International Journal of Biological Sciences, 8: 459–469.

Mikrorna’lar ve çiftlik hayvanlarında kullanım alanları

Yıl 2020, Cilt: 91 Sayı: 2, 193 - 202, 15.06.2020
https://doi.org/10.33188/vetheder.674850

Öz

Son yıllarda genetik alanında meydana gelen ilerlemeler, hayvan yetiştiriciliğinde farklı seleksiyon yaklaşımlarını ortaya çıkartmıştır. Yaklaşık olarak 22 nükleotidden oluşan ve mikroRNA olarak adlandırılan moleküllerin, gen ekspresyonlarının %25’ini etkilediği düşünülmektedir. Ayrıca miRNA’ları kodlayan genlerdeki SNP (Single Nucletide Polymorphism) noktalarının çiftlik hayvanlarında ekonomik öneme sahip verim özellikleriyle ilişkili oldukları bildirilmektedir. Son yıllarda yapılan çalışmalarda miRNA’ların ekspresyon ve fonksiyonlarının araştırılması hususunda ilerleme sağlanmış olup verim özelliklerinin belirlenmesinde miRNA’ların çiftlik hayvanlarında biyomarker olarak kullanımı gündeme gelmiştir. Bu derlemede, miRNA’lar ve çiftlik hayvanlarında kulanım alanları hakkında bilgi verilmiştir.

Kaynakça

  • Referans1 Abd El Naby WS, Hagos TH, Hossain MM, Salilew-Wondim D, Gad AY, Rings F, Cinar MU, Tholen E, Looft C, Schellander K, Hoelker M, Tesfaye D (2011). Expressİon analysis of regulatory microRNAs in bovine cumulus oocyte complex and preimplantation embryos. Zygote, 11: 1–21. Referans2 Akçapınar H, Özbeyaz C (1999). Hayvan Yetiştiriciliği Temel Bilgiler 1. Baskı, Kariyer Matbaacılık. ISBN: 975-96978-0-7. Ankara. Referans3 Annen E, Stiening C, Crooker B, Fitzgerald A, Collier R (2008). Effect of continuous milking and prostaglandin E2 on milk production and mammary epithelial cell turnover, ultrastructure, and gene expression. J Anim Sci, 86: 1132–1144. Referans4 Anonim (2014). Vikipedi. Erişim Adresi: http://en.wikipedia.org Erişim Tarihi: 21.08.2014 Referans5 Bannister SC, Tizard ML, Doran TJ, Sinclair AH, Smith CA (2009). Sexually dimorphic microRNA expression during chicken embryonic gonadal development. Biology of Reproduction, 81: 165–176. Referans6 Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116: 281–297. Referans7 Berry C, Thomas M, Langley B, Sharma M, Kambadur R (2002). Single cysteine to tyrosine transition inactivates the growth inhibitory function of Piedmontese myostatin. American Journal of Physiology Cell Physiology, 283: 135–141. Referans8 Chen X, Gao C, Li H, Huang L, Sun Q, Dong Y, Tian C, Gao S, Dong H, Guan D, Hu X, Zhao S, Li L, Zhu L, Yan Q, Zhang J, Zen K, Zhang CY (2010) Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res, 20: 1128–1137. Referans9 Chen C, Deng B, Qiao M, Zheng R, Chai J, Ding Y, Peng J, Jiang S (2012). Solexa sequencing identification of conserved and novel microRNAs in backfat of Large White and Chinese Meishan pigs. PLoS One, 7: e31426. Referans10 Cirera S, Birck M, Busk PK, Fredholm M (2010). Expression profiles of miRNA-122 and its target CAT1 in minipigs (Sus scrofa) fed a high-cholesterol diet. Comparative Medicine, 60: 136–141. Referans11 Clancy S (2008). RNA functions. Nature Education, 1 (1):1047. Referans12 Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, Bouix J, Caiment F, Elsen JM, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M (2006). A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genetics, 38: 813–818. Referans13 Curry E, Safranski TJ, Pratt SL (2011). Differential expression of porcine sperm microRNAs and their association with sperm morphology and motility. Theriogenology, 7: 1532–1539. Referans14 Darnell DK, Kaur S, Stanislaw S, Konieczka JH, Yatskievych TA, Antin PB (2006). MicroRNA expression during chick embryo development. Developmental Dynamics, 235: 3156–3165. Referans15 Desjardin C, Vaiman A, Mata Legendre R, Laubier J, Kennedy SP, Laloe D, Barrey D, Jacques C, Cribiu EP, Schibler L (2014). Next-generation sequencing identifies equine cartilage and subchondral bone miRNAs and suggests their involvement in osteochondrosis physiopathology. BMC Genomics, 15: 798. Referans16 Di Leva G, Calin GA, Croce CM (2006) MicroRNAs: fundamental facts and involvement in human diseases. Birth Defects Res C Embryo Today, 78(2): 180-9. Referans17 Eivers SS, Mcgivney BA, Fonseca RG, Machugh DE, Menson K, Park SD, Rivero JL, Taylor CT, Katz LM, Hill EW (2010). Alterations in oxidative gene expression in equine skeletal muscle following exercise and training. Physiol. Genomics, 40: 83–93. Referans18 Fatima A, Morris DG (2013). MicroRNAs in domestic livestock. Physiol. Genomics, 45: 685-696. Referans19 Galio L, Droineau S, Yeboah P, Boudiaf H, Bouet S, Truchet S, Devinoy E. (2013). MicroRNA in the ovine mammary gland during early pregnancy: spatial and temporal expression of miR-21, miR-205, and miR-200. Physiol Genomics, 45: 151–161. Referans20 Gima JA, Ayarpadikannana S, Eoa J, Kwona Yj, Choia Y, Leeb, HY, Parkb KD, Yangc YM, Chod BW, Kima HS (2014). Transcriptional expression changes of glucose metabolism genes after exercise in thoroughbred horses. Gene, 547: 152–158. Referans21 Gu Z, Eleswarapu S, Jiang H (2007). Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland. FEBS Lett, 581: 981–988. Referans22 Guan YJ, Yang X, Wei L, Chen Q (2011). MiR-365: a mechanosensitive microRNA stimulates chondrocyte differentiation through targeting histone deacetylase 4. FASEB Journal 25: 4457–4466. Referans23 Hou Q, Huang J, Ju Z, Li Q, Li L, Wang C, Sun T, Wang L, Hou M, Hang S, Zhong J (2011). Identification of splice variants, targeted microRNAs and functional single nucleotide polymorphisms of the BOLA-DQA2 gene in dairy cattle. DNA Cell Biol, 15: 15. Referans24 Huang P, Gong Y, Peng X, Li S, Yang Y, Feng Y (2010). Cloning, identification, and expression analysis at the stage of gonadal sex differentiation of chicken miR-363 and 363*. Acta Biochimica et Biophysica Sinica, 42: 522–529. Referans25 Jevsinek Skok, D, Godnic, İ, Zorc M, Horvat S, Dovc,P, Kovac M, Kunej T. (2013). Genome-wide in silico screening for microRNA genetic variability in livestock species. Animal Genetics Volume 44 (6): 669–677. Referans26 Jin W, Dodson MV, Moore SS, Basarab JA, Guan LL (2010). Characterization of microRNA expression in bovine adipose tissues: a potential regulatory mechanism of subcutaneous adipose tissue development. BMC Molecular Biology, 11: 29. Referans27 Kim D, Song J, Jin EJ (2010). MicroRNA-221 regulates chondrogenic differentiation through promoting proteosomal degradation of slug by targeting Mdm2. Journal of Biological Chemistry, 285: 26900–26907. Referans28 Kim D, Song J, Kim S, Chun CH, Jin EJ (2011a). MicroRNA-34a regulates migration of chondroblast and IL-1beta-induced degeneration of chondrocytes by targeting EphA5. Biochemical and Biophysical Research Communications, 415: 551–557. Referans29 Kim D, Song J, Kim S, Kang SS, Jin EJ (2011b). MicroRNA-142-3p regulates TGF-beta3-mediated region-dependent chondrogenesis by regulating ADAM9. Biochemical and Biophysical Research Communications, 414: 653–659. Referans30 Küçükhüseyin Ö, Öztürk O (2013). miRNA’lar ve Meme Kanserindeki Etkileri. Deneysel Tıp Araştırma Enstitüsü Dergisi, 3 (5):13-24. Referans31 Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001). Identification of novel genes coding for small expressed RNAs. Science, 294: 853–858. Referans32 Lee RC, Feinbaum RL, Ambros V (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell 75: 843–854. Referans33 Lee SI, Lee BR, Hwang YS, Lee HC, Rengaraj D, Song G, Park TS, Han JY (2011). MicroRNA-mediated posttranscriptional regulation is required for maintaining undifferentiated properties of blastoderm and primordial germ cells in chickens. Proceedings of the National Academy of Sciences of the United States of America, 108: 10426–10431. Referans34 Lei B, Gao S, Luo LF, Xia XY, Jiang SW, Deng CY, Xiong YZ, Li FE (2011). A SNP in the miR-27a gene is associated with litter size in pigs. Molecular Biology Reports, 38: 3725–3729. Referans35 Li H, Zhang Z, Zhou X, Wang Z, Wang G, Han Z (2011a). Effects of microRNA-143 in the differentiation and proliferation of bovine intramuscular preadipocytes. Molecular Biology Reports 38: 4273–4280. Referans36 Li T, Wu R, Zhang Y, Zhu D ( 2011b). A systematic analysis of the skeletal muscle miRNA transcriptome of chicken varieties with divergent skeletal muscle growth identifies novel miRNAs and differentially expressed miRNAs. BMC Genomics, 12: 186. Referans37 Li C, He H, Zhu M, Zhao S, Li X (2013). Molecular characterisation of porcine miR-155 and its regulatory roles in the TLR3/TLR4 pathways. Developmental and Comparative Immunology, 39: 110–116. Referans38 Lingenfelter BM, Tripurani SK, Tejomurtula J, Smith GW, Yao J (2011). Molecular cloning and expression of bovine nucleoplasmin 2 (NPM2): a maternal effect gene regulated by miR-181a. Reproductive Biology and Endocrinology, 9: 40. Referans39 Luo L, Ye L, Liu G, Shao G, Zheng R, Ren Z, Zuo B, Xu D, Lei M, Jiang S, Deng C, Xiong Y, Li F (2010). Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature and mature testes. PLoS One, 5: e11744 Referans40 Maak S, Boettcher D, Komolka K, Tetens J, Wimmers K, Reinsch N, Swalve HH, Thaller G (2010). Exclusion of sequence polymorphisms in the porcine ITGA5 and MIR148B loci as causal variation for congenital splay leg in piglets. Animal Genetics, 41: 447–448. Referans41 Miles JR, Mcdaneld TG, Wiedmann RT, Cushman RA, Echternkamp SE, Vallet JL, Smith TP (2012). MicroRNA expression profile in bovine cumulus-oocyte complexes: possible role of let-7 and miR-106a in the development of bovine oocytes. Animal Reproduction Science, 130: 16–26. Referans42 Mondou E, Dufort I, Gohin M, Fournier E, Sirard MA (2012). Analysis of microRNAs and their precursors in bovine early embryonic development. Molecular Human Reproduction, 18: 425–434. Referans43 Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S, Harel-Bellan A (2006). The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nature Cell Biology, 8: 278–284. Referans44 Ogorevc J, Kunej T, Razpet A, Dovc P (2009). Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim Genet, 40: 832–851, 2009. Referans45 Reinhart BJ, Slack FJ, Basson, M, Pasquinelli AE, Bettinger JC, Rougvie AE, ... & Ruvkun G (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabdi¬tis elegans. Nature, 403: 901–906. Referans46 Rengaraj D, Lee BR, Lee SI, Seo Hw, Han JY (2011). Expression patterns and miRNA regulation of DNA methyltransferases in chicken primordial germ cells. PLoS One, 6: e19524. Referans47 Ribas L, Pardo BG, Fernandez C, Alvarez-Dios JA, Gomez-Tato A, Quiroga MI, Planas JV, Sitja-Bobadilla A, Martinez P, Piferrer F (2013). A combined strategy involving Sanger and 454 pyrosequencing increases genomic resources to aid in the management of reproduction, disease control and genetic selection in the turbot (Scophthalmus maximus). BMC GENOMICS, 14: 180. Referans48 Romao JM, Jin W, He M, Mcallister T, Guan LL (2012). Altered microRNA expression in bovine subcutaneous and visceral adipose tissues from cattle under different diet. PLoS One 7: e40605. Referans49 Saydam F, Değirmenci İ, Güneş HV (2011). MiRNA’lar ve kanser. Dicle Tıp Dergisi, 38 (1): 113-120. Referans50 Sharbati S, Friedlander Mr, Sharbati J, Hoeke L, Chen W, Keller A, Stahler Pf, Rajewsky N, Einspanier R (2010). Deciphering the porcine intestinal microRNA transcriptome. BMC Genomics, 11: 275. Referans51 Torley KJ, Da Silveira JC, Smith P, Anthony RV, Veeramachaneni DN, Winger QA, Bouma GJ (2011). Expression of miRNAs in ovine fetal gonads: potential role in gonadal differentiation. Reproductive Biology and Endocrinology, 9: 2. Referans52 Townley-Tilson WH, Callis TE, Wang D (2010). MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease. The International Journal of Biochemistry & Cell Biology 42: 1252–1255. Referans53 Tripurani SK, Lee KB, Wee G, Smith GW, Yao J (2011). MicroRNA-196a regulates bovine newborn ovary homeobox gene (NOBOX) expression during early embryogenesis. BMC Developmental Biology, 11: 25. Referans54 Tunalı NE, Tiryakioğlu NO (2010). Kanserde MiRNA’ların Rolü Türkiye Klinikleri J Med Sci, 30 (5): 1690-700. Referans55 Van Rooij E (2011). The art of microRNA research. Circ Res, 108 (2): 219-234. Referans56 Wang M, Moisa S, Khan MJ, Wang J, Bu D, Loor JJ (2012a). MicroRNA expression patterns in the bovine mammary gland are affected by stage of lactation. J Dairy Sci, 6: 6. Referans57 Wang XG, Yu JF, Zhang Y, Gong DQ, Gu ZL (2012b). Identification and characterization of microRNA from chicken adipose tissue and skeletal muscle. Poultry Science, 91: 139–149. Referans58 Wang X, Gua Z, Jianga H (2013). MicroRNAs in farm animals. Animal, 7: 1567-1575. Referans59 Wenguang Z, Jianghong W, Jinquan L, Yashizawa M (2007). A subset of skinexpressed microRNAs with possible roles in goat and sheep hair growth based on expression profiling of mammalian microRNAs. OMICS, 11: 385–396. Referans60 Wightman B, Ha I, Ruvkun G (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75 (5): 855-862. Referans61 Wijnhoven BP, Michael MZ, Watson DI (2007). MicroRNAs and cancer. Br J Surg, 94: 23–30. Referans62 Xu H, Wang X, Du Z, Li N (2006). Identification of microRNAs from different tissues of chicken embryo and adult chicken. FEBS Letters 580: 3610–3616. Referans63 Xu H, Yao Y, Smith LP, Nair V (2010). MicroRNA-26a-mediated regulation of interleukin-2 expression in transformed avian lymphocyte lines. Cancer Cell International, 10, 15. Referans64 Xu S, Linher-Melville K, Yang BB, Wu D, Li J (2011). Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase. Endocrinology, 152: 3941–3951. Referans65 Zhao C, Tian F, Yu Y, Liu G, Zan L, Updike MS, Song J (2012a). miRNA dysregulation associated with tenderness variation induced by acute stress in Angus cattle. Journal of Animal Science and Biotechnology, 3: 12. Referans66 Zhao S, Zhang J, Hou X, Zan L, Wang N, Tang Z, Li K (2012b). OLFML3 expression is decreased during prenatal muscle development and regulated by microRNA-155 in pigs. International Journal of Biological Sciences, 8: 459–469.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner Cerrahi
Bölüm Derleme
Yazarlar

Mücahit Kahraman 0000-0002-7757-2483

Banu Yüceer Özkul 0000-0002-7036-6230

Yayımlanma Tarihi 15 Haziran 2020
Gönderilme Tarihi 15 Ocak 2020
Kabul Tarihi 21 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 91 Sayı: 2

Kaynak Göster

Vancouver Kahraman M, Yüceer Özkul B. Mikrorna’lar ve çiftlik hayvanlarında kullanım alanları. Vet Hekim Der Derg. 2020;91(2):193-202.

Veteriner Hekimler Derneği Dergisi açık erişimli bir dergi olup, derginin yayın modeli Budapeşte Erişim Girişimi (BOAI) bildirisine dayanmaktadır. Yayınlanan tüm içerik, çevrimiçi ve ücretsiz olarak sunulan Creative Commons CC BY-NC 4.0 lisansı altında lisanslanmıştır. Yazarlar, Veteriner Hekimler Derneği Dergisi'nde yayınlanan eserlerinin telif haklarını saklı tutarlar.


Veteriner Hekimler Derneği / Turkish Veterinary Medical Society