Araştırma Makalesi
BibTex RIS Kaynak Göster

Sustainable Wastewater Management: Treatment Plant Investment Predictions in Turkey

Yıl 2025, Cilt: 11 Sayı: 1, 29 - 43, 30.06.2025
https://doi.org/10.51803/yssr.1681392

Öz

In this study, it is aimed to examine the future treatment plant investment projections for the sustainable development of wastewater management in Turkey. In today's conditions, where increasing population, industrialization and urbanization processes lead to an increase in wastewater production, which puts pressure on water resources, effective wastewater treatment is of great importance. In line with Turkey's global cooperation on environmental policies, sustainable development and environmental protection, investments in wastewater treatment plants are expected to be increased. In this context, the number of wastewater treatment plants in Turkey between 2001 and 2022, the amount of wastewater treated, the population provided with waste service, the total amount of wastewater discharged, and the amount of wastewater discharged per capita were discussed by using TURKSTAT data. By using the automatic ARIMA and ARIMA methods, 3 periods between 2023-2025 were estimated. Eviews 12.0 software was used in the analysis of the data. As a result of the analyzes, it has been determined that 1923 wastewater treatment plants will be needed for 2025 in terms of the amount of wastewater treated, 1858 in terms of the population with waste service, 1922 in terms of the total amount of wastewater discharged and 1928 in terms of the amount of wastewater discharged per capita. The projections emphasize that the capacity of treatment plants should be increased with the cooperation of local governments and the private sector, and that this process will provide not only environmental but also economic and social benefits. In addition, the emphasis is on the implementation of advanced treatment technologies, innovative financing models and increasing the environmental awareness of local people. In this direction, taking concrete steps to ensure sustainable development by protecting Turkey's water resources becomes evident as an important strategy in wastewater management in the coming years.

Destekleyen Kurum

-

Teşekkür

-

Kaynakça

  • REFERENCES
  • Açıkalın, S. (2007). Atıksu arıtma tesisi veriminin yapay sinir ağları ile tahmin edilmesi [Yayınlanmamış Yüksek Lisans Tezi]. Sakarya Universitesi Fen Bilimleri Enstitüsü. [Turkish]
  • Aivazidou, E., Banias, G., Lampridi, M., Vasileiadis, G., Anagnostis, A., Papageorgiou, E., & Bochtis, D. (2021). Smart technologies for sustainable water management: An urban analysis. Sustainability, 13(24), Article 13940. [CrossRef]
  • Axon, S. (2024). Unveiling Understandings of the Rio Declaration’s Sustainability Principles: A Case of Alternative Concepts, Misaligned (Dis) Connections, and Terminological Evolution. Sustainability, 16(6), 121. [CrossRef]
  • Aydin, M., Sogut, Y., & Erdem, A. (2024). The role of environmental technologies, institutional quality, and globalization on environmental sustainability in European Union countries: new evidence from advanced panel data estimations. Environmental Science and Pollution Research, 31(7), 1046010472. [CrossRef]
  • Baki, O. T., & Aras, E. (2018). Estimation of bod in wastewater treatment plant with different regression models. Engineering Sciences, 13(2), 96105. [Turkish]
  • Baran, B. (2020). Coverage ratio of residential electricity demand of turkey with wastewater treatment plant hydroelectric production. Academic Platform-Journal of Engineering and Science, 8(1), 139145. [Turkish]
  • Bayram, V. (2023). Transition to circular economy: Importance of environmental protection expenditures and investments in business strategies. Karadeniz Journal of Economic Research, 4(1), 124.
  • Bayram, V. (2024). From Linear Economy to Circular Economy: The Key to Sustainable Development. İçinde: Evaluations of Sustainable and Green Energy Policies. Nova Science Publishers.
  • Beckerd, M., & Muñoz, R. (2021). Funding and financing to scale nature-based solutions for water security. Nature-Based Solutions and Water Security: An Action Agenda for the 21st Century, 361. [CrossRef] Bergmeir, C., Hyndman, R. J., & Benítez, J. M. (2016) Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation. International Journal of Forecasting, 32, 303312. [CrossRef]
  • Bergquist, A. K., & David, T. (2024). Business (In-) Action: The International Chamber of Commerce and Climate Change from Stockholm to Rio. Uppsala Papers in Economic History, 3, 29. Working Paper 2024/15. [CrossRef]
  • Bowerman, B. L., & O’Connell, R. T. (1979). Time Series and Forecasting: An Applied Approach. Duxbury Press.
  • Cohen, R., Eames, P. C., Hammond, G. P., Newborough, M., & Norton, B. (2022). Briefing: The 2021 Glasgow Climate Pact: Steps on the transition pathway towards a low carbon world. Proceedings of the Institution of Civil Engineers-Energy, 175(3), 97102. [CrossRef]
  • Degirmenci, T., & Aydin, M. (2024). Testing the load capacity curve hypothesis with green innovation, green tax, green energy, and technological diffusion: A novel approach to Kyoto protocol. Sustainable Development, 32(5), 49314945. [CrossRef]
  • Demir, N. M. (2017). Use of artificial neural networks as a tool to predict carbon and nitrogen removal efficiencies in biological wastewater treatment plants. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6(2), 375386.
  • Devi, G. (2025). Environmental sustainability through green economy in context to Indian scenario: A review. Medicon Agriculture & Environmental Sciences, 8, 1627.
  • Dhokpande, S. R., Deshmukh, S. M., Khandekar, A., & Sankhe, A. (2024). A review outlook on methods for removal of heavy metal ions from wastewater. Separation and Purification Technology, 350, Article 127868, 116. [CrossRef]
  • Efe, M. (2006). Atıksu ve yağmursuyu toplayıcı sistemlerinin tasarımı ve işletilmesinde kullanılan bilgisayar destekli modellerin değerlendirilmesi ve bir örnek uygulama [Yayınlanmamış Yüksek Lisans Tezi]. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü. [Turkish]
  • Ejairu, U., Aderamo, A. T., Olisakwe, H. C., Esiri, A. E., Adanma, U. M., & Solomon, N. O. (2024). Eco-friendly wastewater treatment technologies (concept): Conceptualizing advanced, sustainable wastewater treatment designs for industrial and municipal applications. Comprehensive research and reviews in Engineering and Technology, 2(1), 83104. [CrossRef]
  • Furlong, C., De Silva, S., Gan, K., Guthrie, L., & Considine, R. (2017). Risk management, financial evaluation and funding for wastewater and stormwater reuse projects. Journal of Environmental Management, 191, 8395. [CrossRef]
  • Gülhan, H. (2017). Evsel atıksu arıtma tesislerinden kaynaklanan sera gazı salımının tahmini. [Yayınlanmamış Yüksek Lisans tezi]. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü.
  • Gülhan, H., Özgün, H., Erşahin, M. E., Dereli, R. K., & Öztürk, İ. (2018). Estimation of greenhouse gas emissions of biological wastewatertreatment plants in Istanbul by modelling. Sci Eng J Fırat Univ 30(1), 5967.
  • IHS Markit (2024a). Eviews 12 User’s Guide I. https://cdn1.eviews.com/EViews%2012%20Users%20Guide%20I.pdf.
  • IHS Markit (2024b). Eviews 12 User’s Guide II. https://cdn1.eviews.com/EViews%2012%20Users%20Guide%20II.pdf.
  • Izuchukwu Precious, O., Zino Izu, O., Frank Chudi, A., Theresa Ojevwe, A., & Chinwe Sheila, N. (2025). The role of environmental governance in combating climate change: Analyzing COP28 Agreements and their Implementation. Journal of Integrity Ecosystems and Environment, 3(3), 1226.
  • Kataoka, T., Nihei, Y., Kudou, K., & Hinata, H. (2019). Assessment of the sources and inflow processes of microplastics in the river environments of Japan. Environmental Pollution, 244, 958965. [CrossRef]
  • Kato, S., & Kansha, Y. (2024). Comprehensive review of industrial wastewater treatment techniques. Environmental Science and Pollution Research, 31(39), 5106451097. [CrossRef]
  • Khan, M. T., Ahmad, R., Liu, G., Zhang, L., Santagata, R., Lega, M., & Casazza, M. (2024). Potential environmental impacts of a hospital wastewater treatment plant in a developing country. Sustainability, 16(6), Article 2233. [CrossRef]
  • Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54(1-3), 159–178. [CrossRef]
  • Lako, A., & Çomo, E. (2024). Sustainable water management: an integrated approach to solving the problems of wastewater treatment. Qubahan Academic Journal, 4(1), 91100. [CrossRef]
  • Ma, Q., Li, S., Aslam, M., Ali, N., & Alamri, A. M. (2023). Extraction of natural resources and sustainable renewable energy: COP26 target in the context of financial inclusion. Resources Policy, 82, Article 103466. [CrossRef]
  • Mannina, G., Gulhan, H., & Ni, B. J. (2022). Water reuse from wastewater treatment: The transition towards circular economy in the water sector. Bioresource Technology, 363, Article 127951. [CrossRef]
  • Mason, S. A., Garneau, D., Sutton, R., Chu, Y., Ehmann, K., Barnes, J., ... & Rogers, D. L. (2016). Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environmental Pollution, 218, 10451054. [CrossRef]
  • Mmonwuba, N. C., Agunwamba, J. C., Obumneme, A. A., Linus, I. C., & Chukwuemelie, N. A. (2024). Comparing the performance of physical, chemical and biological treatment in waste water remediation. Asian Journal of Advanced Research and Reports, 18(12), 571585. [CrossRef]
  • Mor, S., Aneja, R., Madan, S., & Ghimire, M. (2024). Kyoto protocol and Paris agreement: Transition from bindings to pledges–A review. Millennial Asia, 15(4), 690711. [CrossRef]
  • Obaideen, K., Shehata, N., Sayed, E. T., Abdelkareem, M. A., Mahmoud, M. S., & Olabi, A. G. (2022). The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline. Energy Nexus, 7, Article 100112. [CrossRef]
  • Obiuto, N. C., Olu-lawal, K. A., Ani, E. C., Ugwuanyi, E. D., & Ninduwezuor-Ehiobu, N. (2024). Chemical engineering and the circular water economy: Simulations for sustainable water management in environmental systems. World Journal of Advanced Research and Reviews, 21(3), 001009. [CrossRef]
  • Öztemel, E., & Dügenci, M. (2016, November). Atıksu arıtma tesis kontrolde yapay sinir ağı ile kirlilik parametre tahmini. In 3rd International Symposium on Environment and Morality, Alanya, Türkiye.
  • Pekel, L. C. (2009). Çöktürme yönteminin kullanıldığı boya atıksu arıtma sisteminin genelleştirilmiş tahmin edici kontrol (GPC) ile pH kontrolü [Yayınlanmamış Yüksek Lisans tezi]. Ankara Üniversitesi, Fen Bilimleri Enstitüsü.
  • Schäfer, M., Gretzschel, O., & Steinmetz, H. (2020). The possible roles of wastewater treatment plants in sector coupling. Energies, 13(8), Article 2088. [CrossRef]
  • Schneider, H. (2024). “Common but Differentiated Responsibilities” in the Paris Agreement. FIU Law Review, 18(2), 327345. [CrossRef]
  • Selvi, E. (2019). Kentsel atıksu arıtma tesisi biyolojik oksijen ihtiyacının (BOİ5) makina öğrenmesi yöntemleri ile tahmin edilmesi [Yayınlanmamış Yüksek Lisans Tezi]. Sakarya Üniversitesi.
  • Sidal, F., & Altun, Y. (2003). Prediction of biochemical oxygen demand in wastewater treatment plants using artificial neural network and regression analysis. Journal of the Institute of Science and Technology, 13(4), 29342944. [Turkish]
  • Sinan, R. K. (2010). Evsel atıksu arıtma tesislerinde ön arıtım ve biyolojik arıtım çıkış parametrelerinin YSA ile tahmini [Yayınlanmamış Yüksek Lisans tezi]. Selçuk Üniversitesi Fen Bilimleri Enstitüsü.
  • Sravan, J. S., Matsakas, L., & Sarkar, O. (2024). Advances in biological wastewater treatment processes: focus on low-carbon energy and resource recovery in biorefinery context. Bioengineering, 11(3), Article 281. [CrossRef]
  • Tsalas, N., Golfinopoulos, S. K., Samios, S., Katsouras, G., & Peroulis, K. (2024). Optimization of energy consumption in a wastewater treatment plant: an overview. Energies, 17(12), Article 2808. [CrossRef]
  • Urbieta, L. (2024). Firms reporting of sustainable development goals (SDGs): An empirical study of best‐in‐class companies. Sustainable Development, 32(5), 50055018. [CrossRef]
  • Varone, F., Reynard, E., Kissling-Näf, I., & Mauch, C. (2002). Institutional resource regimes: The case of water management in Switzerland. Integrated Assessment, 3(1), 7894. [CrossRef]
  • Velempini, K. (2025). Assessing the role of environmental education practices towards the attainment of the 2030 sustainable development goals. Sustainability, 17(5), Article 2043. [CrossRef]
  • Wagner, C. (2024). Chronology of a Global Agenda: The Construction of the Concept of Sustainable Development. Integrating Resiliency Into Future Sustainable Cities. [CrossRef]
  • Wu, X., Nawaz, S., Li, Y., & Zhang, H. (2024). Environmental health hazards of untreated livestock wastewater: Potential risks and future perspectives. Environmental Science and Pollution Research, 31(17), 2474524767. [CrossRef]
  • Yağımlı, M., & Ergin, H. (2017). Estimation of the occupational accidents in turkey with exponential smoothing method. Marmara Fen Bilimleri Dergisi, 4, 118123. [Turkish]
  • Yalçın, Ö. B. (2011). Derin deniz deşarjı ile deşarj edilen atıksuların alıcı ortamda tutsaklanması durumunda bakteri konsantrasyonunun tahmini ve belirsizliklerin incelenmesi [Yayınlanmamış Yüksek Lisans Tezi]. Akdeniz Üniversitesi.
  • Yapıcıoğlu, P., & Demir, Ö. (2017). An overview of climate change and greenhouse effects for wastewater treatment plants. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22(3), 235250.
  • Yazıcı, A. M., Udemba, E. N., Öztırak, M., Bayram, V., & Mei, Y. (2025). Pathway to energy transition and sustainable environmental development and management: analysis of hydropower energy policy as part of climate actions. Renewable Energy, 242, Article 122293. [CrossRef]
  • Yıldız, A., Elevli, S., & Odabaş, M. S. (2025). Estimation of wastewater amount with arima and artificial neural networks. Afyon Kocatepe University Journal of Science & Engineering, 25(2), 359368. [Turkish] [CrossRef]
  • Yılmaz, E. C. (2009). Bir atiksu aritma tesisinin girşindeki biyolojik oksijen ihtiyacinin yapay sinir ağlari kullanilarak modellemesi. [Yayınlanmamış Yüksek Lisans Tezi]. Sakarya Üniversitesi.

Sürdürülebilir Atıksu Yönetimi: Türkiye'de Arıtma Tesisi Yatırım Tahminleri

Yıl 2025, Cilt: 11 Sayı: 1, 29 - 43, 30.06.2025
https://doi.org/10.51803/yssr.1681392

Öz

Çalışmada Türkiye'de atık su yönetiminin sürdürülebilir bir şekilde geliştirilmesi için geleceğe yönelik arıtma tesisi yatırım öngörülerini incelemek amaçlanmıştır. Artan nüfus, sanayileşme ve şehirleşme süreçlerinin atık su üretimindeki artışa yol açtığı, bunun da su kaynakları üzerinde baskı oluşturduğu günümüz koşullarında, etkili atık su arıtımı büyük bir önem taşımaktadır. Türkiye’nin çevre politikaları, sürdürülebilir kalkınma ve çevre koruma konusunda küresel işbirliğine uyumlu olarak, atık su arıtma tesislerine yapılan yatırımların arttırılması beklenmektedir. Bu bağlamda TÜİK verilerinden yararlanılarak Türkiye’de 2001-2022 yılları arasındaki atıksu arıtma tesisi sayısı, arıtılan atıksu miktarı, atık hizmeti verilen nüfus, deşarj edilen toplam atıksu miktarı, kişi başına deşarj edilen atıksu miktarı ele alınmıştır. Otomatik ARIMA ve ARIMA yöntemlerinden yararlanılarak 2023-2025 yılları arasındaki 3 dönemin tahmini yapılmıştır. Verilerin analizinde Eviews 12.0 yazılımı kullanılmıştır. Yapılan analizler sonucu 2025 yılı için arıtılan atıksu miktarına göre 1923, atık hizmeti verilen nüfus açısından1858, deşarj edilen toplam atıksu miktarı 1922 ve kişi başına deşarj edilen atıksu miktarı açısından 1928 atıksu arıtma tesisine ihtiyaç duyulacağı tespit edilmiştir. Yapılan öngörüler, yerel yönetimler ve özel sektör işbirliği ile arıtma tesislerinin kapasitesinin arttırılması gerektiğini ve bu sürecin yalnızca çevresel değil, aynı zamanda ekonomik ve sosyal faydalar sağlayacağını vurgulamaktadır. Ayrıca, ileri düzey arıtma teknolojilerinin uygulanması, yenilikçi finansman modelleri ve yerel halkın çevre bilincinin artırılması gerektiği üzerinde durulmaktadır. Bu doğrultuda, Türkiye'nin su kaynaklarını koruyarak sürdürülebilir kalkınmayı sağlamaya yönelik somut adımların atılması, atık su yönetimi konusunda gelecek yıllarda önemli bir strateji olarak belirginleşmektedir.

Etik Beyan

Çalışma etik kurallara uygun yapılmıştır.

Kaynakça

  • REFERENCES
  • Açıkalın, S. (2007). Atıksu arıtma tesisi veriminin yapay sinir ağları ile tahmin edilmesi [Yayınlanmamış Yüksek Lisans Tezi]. Sakarya Universitesi Fen Bilimleri Enstitüsü. [Turkish]
  • Aivazidou, E., Banias, G., Lampridi, M., Vasileiadis, G., Anagnostis, A., Papageorgiou, E., & Bochtis, D. (2021). Smart technologies for sustainable water management: An urban analysis. Sustainability, 13(24), Article 13940. [CrossRef]
  • Axon, S. (2024). Unveiling Understandings of the Rio Declaration’s Sustainability Principles: A Case of Alternative Concepts, Misaligned (Dis) Connections, and Terminological Evolution. Sustainability, 16(6), 121. [CrossRef]
  • Aydin, M., Sogut, Y., & Erdem, A. (2024). The role of environmental technologies, institutional quality, and globalization on environmental sustainability in European Union countries: new evidence from advanced panel data estimations. Environmental Science and Pollution Research, 31(7), 1046010472. [CrossRef]
  • Baki, O. T., & Aras, E. (2018). Estimation of bod in wastewater treatment plant with different regression models. Engineering Sciences, 13(2), 96105. [Turkish]
  • Baran, B. (2020). Coverage ratio of residential electricity demand of turkey with wastewater treatment plant hydroelectric production. Academic Platform-Journal of Engineering and Science, 8(1), 139145. [Turkish]
  • Bayram, V. (2023). Transition to circular economy: Importance of environmental protection expenditures and investments in business strategies. Karadeniz Journal of Economic Research, 4(1), 124.
  • Bayram, V. (2024). From Linear Economy to Circular Economy: The Key to Sustainable Development. İçinde: Evaluations of Sustainable and Green Energy Policies. Nova Science Publishers.
  • Beckerd, M., & Muñoz, R. (2021). Funding and financing to scale nature-based solutions for water security. Nature-Based Solutions and Water Security: An Action Agenda for the 21st Century, 361. [CrossRef] Bergmeir, C., Hyndman, R. J., & Benítez, J. M. (2016) Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation. International Journal of Forecasting, 32, 303312. [CrossRef]
  • Bergquist, A. K., & David, T. (2024). Business (In-) Action: The International Chamber of Commerce and Climate Change from Stockholm to Rio. Uppsala Papers in Economic History, 3, 29. Working Paper 2024/15. [CrossRef]
  • Bowerman, B. L., & O’Connell, R. T. (1979). Time Series and Forecasting: An Applied Approach. Duxbury Press.
  • Cohen, R., Eames, P. C., Hammond, G. P., Newborough, M., & Norton, B. (2022). Briefing: The 2021 Glasgow Climate Pact: Steps on the transition pathway towards a low carbon world. Proceedings of the Institution of Civil Engineers-Energy, 175(3), 97102. [CrossRef]
  • Degirmenci, T., & Aydin, M. (2024). Testing the load capacity curve hypothesis with green innovation, green tax, green energy, and technological diffusion: A novel approach to Kyoto protocol. Sustainable Development, 32(5), 49314945. [CrossRef]
  • Demir, N. M. (2017). Use of artificial neural networks as a tool to predict carbon and nitrogen removal efficiencies in biological wastewater treatment plants. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6(2), 375386.
  • Devi, G. (2025). Environmental sustainability through green economy in context to Indian scenario: A review. Medicon Agriculture & Environmental Sciences, 8, 1627.
  • Dhokpande, S. R., Deshmukh, S. M., Khandekar, A., & Sankhe, A. (2024). A review outlook on methods for removal of heavy metal ions from wastewater. Separation and Purification Technology, 350, Article 127868, 116. [CrossRef]
  • Efe, M. (2006). Atıksu ve yağmursuyu toplayıcı sistemlerinin tasarımı ve işletilmesinde kullanılan bilgisayar destekli modellerin değerlendirilmesi ve bir örnek uygulama [Yayınlanmamış Yüksek Lisans Tezi]. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü. [Turkish]
  • Ejairu, U., Aderamo, A. T., Olisakwe, H. C., Esiri, A. E., Adanma, U. M., & Solomon, N. O. (2024). Eco-friendly wastewater treatment technologies (concept): Conceptualizing advanced, sustainable wastewater treatment designs for industrial and municipal applications. Comprehensive research and reviews in Engineering and Technology, 2(1), 83104. [CrossRef]
  • Furlong, C., De Silva, S., Gan, K., Guthrie, L., & Considine, R. (2017). Risk management, financial evaluation and funding for wastewater and stormwater reuse projects. Journal of Environmental Management, 191, 8395. [CrossRef]
  • Gülhan, H. (2017). Evsel atıksu arıtma tesislerinden kaynaklanan sera gazı salımının tahmini. [Yayınlanmamış Yüksek Lisans tezi]. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü.
  • Gülhan, H., Özgün, H., Erşahin, M. E., Dereli, R. K., & Öztürk, İ. (2018). Estimation of greenhouse gas emissions of biological wastewatertreatment plants in Istanbul by modelling. Sci Eng J Fırat Univ 30(1), 5967.
  • IHS Markit (2024a). Eviews 12 User’s Guide I. https://cdn1.eviews.com/EViews%2012%20Users%20Guide%20I.pdf.
  • IHS Markit (2024b). Eviews 12 User’s Guide II. https://cdn1.eviews.com/EViews%2012%20Users%20Guide%20II.pdf.
  • Izuchukwu Precious, O., Zino Izu, O., Frank Chudi, A., Theresa Ojevwe, A., & Chinwe Sheila, N. (2025). The role of environmental governance in combating climate change: Analyzing COP28 Agreements and their Implementation. Journal of Integrity Ecosystems and Environment, 3(3), 1226.
  • Kataoka, T., Nihei, Y., Kudou, K., & Hinata, H. (2019). Assessment of the sources and inflow processes of microplastics in the river environments of Japan. Environmental Pollution, 244, 958965. [CrossRef]
  • Kato, S., & Kansha, Y. (2024). Comprehensive review of industrial wastewater treatment techniques. Environmental Science and Pollution Research, 31(39), 5106451097. [CrossRef]
  • Khan, M. T., Ahmad, R., Liu, G., Zhang, L., Santagata, R., Lega, M., & Casazza, M. (2024). Potential environmental impacts of a hospital wastewater treatment plant in a developing country. Sustainability, 16(6), Article 2233. [CrossRef]
  • Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54(1-3), 159–178. [CrossRef]
  • Lako, A., & Çomo, E. (2024). Sustainable water management: an integrated approach to solving the problems of wastewater treatment. Qubahan Academic Journal, 4(1), 91100. [CrossRef]
  • Ma, Q., Li, S., Aslam, M., Ali, N., & Alamri, A. M. (2023). Extraction of natural resources and sustainable renewable energy: COP26 target in the context of financial inclusion. Resources Policy, 82, Article 103466. [CrossRef]
  • Mannina, G., Gulhan, H., & Ni, B. J. (2022). Water reuse from wastewater treatment: The transition towards circular economy in the water sector. Bioresource Technology, 363, Article 127951. [CrossRef]
  • Mason, S. A., Garneau, D., Sutton, R., Chu, Y., Ehmann, K., Barnes, J., ... & Rogers, D. L. (2016). Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environmental Pollution, 218, 10451054. [CrossRef]
  • Mmonwuba, N. C., Agunwamba, J. C., Obumneme, A. A., Linus, I. C., & Chukwuemelie, N. A. (2024). Comparing the performance of physical, chemical and biological treatment in waste water remediation. Asian Journal of Advanced Research and Reports, 18(12), 571585. [CrossRef]
  • Mor, S., Aneja, R., Madan, S., & Ghimire, M. (2024). Kyoto protocol and Paris agreement: Transition from bindings to pledges–A review. Millennial Asia, 15(4), 690711. [CrossRef]
  • Obaideen, K., Shehata, N., Sayed, E. T., Abdelkareem, M. A., Mahmoud, M. S., & Olabi, A. G. (2022). The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline. Energy Nexus, 7, Article 100112. [CrossRef]
  • Obiuto, N. C., Olu-lawal, K. A., Ani, E. C., Ugwuanyi, E. D., & Ninduwezuor-Ehiobu, N. (2024). Chemical engineering and the circular water economy: Simulations for sustainable water management in environmental systems. World Journal of Advanced Research and Reviews, 21(3), 001009. [CrossRef]
  • Öztemel, E., & Dügenci, M. (2016, November). Atıksu arıtma tesis kontrolde yapay sinir ağı ile kirlilik parametre tahmini. In 3rd International Symposium on Environment and Morality, Alanya, Türkiye.
  • Pekel, L. C. (2009). Çöktürme yönteminin kullanıldığı boya atıksu arıtma sisteminin genelleştirilmiş tahmin edici kontrol (GPC) ile pH kontrolü [Yayınlanmamış Yüksek Lisans tezi]. Ankara Üniversitesi, Fen Bilimleri Enstitüsü.
  • Schäfer, M., Gretzschel, O., & Steinmetz, H. (2020). The possible roles of wastewater treatment plants in sector coupling. Energies, 13(8), Article 2088. [CrossRef]
  • Schneider, H. (2024). “Common but Differentiated Responsibilities” in the Paris Agreement. FIU Law Review, 18(2), 327345. [CrossRef]
  • Selvi, E. (2019). Kentsel atıksu arıtma tesisi biyolojik oksijen ihtiyacının (BOİ5) makina öğrenmesi yöntemleri ile tahmin edilmesi [Yayınlanmamış Yüksek Lisans Tezi]. Sakarya Üniversitesi.
  • Sidal, F., & Altun, Y. (2003). Prediction of biochemical oxygen demand in wastewater treatment plants using artificial neural network and regression analysis. Journal of the Institute of Science and Technology, 13(4), 29342944. [Turkish]
  • Sinan, R. K. (2010). Evsel atıksu arıtma tesislerinde ön arıtım ve biyolojik arıtım çıkış parametrelerinin YSA ile tahmini [Yayınlanmamış Yüksek Lisans tezi]. Selçuk Üniversitesi Fen Bilimleri Enstitüsü.
  • Sravan, J. S., Matsakas, L., & Sarkar, O. (2024). Advances in biological wastewater treatment processes: focus on low-carbon energy and resource recovery in biorefinery context. Bioengineering, 11(3), Article 281. [CrossRef]
  • Tsalas, N., Golfinopoulos, S. K., Samios, S., Katsouras, G., & Peroulis, K. (2024). Optimization of energy consumption in a wastewater treatment plant: an overview. Energies, 17(12), Article 2808. [CrossRef]
  • Urbieta, L. (2024). Firms reporting of sustainable development goals (SDGs): An empirical study of best‐in‐class companies. Sustainable Development, 32(5), 50055018. [CrossRef]
  • Varone, F., Reynard, E., Kissling-Näf, I., & Mauch, C. (2002). Institutional resource regimes: The case of water management in Switzerland. Integrated Assessment, 3(1), 7894. [CrossRef]
  • Velempini, K. (2025). Assessing the role of environmental education practices towards the attainment of the 2030 sustainable development goals. Sustainability, 17(5), Article 2043. [CrossRef]
  • Wagner, C. (2024). Chronology of a Global Agenda: The Construction of the Concept of Sustainable Development. Integrating Resiliency Into Future Sustainable Cities. [CrossRef]
  • Wu, X., Nawaz, S., Li, Y., & Zhang, H. (2024). Environmental health hazards of untreated livestock wastewater: Potential risks and future perspectives. Environmental Science and Pollution Research, 31(17), 2474524767. [CrossRef]
  • Yağımlı, M., & Ergin, H. (2017). Estimation of the occupational accidents in turkey with exponential smoothing method. Marmara Fen Bilimleri Dergisi, 4, 118123. [Turkish]
  • Yalçın, Ö. B. (2011). Derin deniz deşarjı ile deşarj edilen atıksuların alıcı ortamda tutsaklanması durumunda bakteri konsantrasyonunun tahmini ve belirsizliklerin incelenmesi [Yayınlanmamış Yüksek Lisans Tezi]. Akdeniz Üniversitesi.
  • Yapıcıoğlu, P., & Demir, Ö. (2017). An overview of climate change and greenhouse effects for wastewater treatment plants. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22(3), 235250.
  • Yazıcı, A. M., Udemba, E. N., Öztırak, M., Bayram, V., & Mei, Y. (2025). Pathway to energy transition and sustainable environmental development and management: analysis of hydropower energy policy as part of climate actions. Renewable Energy, 242, Article 122293. [CrossRef]
  • Yıldız, A., Elevli, S., & Odabaş, M. S. (2025). Estimation of wastewater amount with arima and artificial neural networks. Afyon Kocatepe University Journal of Science & Engineering, 25(2), 359368. [Turkish] [CrossRef]
  • Yılmaz, E. C. (2009). Bir atiksu aritma tesisinin girşindeki biyolojik oksijen ihtiyacinin yapay sinir ağlari kullanilarak modellemesi. [Yayınlanmamış Yüksek Lisans Tezi]. Sakarya Üniversitesi.
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Siyaset Bilimi (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Vildan Bayram 0000-0001-7526-6485

Gönderilme Tarihi 21 Nisan 2025
Kabul Tarihi 13 Haziran 2025
Erken Görünüm Tarihi 30 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 1

Kaynak Göster

APA Bayram, V. (2025). Sustainable Wastewater Management: Treatment Plant Investment Predictions in Turkey. Yildiz Social Science Review, 11(1), 29-43. https://doi.org/10.51803/yssr.1681392