Araştırma Makalesi
BibTex RIS Kaynak Göster

Kimya Öğretmen Adaylarının Kimyasal Dengeye İlişkin Zihinsel Modelleri

Yıl 2018, Cilt: 15 Sayı: 1, 1081 - 1115, 29.11.2018

Öz

Araştırmanın deseni olgubilimdir. Katılımcılar
bir devlet üniversitesinin kimya öğretmenliği programının son sınıfında öğrenim
gören dört kimya öğretmen adayıdır. Veriler açık uçlu sorular ve yarı
yapılandırılmış görüşmeler yardımıyla toplanmış daha sonra betimsel analiz ve
içerik analizi kullanılarak analiz edilmiştir. Veri analizi sonucunda öğretmen
adaylarının sabit etki-tepki modeli, tek yönlü etki-tepki modeli (etki ile eş
yönlü tepki modeli, etki ile zıt yönlü tepki modeli) ve çift yönlü etki- tepki
modeli olmak üzere dört farklı zihinsel modele sahip oldukları bulunmuştur.
Bunun yanında öğretmen adaylarının çoğunluğu denge reaksiyonuna yapılan etki
ile dengenin ne yönde değişeceğini Le Chatelier prensibini doğru bir şekilde
kullanarak açıklayabilmiştir. Ancak denge reaksiyonun belirtilen yönde değişme
sebebini mikroskobik seviyeyi kullanarak açıklama konusunda yeterli seviyede
olmadıkları görülmüştür. Bu durum öğretmen adaylarının zihinsel modellerinin
bilimsel olarak kabul görmüş kavramsal modellerle tam uyumlu olmadığını
göstermektedir. Bu sebeple öğretmen adaylarına yönelik kimya öğretimi olayların
nedenleri mikroskobik seviyede sorgulatılarak yapılmalı ve böylece kavramsal
modellere uygun zihinsel modeller geliştirmeleri sağlanmalıdır.
Bu
çalışmanın amacı kimya öğretmen adaylarının kimyasal dengeye etki eden faktörlerden
sıcaklık ve derişim değişiminin kimyasal dengeye etkisi ile ilgili zihinsel
modellerini açığa çıkarmaktır.

Kaynakça

  • Kaynaklar Adak, S. (2017). Effectiveness of constructivist approach on academic achievement in science at secondary level. Educational Research and Reviews. 12(22), 1074-1079. doi: 10.5897/ERR2017.3298.
  • Aydeniz, M., & Dogan, A. (2016). Exploring the impact of argumentation on pre-service science teachers' conceptual understanding of chemical equilibrium. Chemistry Education Research and Practice, 17(1), 111-119.
  • Bhattacharyya, G. (2006). Practitioner development in organic chemistry: how graduate students conceptualize organic acids. Chemistry Education Research and Practice, 7(4), 240–247.
  • Bilgin, I. & Geban, Ö. (2006). The effect of cooperative learning approach based on conceptual change condition on students’ understanding of chemical equilibrium. Journal of Science Education and Technology, 15, 31-46.
  • Cheung, D., Ma, H. J. & Yang, J. (2009). Teachers’ misconceptions about the effects of addition of more reactants or products on chemical equilibrium. International Journal of Science and Mathematics Education, 7(6), 1111-1133.
  • Chittleborough, G. D., Treagust, D. F., Mamiala, T. L. & Mocerino, M. (2005). Students' perceptions of the role of models in the process of science and in the process of learning. Research in Science and Technological Education, 23(2), 195-212.
  • Chittleborough, G. D., Treagust, D. F. & Mocerino, M. (2002). Constraints to the development of first year university chemistry students' mental models of chemical phenomena. In Focusing on the Student Proceedings of the 11th Annual Teaching Learning Forum, 5-6 February 2002. Perth: Edith Cowan.
  • Chiu, M. H., Chou, C. C. & Liu, C. J. (2002). Dynamic processes of conceptual change: Analysis of constructing mental models of chemical equilibrium. Journal of Research in Science Teaching, 39(8), 688–712.
  • Coll, R. K. & Taylor, N. (2002). Mental models in chemistry: senior chemistry students’ mental models of chemical bonding. Chemistry Education: Research and Practice in Europe, 3(2), 175-184.
  • Coll, R. K. & Treagust, D. F. (2001). Learners’ mental models of chemical bonding. Research in Science Education, 31(3), 357-382. Coll, R. K. & Treagust, D. F. (2003). Investigation of secondary school, undergraduate, and graduate learners’ mental models of ionic bonding. Journal of Research in Science Teaching, 40(5), 464–486.
  • Çelikler, D. & Harman, G. (2015). Fen bilgisi öğrencilerinin asit ve bazlarla ilgili zihinsel modellerinin analizi. Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 12(32), 433-449.
  • Doymuş, K. (2008). Teaching chemical equilibrium with the jigsaw technique. Research in Science Education, 38(2), 249-269. Ganaras, K., Dumon, A. & Larcher, C (2008). Conceptual integration of chemical equilibrium by prospective physical sciences teachers. Chemistry Education: Research and Practice, 9, 240–249.
  • Garnett, P.J., Garnett, P.J., & Hackling, M. (1995). Students’ alternative conceptions in chemistry: A review of research and implications for teaching and learning. Studies in Science Education, 25, 69–95.
  • Glenberg, A. M., Kruley, P., & Langston, W. E. (1994). Analogical processes in comprehension: Simulation of a mental model. In M. A. Gernsbacher (Ed.), Handbook of psycholinguistics. Orlando, FL: Academic Press.
  • Greca, I. M. & Moreira, M. A. (2000). Mental models, conceptual models, and modeling. International Journal of Science Education, 22(1), 1–11.
  • Harrison, A. G. & De Jong, O. (2005). Exploring the use of multiple analogical models when teaching and learning chemical equilibrium. Journal of Research in Science Teaching, 42(10), 1135-1159.
  • Harrison, A. G. & Treagust, D. F. (1996). Secondary students’ mental models of atoms and molecules: implications for teaching chemistry. Science Education, 80(5), 509–534.
  • Hinton, M. E. & Nakhleh, M. B. (1999). Students’ microscopic, macroscopic, and symbolic representations of chemical reactions. The Chemical Educator, 4, 158–167.
  • Jansoon, N., Coll, R. K. & Somsook, E. (2009). Understanding mental models of dilution in Thai students. International Journal of Environmental & Science Education, 4(2), 147-168.
  • Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of Chemical Education, 70, 701-704.
  • Kiray, S. A. (2016). The pre-service science teachers’ mental models for concept of atoms and learning difficulties. International Journal of Education in Mathematics, Science and Technology, 4(2), 147-162. DOI:10.18404/ijemst.85479
  • Kozma, R. B. & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34(9), 949-968.
  • Lee, S. S. & Fraser, B. J. (2000). The Constructivist learning environment of science classrooms in Korea. Paper presented at the annual meeting of the Australasian Science Education Research Association, Western Australia.
  • Lin, J. W. & Chiu, M. H. (2007). Exploring the characteristics and diverse sources of students’ mental models of acids and bases. International Journal of Science Education, 29(6), 771–803.
  • Maia, P. F. & Justi, R. (2009). Learning of chemical equilibrium through modelling-based teaching. International Journal of Science Education, 31(5), 603-630.
  • Matthews, M. R. (1993). Constructivism and science education: Some epistemological problems. Journal of Science Education and Technology, (2)l, 359-370.
  • McBroom, R. A. (2011). Pre-Service Science Teachers’ Mental Models Regarding Dissolution and Precipitation Reactions. Unpublished doctoral dissertation, North Carolina State University, Raleigh, North Carolina.
  • McClary, L. & Talanquer, V. (2011). College chemistry students’ mental models of acids and acid strength. Journal of Research in Science Teaching, 48(4), 396-413 . Michael, J. A. (2001). In pursuit of meaningful learning. Advances in Physiology Education, 25, 145-158.
  • Norman, D. A. (1983). Some observations on mental models. In D. A. Gentner & A. L. Stevens (Eds.), Mental models (pp. 7-14). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Novak, J. D. (2002). Meaningful learning: The essential factor for conceptual change in limited or inappropriate propositional hierarchies leading to empowerment of learners. Science Education, 86(4), 548-571.
  • Özmen, H. (2008). Determination of students’ alternative conceptions about chemical equilibrium: a review of research and the case of Turkey. Chemistry Education: Research and Practice, 9, 225-233
  • Pekdağ, B. (2010). Kimya öğreniminde alternatif yollar: Animasyon, simülasyon, video ve multimedya ile öğrenme. Türk Fen Eğitimi Dergisi, 7(2), 79-110.
  • Patton, M. Q. (2002). Qualitative Research & Evaluation Methods. (3rd ed.), Sage, Thousand Oaks, CA.
  • Pozo, R. M. D. (2001) Prospective teachers' ideas about the relationships between concepts describing the composition of matter. International Journal of Science Education, 23(4), 353-371.
  • Qarareh, A. (2016). The effect of using the constructivist learning model in teaching science on the achievement and scientific thinking of 8th grade students. International Education Studies, 9(7), 178-196. doi:10.5539/ies.v9n7p178.
  • Quilez, J. (2004). Changes in concentration and in partial pressure in chemical equilibria: Students’ and teachers’ misunderstandings. Chemistry Education Research and Practice, 5(3), 281–300.
  • Quilez, J. (2009). From chemical forces to chemical rates: A historical/philosophical foundation for the teaching of chemical equilibrium. Science & Education, 18(9), 1203-1251.
  • Quílez-Pardo, J. & Solaz-Portolés, J. J. (1995). Students’ and teachers’ misapplication of Le Châtelier’s principle: Implications for the teaching of chemical equilibrium. Journal of Research in Science Teaching, 32(9), 939–957.
  • Taber, K. S. (2003). Mediating mental models of metals: Acknowledging the priority of the learner’s prior learning. Science Education, 87, 732–758.
  • Taber, K. S. (2009). Learning at the symbolic level. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple Representations in Chemical Education (pp. 75-108). Dordrecht: Springer
  • Taber, K. (2013). Revisiting the chemistry Triplet: drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chemistry Education research and Practice. 14(2), 156-168, doi: 10.1039/C3RP00012E.
  • Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students' understanding of the role of scientific models in learning science. International Journal of Science Education, 24, 357–368.
  • Tsai, C. C. (1999). Overcoming junior high school students’ misconceptions about microscopic views of phase change: A study of an analogy activity. Journal of Science Education and Technology, 8(1), 83-91.
  • Tyson, L., Treagust, D. F. & Bucat, R. B. (1999). The complexity teaching and learning chemical equilibrium. Journal of Chemical Education, 76(4), 554-558.
  • Ulutaş. B. (2010). Kimya eğitimi öğrencilerinin kimyasal bağlar konusundaki zihinsel modelleri ve bilişsel haritaları. Yayınlanmamış yüksek lisans tezi, Gazi Üniversitesi, Ankara, Türkiye.
  • Ünal, S., Çalık, M., Ayas, A. & Coll, R. K. (2006). A review of chemical bonding studies: Needs, aims, methods of exploring students’ conceptions, general knowledge claims and students’ alternative conceptions. Research in Science and Technological Education, 24(2), 141-172.
  • Vosniadou, S. (1994). Capturing and modelling the process of conceptual change. Learning and Instruction, 4, 45–69.
  • Voska, K. W. & Heikkinen, H. W. (2000). Identification and analysis of student conceptions used to solve chemical equilibrium problems. Journal of Research in Science Teaching, 37(2), 160–176.
  • Wang, C. (2007). The role of mental modeling ability, content knowledge, and mental models in general chemistry students’ understanding about molecular polarity. Unpublished doctoral dissertation, University of Missouri, Columbia.
  • Wu, H. K., (2003). Linking the microscopic view of chemistry to real-life experiences: Intertextuality in a high-school science classroom. Science Education, 87, 868-891.
  • Yıldırım, A. & Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri. (7. Baskı). Ankara: Seçkin Yayıncılık. Yüce, G. (2013). Kimya öğretmen adaylarının kimyasal reaksiyonlar konusunda zihinsel modellerinin belirlenmesi. Yayınlanmamış yüksek lisans tezi, Gazi Üniversitesi, Ankara, Türkiye.  
Yıl 2018, Cilt: 15 Sayı: 1, 1081 - 1115, 29.11.2018

Öz

Kaynakça

  • Kaynaklar Adak, S. (2017). Effectiveness of constructivist approach on academic achievement in science at secondary level. Educational Research and Reviews. 12(22), 1074-1079. doi: 10.5897/ERR2017.3298.
  • Aydeniz, M., & Dogan, A. (2016). Exploring the impact of argumentation on pre-service science teachers' conceptual understanding of chemical equilibrium. Chemistry Education Research and Practice, 17(1), 111-119.
  • Bhattacharyya, G. (2006). Practitioner development in organic chemistry: how graduate students conceptualize organic acids. Chemistry Education Research and Practice, 7(4), 240–247.
  • Bilgin, I. & Geban, Ö. (2006). The effect of cooperative learning approach based on conceptual change condition on students’ understanding of chemical equilibrium. Journal of Science Education and Technology, 15, 31-46.
  • Cheung, D., Ma, H. J. & Yang, J. (2009). Teachers’ misconceptions about the effects of addition of more reactants or products on chemical equilibrium. International Journal of Science and Mathematics Education, 7(6), 1111-1133.
  • Chittleborough, G. D., Treagust, D. F., Mamiala, T. L. & Mocerino, M. (2005). Students' perceptions of the role of models in the process of science and in the process of learning. Research in Science and Technological Education, 23(2), 195-212.
  • Chittleborough, G. D., Treagust, D. F. & Mocerino, M. (2002). Constraints to the development of first year university chemistry students' mental models of chemical phenomena. In Focusing on the Student Proceedings of the 11th Annual Teaching Learning Forum, 5-6 February 2002. Perth: Edith Cowan.
  • Chiu, M. H., Chou, C. C. & Liu, C. J. (2002). Dynamic processes of conceptual change: Analysis of constructing mental models of chemical equilibrium. Journal of Research in Science Teaching, 39(8), 688–712.
  • Coll, R. K. & Taylor, N. (2002). Mental models in chemistry: senior chemistry students’ mental models of chemical bonding. Chemistry Education: Research and Practice in Europe, 3(2), 175-184.
  • Coll, R. K. & Treagust, D. F. (2001). Learners’ mental models of chemical bonding. Research in Science Education, 31(3), 357-382. Coll, R. K. & Treagust, D. F. (2003). Investigation of secondary school, undergraduate, and graduate learners’ mental models of ionic bonding. Journal of Research in Science Teaching, 40(5), 464–486.
  • Çelikler, D. & Harman, G. (2015). Fen bilgisi öğrencilerinin asit ve bazlarla ilgili zihinsel modellerinin analizi. Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 12(32), 433-449.
  • Doymuş, K. (2008). Teaching chemical equilibrium with the jigsaw technique. Research in Science Education, 38(2), 249-269. Ganaras, K., Dumon, A. & Larcher, C (2008). Conceptual integration of chemical equilibrium by prospective physical sciences teachers. Chemistry Education: Research and Practice, 9, 240–249.
  • Garnett, P.J., Garnett, P.J., & Hackling, M. (1995). Students’ alternative conceptions in chemistry: A review of research and implications for teaching and learning. Studies in Science Education, 25, 69–95.
  • Glenberg, A. M., Kruley, P., & Langston, W. E. (1994). Analogical processes in comprehension: Simulation of a mental model. In M. A. Gernsbacher (Ed.), Handbook of psycholinguistics. Orlando, FL: Academic Press.
  • Greca, I. M. & Moreira, M. A. (2000). Mental models, conceptual models, and modeling. International Journal of Science Education, 22(1), 1–11.
  • Harrison, A. G. & De Jong, O. (2005). Exploring the use of multiple analogical models when teaching and learning chemical equilibrium. Journal of Research in Science Teaching, 42(10), 1135-1159.
  • Harrison, A. G. & Treagust, D. F. (1996). Secondary students’ mental models of atoms and molecules: implications for teaching chemistry. Science Education, 80(5), 509–534.
  • Hinton, M. E. & Nakhleh, M. B. (1999). Students’ microscopic, macroscopic, and symbolic representations of chemical reactions. The Chemical Educator, 4, 158–167.
  • Jansoon, N., Coll, R. K. & Somsook, E. (2009). Understanding mental models of dilution in Thai students. International Journal of Environmental & Science Education, 4(2), 147-168.
  • Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of Chemical Education, 70, 701-704.
  • Kiray, S. A. (2016). The pre-service science teachers’ mental models for concept of atoms and learning difficulties. International Journal of Education in Mathematics, Science and Technology, 4(2), 147-162. DOI:10.18404/ijemst.85479
  • Kozma, R. B. & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34(9), 949-968.
  • Lee, S. S. & Fraser, B. J. (2000). The Constructivist learning environment of science classrooms in Korea. Paper presented at the annual meeting of the Australasian Science Education Research Association, Western Australia.
  • Lin, J. W. & Chiu, M. H. (2007). Exploring the characteristics and diverse sources of students’ mental models of acids and bases. International Journal of Science Education, 29(6), 771–803.
  • Maia, P. F. & Justi, R. (2009). Learning of chemical equilibrium through modelling-based teaching. International Journal of Science Education, 31(5), 603-630.
  • Matthews, M. R. (1993). Constructivism and science education: Some epistemological problems. Journal of Science Education and Technology, (2)l, 359-370.
  • McBroom, R. A. (2011). Pre-Service Science Teachers’ Mental Models Regarding Dissolution and Precipitation Reactions. Unpublished doctoral dissertation, North Carolina State University, Raleigh, North Carolina.
  • McClary, L. & Talanquer, V. (2011). College chemistry students’ mental models of acids and acid strength. Journal of Research in Science Teaching, 48(4), 396-413 . Michael, J. A. (2001). In pursuit of meaningful learning. Advances in Physiology Education, 25, 145-158.
  • Norman, D. A. (1983). Some observations on mental models. In D. A. Gentner & A. L. Stevens (Eds.), Mental models (pp. 7-14). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Novak, J. D. (2002). Meaningful learning: The essential factor for conceptual change in limited or inappropriate propositional hierarchies leading to empowerment of learners. Science Education, 86(4), 548-571.
  • Özmen, H. (2008). Determination of students’ alternative conceptions about chemical equilibrium: a review of research and the case of Turkey. Chemistry Education: Research and Practice, 9, 225-233
  • Pekdağ, B. (2010). Kimya öğreniminde alternatif yollar: Animasyon, simülasyon, video ve multimedya ile öğrenme. Türk Fen Eğitimi Dergisi, 7(2), 79-110.
  • Patton, M. Q. (2002). Qualitative Research & Evaluation Methods. (3rd ed.), Sage, Thousand Oaks, CA.
  • Pozo, R. M. D. (2001) Prospective teachers' ideas about the relationships between concepts describing the composition of matter. International Journal of Science Education, 23(4), 353-371.
  • Qarareh, A. (2016). The effect of using the constructivist learning model in teaching science on the achievement and scientific thinking of 8th grade students. International Education Studies, 9(7), 178-196. doi:10.5539/ies.v9n7p178.
  • Quilez, J. (2004). Changes in concentration and in partial pressure in chemical equilibria: Students’ and teachers’ misunderstandings. Chemistry Education Research and Practice, 5(3), 281–300.
  • Quilez, J. (2009). From chemical forces to chemical rates: A historical/philosophical foundation for the teaching of chemical equilibrium. Science & Education, 18(9), 1203-1251.
  • Quílez-Pardo, J. & Solaz-Portolés, J. J. (1995). Students’ and teachers’ misapplication of Le Châtelier’s principle: Implications for the teaching of chemical equilibrium. Journal of Research in Science Teaching, 32(9), 939–957.
  • Taber, K. S. (2003). Mediating mental models of metals: Acknowledging the priority of the learner’s prior learning. Science Education, 87, 732–758.
  • Taber, K. S. (2009). Learning at the symbolic level. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple Representations in Chemical Education (pp. 75-108). Dordrecht: Springer
  • Taber, K. (2013). Revisiting the chemistry Triplet: drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chemistry Education research and Practice. 14(2), 156-168, doi: 10.1039/C3RP00012E.
  • Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students' understanding of the role of scientific models in learning science. International Journal of Science Education, 24, 357–368.
  • Tsai, C. C. (1999). Overcoming junior high school students’ misconceptions about microscopic views of phase change: A study of an analogy activity. Journal of Science Education and Technology, 8(1), 83-91.
  • Tyson, L., Treagust, D. F. & Bucat, R. B. (1999). The complexity teaching and learning chemical equilibrium. Journal of Chemical Education, 76(4), 554-558.
  • Ulutaş. B. (2010). Kimya eğitimi öğrencilerinin kimyasal bağlar konusundaki zihinsel modelleri ve bilişsel haritaları. Yayınlanmamış yüksek lisans tezi, Gazi Üniversitesi, Ankara, Türkiye.
  • Ünal, S., Çalık, M., Ayas, A. & Coll, R. K. (2006). A review of chemical bonding studies: Needs, aims, methods of exploring students’ conceptions, general knowledge claims and students’ alternative conceptions. Research in Science and Technological Education, 24(2), 141-172.
  • Vosniadou, S. (1994). Capturing and modelling the process of conceptual change. Learning and Instruction, 4, 45–69.
  • Voska, K. W. & Heikkinen, H. W. (2000). Identification and analysis of student conceptions used to solve chemical equilibrium problems. Journal of Research in Science Teaching, 37(2), 160–176.
  • Wang, C. (2007). The role of mental modeling ability, content knowledge, and mental models in general chemistry students’ understanding about molecular polarity. Unpublished doctoral dissertation, University of Missouri, Columbia.
  • Wu, H. K., (2003). Linking the microscopic view of chemistry to real-life experiences: Intertextuality in a high-school science classroom. Science Education, 87, 868-891.
  • Yıldırım, A. & Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri. (7. Baskı). Ankara: Seçkin Yayıncılık. Yüce, G. (2013). Kimya öğretmen adaylarının kimyasal reaksiyonlar konusunda zihinsel modellerinin belirlenmesi. Yayınlanmamış yüksek lisans tezi, Gazi Üniversitesi, Ankara, Türkiye.  
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Betül Ekiz Kıran Bu kişi benim 0000-0002-0988-8507

Elif Selcan Kutucu 0000-0001-6156-1950

Ayşegül Tarkın Çelikkıran 0000-0003-4379-3031

Mustafa Tüysüz 0000-0003-1277-6669

Yayımlanma Tarihi 29 Kasım 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 15 Sayı: 1

Kaynak Göster

APA Ekiz Kıran, B., Kutucu, E. S., Tarkın Çelikkıran, A., Tüysüz, M. (2018). Kimya Öğretmen Adaylarının Kimyasal Dengeye İlişkin Zihinsel Modelleri. Van Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 15(1), 1081-1115.