Araştırma Makalesi
BibTex RIS Kaynak Göster

Al 2024 Alaşımı Üzerine Mikro Ark Oksidasyon Yöntemiyle B4C İlaveli Kompozit Kaplamaların Büyütülmesi

Yıl 2023, , 1107 - 1117, 29.12.2023
https://doi.org/10.53433/yyufbed.1284780

Öz

Al alaşımı üzerinde Mikro ark Oksidasyon (MAO) yöntemiyle büyütülen kaplamaların yapısı ve özellikleri üzerine Bor karbür (B4C) katılmasının etkisi, sodyum fosfat, sodyum silikat ve potasyum hidroksitten oluşan bir çözelti içerisinde gerçekleştirilerek araştırılmıştır. MAO, B4C parçacıkları eklenmiş ve eklenmemiş çözeltilerde Al 2024 alaşımı üzerine uygulanmıştır. MAO kaplamalarının faz bileşimi ve mikro yapısı X-ışını kırınımı difraktometresi (XRD) ve taramalı elektron mikroskobu (SEM) kullanılarak değerlendirilmiştir. Ayrıca kaplamaların, mikrosertlik değerleri mikrosertlik test cihazı kullanılarak tespit edilmiştir. Al alaşımı üzerindeki oksit kaplamaların birincil olarak γ- Al2O3'ten oluştuğu gözlenmiştir. Solüsyona ilave edilen B4C partiküllerinin eklenmesi, MAO kaplamalarının Al alaşımları üzerindeki oluşum hızını ve kompaktlığını iyileştirdiği ve X-ışını kırınımı yoluyla kaplamalarda B4C varlığı tespit edilmiştir. Yüksek sertlik ve iyi kimyasal stabiliteye sahip B4C parçacıkları, MAO kaplamalarında eşit olarak dağıldığı gözlenmiştir. Bu nedenle, B4C takviyeli MAO kaplamaların sertlik değeri, Al alaşımları üzerindeki B4C ilave edilmeyen oksit kaplamalardan belirgin şekilde yüksek olduğu gözlenmiştir.

Kaynakça

  • Aliofkhazraei, M., & Rouhaghdam, A. S. (2012). Tribological behaviour of mechanically synthesized titanium-boron carbide nanostructured coating. Journal of Nanoscience and Nanotechnology, 12, 6840-6844. doi:10.1166/jnn.2012.4535
  • Alizadeh, A., Taheri-Nassaj, E., & Baharvandi, H.R. (2011). Preperation and investigation of Al4wt.%B4C nanocomposite powders using mechanical milling. Bulletin of Materials Science, 34, 1039-1048. doi:10.1007/s12034-011-0158-5
  • Arrabal, R., Pardo, A., Merino, M. C., Mohedano, M., Casajús, P., Matykina, E., Skeldon, P., & Thompson, G. E. (2010). Corrosion behaviour of a magnesium matrix composite with a silicate plasma electrolytic oxidation coating. Corrosion Science, 52, 3738–3749, doi:10.1016/j.corsci.2010.07.024
  • Atapour, M., Blawert, C., & Zheludkevich, M.L. (2019). The wear characteristics of CeO2 containing nanocomposite coating made by aluminate-based PEO on AM 50 magnesium alloy. Surface and Coatings Technology, 357, 626-637. doi:10.1016/j.surfcoat.2018.10.033
  • Bahador, R., Hosseinabadi, N., & Yaghtin, A. (2021). Effect of power duty cycle on plasma electrolytic oxidation of A356-Nb2O5 metal matrix composites. Journal of Materials Engineering and Performance, 30, 2586–2604. doi:10.1007/s11665-021-05597-4
  • Becerik, D. A., Ayday, A., Kumruoğlu, L. C., Kurnaz, C., & Özel, A. (2012). The effects of Na2SiO3 concentration on the properties of plasma electrolytic oxidation coatings on 6060 aluminum alloy. Journal of Materials Engineering and Performance, 21, 1426-1430. doi:10.1007/s11665-011-0022-1
  • Chen, J., Shi, Y., Wang, L., Yan, F., & Zhang, F. (2006). Preparation and properties of hydroXyapatite-containing titania coating by micro-arc oxidation. Materials Letters, 60, 20, 2538-2543. doi:10.1016/j.matlet.2006.01.035
  • Clyne, T. W., & Troughton, S. C. (2019). A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals. International Materials Reviews, 64, 127–162. doi:10.1080/09506608.2018.1466492
  • Cui, S., Han, J., Du, Y., & Li, W. (2007). Corrosion resistance and wear resistance of plasma electrolytic oxidation coatings on metal matrix composites. Surface and Coatings Technology, 201, 5306–5309. doi:10.1016/j.surfcoat.2006.07.126
  • Darband, G. B., Aliofkhazraei, M., Hamghalam, P., & Valizade, N. (2017). Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. Journal of Magnesium and Alloys, 5, 1, 74-132. doi:10.1016/j.jma.2017.02.004
  • Dou, J., Chen, Y., Yu, H., & Chen, C. (2017). Research status of magnesium alloys by micro-arc oxidation: a review. Surface Engineering, 33, 731-738. doi:10.1080/02670844.2017.1278642
  • Fattah-Alhosseini, A., Vakili-Azghandi, M., & Keshavarz, M. K. (2016). Influence of concentrations of KOH and Na2SiO3 electrolytes on the electrochemical behavior of ceramic coatings on 6061 Al alloy processed by plasma electrolytic oxidation. Acta Metallurgica Sinica (English Letters), 29, 274-281. doi:10.1007/s40195-016-0384-3
  • Fattah-Alhosseini, A., Gashti, S. O., & Molaie, M. (2018). Effects of disodium phosphate concentration (Na2HPO4⋅2H2O) on microstructure and corrosion resistance of plasma electrolytic oxidation (PEO) coatings on 2024 Al alloy. Journal of Materials Engineering and Performance, 27, 825-834. doi:10.1007/s11665-018-3124-1
  • Fattah-Alhosseini, A., Chaharmahali, R., & Babaei, K. (2020). Effect of particles addition to solution of plasma electrolytic oxidation (PEO) on the properties of PEO coatings formed on magnesium and its alloys: A review. Journal of Magnesium and Alloys, 8, 3, 799-818. doi:10.1016/j.jma.2020.05.001
  • Feng, X., Shi, R., Lu, X., Xu, Y., Huang, X., & Chen, D. (2017). The corrosion inhibition efficiency of aluminum tripolyphosphate on carbon steel in carbonated concrete pore solution. Corrosion Science, 124, 150–159. doi:10.1016/j.corsci.2017.05.018
  • Gu, Y., Bandopadhyay, S., Chen, C. F., Guo, Y., & Ning, C. (2012). Effect of oxidation time on the corrosion behavior of micro-arc oxidation produced AZ31 magnesium alloys in simulated body fluid. Journal of Alloys and Compounds, 543, 109–17. doi:10.1016/j.jallcom.2012.07.130
  • Guo, Q., Xu, D., Yang, W., Guo, Y., Yang, Z., Li, J., & Gao, P. (2020). Synthesis, corrosion, and wear resistance of a black microarc oxidation coating on pure titanium. Surface and Coatings Technology, 386, 125454. doi:10.1016/j.surfcoat.2020.125454
  • Haghighat-Shishavan, B., Azari-Khosrowshahi, R., Haghighat-Shishavan, S., NazarianSamani, M., & Parvini-Ahmadi, N., (2019). Improving wear and corrosion properties of alumina coating on AA7075 aluminum by plasma electrolytic oxidation: effects of graphite absorption. Applied Surface Science, 481, 108-119. doi:10.1016/j.apsusc.2019.03.069
  • Hussein, R., Nie, X., Northwood, D., Yerokhin, A., & Matthews, A. (2010). Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process. Journal of Physics D: Applied Physics, 43, 105203. doi:10.1016/j.surfcoat.2011.06.031
  • Hussein, R. O., Nie, X., & Northwood, D. O. (2013). An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing. Electrochimica Acta, 112, 111-119. doi:10.1016/j.electacta.2013.08.137
  • Idrisi, A. H., & Mourad, A. H. I. (2019). Conventional stir casting versus ultrasonic assisted stir casting process: mechanical and physical characteristics of AMCs. Journal of Alloys and Compounds, 805, 502–508. doi:10.1016/j.jallcom.2019.07.076
  • Jiang, C., Wang, Y., Wang, S., Li, Y., Zou, Y., Ouyang, J., Jia, D., & Zhou, Y. (2022). Achieving high-efficiency electrically insulating ceramic layer formed on SiCp/Al composite by bipolar pulsed PEO for novel integrated strategy. Surface and Coatings Technology, 444. doi:10.1016/j.surfcoat.2022.128692
  • Kaplan, E., Şüküroğlu, E. E., & Çuvalcı, O. (2021). Investigation of characterization and tribological behavior of composite oxide coatings doped with h-BN and graphite particles on ZA-27 alloy by micro-arc oxidation. Journal of Adhesion Science and Technology, 35, 12, 1305-1319. doi:10.1080/01694243.2020.1843315
  • Kaseem, M., Fatimah, S., Nashrah, N., & Ko, Y. G. (2021).Recent progress in surface modification of metals coated by plasma electrolytic oxidation: principle, structure, and performance. Progress in Materials Science, 117, 100735. doi:10.1016/j.pmatsci.2020.100735
  • Kumar, R., & Dhiman, S. (2013). A study of sliding wear behaviors of Al-7075 alloy and Al-7075 hybrid composite by response surface methodology analysis. Materials & Design, 50, 351-359. doi:10.1016/j.matdes.2013.02.038
  • Küçükosman, R., Şüküroğlu, E. E., Totik, Y., & Şüküroğlu, S. (2021). Effects of graphene oxide addition on wear behaviour of composite coatings fabricated by plasma electrolytic oxidation (PEO) on AZ91 magnesium alloy. Journal of Adhesion Science and Technology, 35, 242-255. doi:10.1080/01694243.2020.1800289
  • Lee, K. M., Ko, Y. G., & Shin, D. H. (2011). Incorporation of multi-walled carbon nanotubes into the oxide layer on a 7075 Al alloy coated by plasma electrolytic oxidation: coating structure and corrosion properties. Current Applied Physics, 11, 55–59. doi:10.1016/j.cap.2011.07.009
  • Li, H., Lu, S., Qin, W., & Wu, X. (2017). In-situ grown MgO-ZnO ceramic coating with high thermal emittance on mg alloy by plasma electrolytic oxidation. Acta Astronautica, 136, 230-235. doi:10.1016/j.actaastro.2017.03.021
  • Li, X., Dong, C., Zhao, Q., Pang, Y., Cheng, F. & Wang, S. (2018). Characterization of microstructure and wear resistance of PEO coatings containing various microparticles on Ti6Al4V alloy. Journal of Materials Engineering and Performance, 27, 1642-1653. doi:10.1007/s11665-018-3249-2
  • Li, Z., Cai, Z., Cui, Y., Liu, J. & Zhu, M. (2019). Effect of oxidation time on the impact wear of micro-arc oxidation coating on aluminum alloy. Wear, 426-427, 285-295. doi:10.1016/j.wear.2019.01.084
  • Lv, G., Gu, W., Chen, H., Feng, W., Khosa, M. L., Li, L., Niu, E., Zhang, G., & Yang, S. Z. (2006). Characteristic of ceramic coatings on aluminum by plasma electrolytic oxidation in silicate and phosphate electrolyte. Applied Surface Science, 253, 2947-2952. doi:10.1016/j.apsusc.2006.06.036
  • Ma, X., Jin, S., Wu, R., Ji, Q., Hou, L., Krit, B., & Betsofen, S. (2022a). Influence alloying elements of Al and Y in Mg-Li alloy on the corrosion behavior and wear resistance of microarc oxidation coatings. Surface and Coatings Technology, 432, 128042. doi:10.1016/j.surfcoat.2021.128042
  • Ma, X., Jin, S., Wu, R., Zhang, S., Hou, L., Krit, B., Betsofen, S., & Liu, B. (2022b). Influence of combined B4C/C particles on the properties of microarc oxidation coatings on Mg-Li alloy. Surface and Coatings Technology, 438, 128399. doi:10.1016/j.surfcoat.2022.128399
  • Matin, R., Totik, Y., Sukuroglu, E. E., Efeoglu, I., & Santos, T. G. (2020). Effects of voltage on the components of surface integrity of Al2O3 ceramic coatings on AA2024 by plasma electrolytic oxidation. Journal of Adhesion Science and Technology, 34, 18, 1971-1981. doi:10.1080/01694243.2020.1742970
  • Mingo, B., Arrabal, R., Mohedano, M., Pardo, A., & Matykina, E. (2017). Corrosion and wear of PEO coated AZ91/SiC composites. Surface and Coatings Technology, 309, 1023-1032. doi:10.1016/j.surfcoat.2016.10.041
  • Mojsilovi´c, K., Boˇzovi´, N., Stojanovi´c, S., Damjanovi´c-Vasili´c, L., Serdechnova, M., Blawert, C., Zheludkevich, M. L., Stojadinovi´c, S., & Vasili´, R. (2021). Zeolite-containing photocatalysts immobilized on aluminum support by plasma electrolytic oxidation. Surfaces and Interfaces, 26, 101307. doi:10.1016/j.surfin.2021.101307
  • Monfort, F., Berkani, A., Matykina, E., Skeldon, P., Thompson, G., Habazaki, H., & Shimizu, K. (2007a). Development of anodic coatings on aluminium under sparking conditions in silicate electrolyte. Corrosion Science, 49, 672-693. doi:10.1016/j.corsci.2006.05.046
  • Monfort, F., Matykina, E., Berkani, A., Skeldon, P., Thompson, G., Habazaki, H., & Shimizu, K. (2007b). Species separation during coating growth on aluminium by spark anodizing. Surface and Coatings Technology, 201, 8671–8676. doi:10.1016/j.surfcoat.2006.05.044
  • Molaeipour, P., Allahkaram, S. R., & Akbarzadeh, S. (2022). Corrosion inhibition of Ti6Al4V alloy by a protective plasma electrolytic oxidation coating modified with boron carbide nanoparticles. Surface and Coatings Technology, 430, 127987. doi:10.1016/j.surfcoat.2021.127987
  • Ravindranath, V.M., Shiva Shankar, G.S., Basavarajappa, S., & Siddesh Kumar, N.G. (2017). Dry sliding wear behavior of hybrid aluminum metal matrix composite reinforced with boron carbide and graphite particles. Materials Today: Proceedings, 4(10), 11163-11167. doi:10.1016/j.matpr.2017.08.082
  • Roknian, M., Fattah-Alhosseini, A., Gashti, S. O., & Keshavarz, M. K. (2018). Study of the effect of ZnO nanoparticles addition to PEO coatings on pure titanium substrate: Microstructural analysis, antibacterial effect and corrosion behavior of coatings in Ringer's physiological solution. Journal of Alloys and Compounds, 740, 330-345. doi:10.1016/j.jallcom.2017.12.366
  • Sahin, Y. (2003). Wear behaviour of aluminium alloy and its composites reinforced by SiC particles using statistical analysis. Materials & Design, 24, 95-103. doi:10.1016/s0261-3069(02)00143-7
  • Shokouhfar, M., & Allahkaram, S. (2016). Formation mechanism and surface characterization of ceramic composite coatings on pure titanium prepared by micro-arc oxidation in electrolytes containing nanoparticles. Surface and Coatings Technology, 291, 396-405. doi:10.1016/j.surfcoat.2016.03.013
  • Simchen, F., Sieber, M., & Lampke, T. (2017). Electrolyte influence on ignition of plasma electrolytic oxidation processes on light metals. Surface and Coatings Technology, 315, 205-213. doi:10.1016/j.surfcoat.2017.02.041
  • Singh, D. K., Tripathi, M. K., & Singh V. B. (2015). Electrolytic preparation of Ni-B4C composite coating and its characterization. Journal of Materials Engineering and Performance, 24, 1213-1219. doi:10.1007/s11665-015-1396-2
  • Vakili-Azghandi, M., & Fattah-Alhosseini, A. (2017). Effects of duty cycle, current frequency, and current density on corrosion behavior of the plasma electrolytic oxidation coatings on 6061 Al alloy in artificial seawater. Metallurgical and Materials Transactions A, 48, 4681-4692. doi:10.1007/s11661-017-4205-8
  • Vakili-Azghandi, M., Fattah-Alhosseini, A., & Keshavarz, M. K., (2018). Optimizing the electrolyte chemistry parameters of PEO coating on 6061 Al alloy by corrosion rate measurement: response surface methodology. Measurement, 124, 252-259. doi:10.1016/j.measurement.2018.04.038
  • Wang, Y. Q., Zheng, M. Y., & Wu, K. (2005). Microarc oxidation coating formed on SiCw/AZ91 magnesium matrix composite and its corrosion resistance. Materials Letters, 59, 1727-1731. doi:10.1016/j.matlet.2005.01.050
  • Wang, Y. Q., Wang, X. J., Gong, W. X., Wu, K., & Wang, F. H. (2013). Effect of SiC particles on microarc oxidation process of magnesium matrix composites. Applied Surface Science, 283, 906-913. doi:10.1016/j.apsusc.2013.07.041
  • Wang, Y., Zhou, Q., Li, K., Zhong, Q., & Bui, Q. B. (2015). Preparation of Ni-W-SiO2 nanocomposite coating and evaluation of its hardness and corrosion resistance. Ceramics International, 41, 79-84. doi:10.1016/j.ceramint.2014.08.034
  • Wu, T., Blawert, C., & Zheludkevich, M. L. (2020). Influence of secondary phases of AlSi9Cu3 alloy on the plasma electrolytic oxidation coating formation process. Journal of Materials Science & Technology, 50, 75-85. doi:10.1016/j.jmst.2019.12.031
  • Xia, Q., Wang, J., Liu, G., Wei, H., Li, D., Yao, Z., & Jiang, Z. (2016). Effects of electric parameters on structure and thermal control property of PEO ceramic coatings on ti alloys. Surface and Coatings Technology, 307, 1284-1290. doi:10.1016/j.surfcoat.2016.07.073
  • Xin, S. G., Song, L. X., Zhao, R. G., & Hu, X. F. (2006). Composition and thermal properties of the coating containing mullite and alumina. Materials Chemistry and Physics, 97(1), 132-136. doi:10.1016/j.matchemphys.2005.07.073
  • Xue, W., Deng, Z., Chen, R., & Zhang T. (2000). Growth regularity of ceramic coatings formed by microarc oxidation on Al–Cu–Mg alloy. Thin Solid Films, 372(1-2), 114-117. doi:10.1016/S0040-6090(00)01026-9
  • Xue, W., Wang, C., Tian, H., & Lai, Y. (2007). Corrosion behaviors and galvanic studies of microarc oxidation films on Al–Zn–Mg–Cu alloy. Surface and Coatings Technology, 201, 8695-8701. doi:10.1016/j.surfcoat.2006.10.029
  • Yang, X., Chen, L., Jin, X., Du, J., & Xue, W. (2019). Influence of temperature on tribological properties of microarc oxidation coating on 7075 aluminium alloy at 25◦C-300◦C. Ceramics International, 45, 12312-12318. doi:10.1016/j.ceramint.2019.03.146
  • Yang, Z., Zhang, X. Z., Wu, Y. K., Wang, D. D., Liu, X. T., Wu, G. R., Nash, P., & Shen, D. J. (2020). Plasma electrolytic oxidation ceramic coatings proceed by porous anodic film. Journal of Alloys and Compounds, 812, 152098. doi:10.1016/j.jallcom.2019.152098
  • Yerokhin, A. L., Nie, X., Leyland, A., Matthews, A., & Dowey, S. J. (1999). Plasma electrolysis for surface engineering. Surface and Coatings Technology, 122(2-3), 73-93. doi:10.1016/S0257-8972(99)00441-7
  • Zhang, P., Nie, X., Henry, H., & Zhang, J. (2010). Preparation and tribological properties of thin oxide coatings on an Al383/SiO2 metallic matrix composite. Surface and Coatings Technology, 205, 1689-1696. doi:10.1016/j.surfcoat.2010.09.031
  • Zhao, D., Lu, Y., Wang, Z., Zeng, X., Liu, S., & Wang, T. (2016). Antifouling properties of micro arc oxidation coatings containing Cu2O/ZnO nanoparticles on Ti6Al4V. International Journal of Refractory Metals and Hard Materials, 54, 417-421. doi:10.1016/j.ijrmhm.2015.10.003
  • Zhu, M., Song, Y., Dong, K., Shan, D., & Han, E. H. (2022a). Correlation between the transient variation in positive/negative pulse voltages and the growth of PEO coating on 7075 aluminum alloy. Electrochimica Acta, 411, 140056. doi:10.1016/j.electacta.2022.140056
  • Zhu, M., Song, Y., Liu, Z., Xu, D., Dong, K., & Han, E. H. (2022b). Optimization of thermal control and corrosion resistance of PEO coatings on 7075 aluminum alloy by frequency alteration. Surface and Coatings Technology, 446, 128797. doi:10.1016/j.surfcoat.2022.128797
  • Zhu, M., Song, Y., Xu, J., Dong, K., & Han, E. H. (2023). Effect of boron carbide reinforcments on the PEO process of B4C/Al matrix composite. Surface and Coatings Technology, 457, 129334. doi:10.1016/j.surfcoat.2023.129334

Deposition of B4C Doped Composite Coatings on Al 2024 Alloy by Micro-Arc Oxidation Method

Yıl 2023, , 1107 - 1117, 29.12.2023
https://doi.org/10.53433/yyufbed.1284780

Öz

The effect of boron carbide (B4C) addition on the structure and properties of coatings grown by the Microarc Oxidation (MAO) method on Al alloy was investigated by performing it in a solution consisting of sodium phosphate, sodium silicate and potassium hydroxide. MAO was applied on Al 2024 alloy in solutions with and without added B4C particles. The phase composition and microstructure of the MAO coatings were evaluated using X-ray diffraction diffractometry (XRD) and scanning electron microscopy (SEM). In addition, the microhardness values of the coatings were determined using a microhardness tester. It has been observed that the oxide coatings on the Al alloy are primarily composed of γ-Al2O3. The addition of B4C particles to the solution improved the formation rate and compactness of MAO coatings on Al alloys, and the presence of B4C in the coatings was detected by X-ray diffraction. B4C particles with high hardness and good chemical stability were observed to be evenly dispersed in MAO coatings. Therefore, it has been observed that the hardness value of B4C reinforced MAO coatings is significantly higher than that of oxide coatings without B4C on Al alloys.

Kaynakça

  • Aliofkhazraei, M., & Rouhaghdam, A. S. (2012). Tribological behaviour of mechanically synthesized titanium-boron carbide nanostructured coating. Journal of Nanoscience and Nanotechnology, 12, 6840-6844. doi:10.1166/jnn.2012.4535
  • Alizadeh, A., Taheri-Nassaj, E., & Baharvandi, H.R. (2011). Preperation and investigation of Al4wt.%B4C nanocomposite powders using mechanical milling. Bulletin of Materials Science, 34, 1039-1048. doi:10.1007/s12034-011-0158-5
  • Arrabal, R., Pardo, A., Merino, M. C., Mohedano, M., Casajús, P., Matykina, E., Skeldon, P., & Thompson, G. E. (2010). Corrosion behaviour of a magnesium matrix composite with a silicate plasma electrolytic oxidation coating. Corrosion Science, 52, 3738–3749, doi:10.1016/j.corsci.2010.07.024
  • Atapour, M., Blawert, C., & Zheludkevich, M.L. (2019). The wear characteristics of CeO2 containing nanocomposite coating made by aluminate-based PEO on AM 50 magnesium alloy. Surface and Coatings Technology, 357, 626-637. doi:10.1016/j.surfcoat.2018.10.033
  • Bahador, R., Hosseinabadi, N., & Yaghtin, A. (2021). Effect of power duty cycle on plasma electrolytic oxidation of A356-Nb2O5 metal matrix composites. Journal of Materials Engineering and Performance, 30, 2586–2604. doi:10.1007/s11665-021-05597-4
  • Becerik, D. A., Ayday, A., Kumruoğlu, L. C., Kurnaz, C., & Özel, A. (2012). The effects of Na2SiO3 concentration on the properties of plasma electrolytic oxidation coatings on 6060 aluminum alloy. Journal of Materials Engineering and Performance, 21, 1426-1430. doi:10.1007/s11665-011-0022-1
  • Chen, J., Shi, Y., Wang, L., Yan, F., & Zhang, F. (2006). Preparation and properties of hydroXyapatite-containing titania coating by micro-arc oxidation. Materials Letters, 60, 20, 2538-2543. doi:10.1016/j.matlet.2006.01.035
  • Clyne, T. W., & Troughton, S. C. (2019). A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals. International Materials Reviews, 64, 127–162. doi:10.1080/09506608.2018.1466492
  • Cui, S., Han, J., Du, Y., & Li, W. (2007). Corrosion resistance and wear resistance of plasma electrolytic oxidation coatings on metal matrix composites. Surface and Coatings Technology, 201, 5306–5309. doi:10.1016/j.surfcoat.2006.07.126
  • Darband, G. B., Aliofkhazraei, M., Hamghalam, P., & Valizade, N. (2017). Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. Journal of Magnesium and Alloys, 5, 1, 74-132. doi:10.1016/j.jma.2017.02.004
  • Dou, J., Chen, Y., Yu, H., & Chen, C. (2017). Research status of magnesium alloys by micro-arc oxidation: a review. Surface Engineering, 33, 731-738. doi:10.1080/02670844.2017.1278642
  • Fattah-Alhosseini, A., Vakili-Azghandi, M., & Keshavarz, M. K. (2016). Influence of concentrations of KOH and Na2SiO3 electrolytes on the electrochemical behavior of ceramic coatings on 6061 Al alloy processed by plasma electrolytic oxidation. Acta Metallurgica Sinica (English Letters), 29, 274-281. doi:10.1007/s40195-016-0384-3
  • Fattah-Alhosseini, A., Gashti, S. O., & Molaie, M. (2018). Effects of disodium phosphate concentration (Na2HPO4⋅2H2O) on microstructure and corrosion resistance of plasma electrolytic oxidation (PEO) coatings on 2024 Al alloy. Journal of Materials Engineering and Performance, 27, 825-834. doi:10.1007/s11665-018-3124-1
  • Fattah-Alhosseini, A., Chaharmahali, R., & Babaei, K. (2020). Effect of particles addition to solution of plasma electrolytic oxidation (PEO) on the properties of PEO coatings formed on magnesium and its alloys: A review. Journal of Magnesium and Alloys, 8, 3, 799-818. doi:10.1016/j.jma.2020.05.001
  • Feng, X., Shi, R., Lu, X., Xu, Y., Huang, X., & Chen, D. (2017). The corrosion inhibition efficiency of aluminum tripolyphosphate on carbon steel in carbonated concrete pore solution. Corrosion Science, 124, 150–159. doi:10.1016/j.corsci.2017.05.018
  • Gu, Y., Bandopadhyay, S., Chen, C. F., Guo, Y., & Ning, C. (2012). Effect of oxidation time on the corrosion behavior of micro-arc oxidation produced AZ31 magnesium alloys in simulated body fluid. Journal of Alloys and Compounds, 543, 109–17. doi:10.1016/j.jallcom.2012.07.130
  • Guo, Q., Xu, D., Yang, W., Guo, Y., Yang, Z., Li, J., & Gao, P. (2020). Synthesis, corrosion, and wear resistance of a black microarc oxidation coating on pure titanium. Surface and Coatings Technology, 386, 125454. doi:10.1016/j.surfcoat.2020.125454
  • Haghighat-Shishavan, B., Azari-Khosrowshahi, R., Haghighat-Shishavan, S., NazarianSamani, M., & Parvini-Ahmadi, N., (2019). Improving wear and corrosion properties of alumina coating on AA7075 aluminum by plasma electrolytic oxidation: effects of graphite absorption. Applied Surface Science, 481, 108-119. doi:10.1016/j.apsusc.2019.03.069
  • Hussein, R., Nie, X., Northwood, D., Yerokhin, A., & Matthews, A. (2010). Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process. Journal of Physics D: Applied Physics, 43, 105203. doi:10.1016/j.surfcoat.2011.06.031
  • Hussein, R. O., Nie, X., & Northwood, D. O. (2013). An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing. Electrochimica Acta, 112, 111-119. doi:10.1016/j.electacta.2013.08.137
  • Idrisi, A. H., & Mourad, A. H. I. (2019). Conventional stir casting versus ultrasonic assisted stir casting process: mechanical and physical characteristics of AMCs. Journal of Alloys and Compounds, 805, 502–508. doi:10.1016/j.jallcom.2019.07.076
  • Jiang, C., Wang, Y., Wang, S., Li, Y., Zou, Y., Ouyang, J., Jia, D., & Zhou, Y. (2022). Achieving high-efficiency electrically insulating ceramic layer formed on SiCp/Al composite by bipolar pulsed PEO for novel integrated strategy. Surface and Coatings Technology, 444. doi:10.1016/j.surfcoat.2022.128692
  • Kaplan, E., Şüküroğlu, E. E., & Çuvalcı, O. (2021). Investigation of characterization and tribological behavior of composite oxide coatings doped with h-BN and graphite particles on ZA-27 alloy by micro-arc oxidation. Journal of Adhesion Science and Technology, 35, 12, 1305-1319. doi:10.1080/01694243.2020.1843315
  • Kaseem, M., Fatimah, S., Nashrah, N., & Ko, Y. G. (2021).Recent progress in surface modification of metals coated by plasma electrolytic oxidation: principle, structure, and performance. Progress in Materials Science, 117, 100735. doi:10.1016/j.pmatsci.2020.100735
  • Kumar, R., & Dhiman, S. (2013). A study of sliding wear behaviors of Al-7075 alloy and Al-7075 hybrid composite by response surface methodology analysis. Materials & Design, 50, 351-359. doi:10.1016/j.matdes.2013.02.038
  • Küçükosman, R., Şüküroğlu, E. E., Totik, Y., & Şüküroğlu, S. (2021). Effects of graphene oxide addition on wear behaviour of composite coatings fabricated by plasma electrolytic oxidation (PEO) on AZ91 magnesium alloy. Journal of Adhesion Science and Technology, 35, 242-255. doi:10.1080/01694243.2020.1800289
  • Lee, K. M., Ko, Y. G., & Shin, D. H. (2011). Incorporation of multi-walled carbon nanotubes into the oxide layer on a 7075 Al alloy coated by plasma electrolytic oxidation: coating structure and corrosion properties. Current Applied Physics, 11, 55–59. doi:10.1016/j.cap.2011.07.009
  • Li, H., Lu, S., Qin, W., & Wu, X. (2017). In-situ grown MgO-ZnO ceramic coating with high thermal emittance on mg alloy by plasma electrolytic oxidation. Acta Astronautica, 136, 230-235. doi:10.1016/j.actaastro.2017.03.021
  • Li, X., Dong, C., Zhao, Q., Pang, Y., Cheng, F. & Wang, S. (2018). Characterization of microstructure and wear resistance of PEO coatings containing various microparticles on Ti6Al4V alloy. Journal of Materials Engineering and Performance, 27, 1642-1653. doi:10.1007/s11665-018-3249-2
  • Li, Z., Cai, Z., Cui, Y., Liu, J. & Zhu, M. (2019). Effect of oxidation time on the impact wear of micro-arc oxidation coating on aluminum alloy. Wear, 426-427, 285-295. doi:10.1016/j.wear.2019.01.084
  • Lv, G., Gu, W., Chen, H., Feng, W., Khosa, M. L., Li, L., Niu, E., Zhang, G., & Yang, S. Z. (2006). Characteristic of ceramic coatings on aluminum by plasma electrolytic oxidation in silicate and phosphate electrolyte. Applied Surface Science, 253, 2947-2952. doi:10.1016/j.apsusc.2006.06.036
  • Ma, X., Jin, S., Wu, R., Ji, Q., Hou, L., Krit, B., & Betsofen, S. (2022a). Influence alloying elements of Al and Y in Mg-Li alloy on the corrosion behavior and wear resistance of microarc oxidation coatings. Surface and Coatings Technology, 432, 128042. doi:10.1016/j.surfcoat.2021.128042
  • Ma, X., Jin, S., Wu, R., Zhang, S., Hou, L., Krit, B., Betsofen, S., & Liu, B. (2022b). Influence of combined B4C/C particles on the properties of microarc oxidation coatings on Mg-Li alloy. Surface and Coatings Technology, 438, 128399. doi:10.1016/j.surfcoat.2022.128399
  • Matin, R., Totik, Y., Sukuroglu, E. E., Efeoglu, I., & Santos, T. G. (2020). Effects of voltage on the components of surface integrity of Al2O3 ceramic coatings on AA2024 by plasma electrolytic oxidation. Journal of Adhesion Science and Technology, 34, 18, 1971-1981. doi:10.1080/01694243.2020.1742970
  • Mingo, B., Arrabal, R., Mohedano, M., Pardo, A., & Matykina, E. (2017). Corrosion and wear of PEO coated AZ91/SiC composites. Surface and Coatings Technology, 309, 1023-1032. doi:10.1016/j.surfcoat.2016.10.041
  • Mojsilovi´c, K., Boˇzovi´, N., Stojanovi´c, S., Damjanovi´c-Vasili´c, L., Serdechnova, M., Blawert, C., Zheludkevich, M. L., Stojadinovi´c, S., & Vasili´, R. (2021). Zeolite-containing photocatalysts immobilized on aluminum support by plasma electrolytic oxidation. Surfaces and Interfaces, 26, 101307. doi:10.1016/j.surfin.2021.101307
  • Monfort, F., Berkani, A., Matykina, E., Skeldon, P., Thompson, G., Habazaki, H., & Shimizu, K. (2007a). Development of anodic coatings on aluminium under sparking conditions in silicate electrolyte. Corrosion Science, 49, 672-693. doi:10.1016/j.corsci.2006.05.046
  • Monfort, F., Matykina, E., Berkani, A., Skeldon, P., Thompson, G., Habazaki, H., & Shimizu, K. (2007b). Species separation during coating growth on aluminium by spark anodizing. Surface and Coatings Technology, 201, 8671–8676. doi:10.1016/j.surfcoat.2006.05.044
  • Molaeipour, P., Allahkaram, S. R., & Akbarzadeh, S. (2022). Corrosion inhibition of Ti6Al4V alloy by a protective plasma electrolytic oxidation coating modified with boron carbide nanoparticles. Surface and Coatings Technology, 430, 127987. doi:10.1016/j.surfcoat.2021.127987
  • Ravindranath, V.M., Shiva Shankar, G.S., Basavarajappa, S., & Siddesh Kumar, N.G. (2017). Dry sliding wear behavior of hybrid aluminum metal matrix composite reinforced with boron carbide and graphite particles. Materials Today: Proceedings, 4(10), 11163-11167. doi:10.1016/j.matpr.2017.08.082
  • Roknian, M., Fattah-Alhosseini, A., Gashti, S. O., & Keshavarz, M. K. (2018). Study of the effect of ZnO nanoparticles addition to PEO coatings on pure titanium substrate: Microstructural analysis, antibacterial effect and corrosion behavior of coatings in Ringer's physiological solution. Journal of Alloys and Compounds, 740, 330-345. doi:10.1016/j.jallcom.2017.12.366
  • Sahin, Y. (2003). Wear behaviour of aluminium alloy and its composites reinforced by SiC particles using statistical analysis. Materials & Design, 24, 95-103. doi:10.1016/s0261-3069(02)00143-7
  • Shokouhfar, M., & Allahkaram, S. (2016). Formation mechanism and surface characterization of ceramic composite coatings on pure titanium prepared by micro-arc oxidation in electrolytes containing nanoparticles. Surface and Coatings Technology, 291, 396-405. doi:10.1016/j.surfcoat.2016.03.013
  • Simchen, F., Sieber, M., & Lampke, T. (2017). Electrolyte influence on ignition of plasma electrolytic oxidation processes on light metals. Surface and Coatings Technology, 315, 205-213. doi:10.1016/j.surfcoat.2017.02.041
  • Singh, D. K., Tripathi, M. K., & Singh V. B. (2015). Electrolytic preparation of Ni-B4C composite coating and its characterization. Journal of Materials Engineering and Performance, 24, 1213-1219. doi:10.1007/s11665-015-1396-2
  • Vakili-Azghandi, M., & Fattah-Alhosseini, A. (2017). Effects of duty cycle, current frequency, and current density on corrosion behavior of the plasma electrolytic oxidation coatings on 6061 Al alloy in artificial seawater. Metallurgical and Materials Transactions A, 48, 4681-4692. doi:10.1007/s11661-017-4205-8
  • Vakili-Azghandi, M., Fattah-Alhosseini, A., & Keshavarz, M. K., (2018). Optimizing the electrolyte chemistry parameters of PEO coating on 6061 Al alloy by corrosion rate measurement: response surface methodology. Measurement, 124, 252-259. doi:10.1016/j.measurement.2018.04.038
  • Wang, Y. Q., Zheng, M. Y., & Wu, K. (2005). Microarc oxidation coating formed on SiCw/AZ91 magnesium matrix composite and its corrosion resistance. Materials Letters, 59, 1727-1731. doi:10.1016/j.matlet.2005.01.050
  • Wang, Y. Q., Wang, X. J., Gong, W. X., Wu, K., & Wang, F. H. (2013). Effect of SiC particles on microarc oxidation process of magnesium matrix composites. Applied Surface Science, 283, 906-913. doi:10.1016/j.apsusc.2013.07.041
  • Wang, Y., Zhou, Q., Li, K., Zhong, Q., & Bui, Q. B. (2015). Preparation of Ni-W-SiO2 nanocomposite coating and evaluation of its hardness and corrosion resistance. Ceramics International, 41, 79-84. doi:10.1016/j.ceramint.2014.08.034
  • Wu, T., Blawert, C., & Zheludkevich, M. L. (2020). Influence of secondary phases of AlSi9Cu3 alloy on the plasma electrolytic oxidation coating formation process. Journal of Materials Science & Technology, 50, 75-85. doi:10.1016/j.jmst.2019.12.031
  • Xia, Q., Wang, J., Liu, G., Wei, H., Li, D., Yao, Z., & Jiang, Z. (2016). Effects of electric parameters on structure and thermal control property of PEO ceramic coatings on ti alloys. Surface and Coatings Technology, 307, 1284-1290. doi:10.1016/j.surfcoat.2016.07.073
  • Xin, S. G., Song, L. X., Zhao, R. G., & Hu, X. F. (2006). Composition and thermal properties of the coating containing mullite and alumina. Materials Chemistry and Physics, 97(1), 132-136. doi:10.1016/j.matchemphys.2005.07.073
  • Xue, W., Deng, Z., Chen, R., & Zhang T. (2000). Growth regularity of ceramic coatings formed by microarc oxidation on Al–Cu–Mg alloy. Thin Solid Films, 372(1-2), 114-117. doi:10.1016/S0040-6090(00)01026-9
  • Xue, W., Wang, C., Tian, H., & Lai, Y. (2007). Corrosion behaviors and galvanic studies of microarc oxidation films on Al–Zn–Mg–Cu alloy. Surface and Coatings Technology, 201, 8695-8701. doi:10.1016/j.surfcoat.2006.10.029
  • Yang, X., Chen, L., Jin, X., Du, J., & Xue, W. (2019). Influence of temperature on tribological properties of microarc oxidation coating on 7075 aluminium alloy at 25◦C-300◦C. Ceramics International, 45, 12312-12318. doi:10.1016/j.ceramint.2019.03.146
  • Yang, Z., Zhang, X. Z., Wu, Y. K., Wang, D. D., Liu, X. T., Wu, G. R., Nash, P., & Shen, D. J. (2020). Plasma electrolytic oxidation ceramic coatings proceed by porous anodic film. Journal of Alloys and Compounds, 812, 152098. doi:10.1016/j.jallcom.2019.152098
  • Yerokhin, A. L., Nie, X., Leyland, A., Matthews, A., & Dowey, S. J. (1999). Plasma electrolysis for surface engineering. Surface and Coatings Technology, 122(2-3), 73-93. doi:10.1016/S0257-8972(99)00441-7
  • Zhang, P., Nie, X., Henry, H., & Zhang, J. (2010). Preparation and tribological properties of thin oxide coatings on an Al383/SiO2 metallic matrix composite. Surface and Coatings Technology, 205, 1689-1696. doi:10.1016/j.surfcoat.2010.09.031
  • Zhao, D., Lu, Y., Wang, Z., Zeng, X., Liu, S., & Wang, T. (2016). Antifouling properties of micro arc oxidation coatings containing Cu2O/ZnO nanoparticles on Ti6Al4V. International Journal of Refractory Metals and Hard Materials, 54, 417-421. doi:10.1016/j.ijrmhm.2015.10.003
  • Zhu, M., Song, Y., Dong, K., Shan, D., & Han, E. H. (2022a). Correlation between the transient variation in positive/negative pulse voltages and the growth of PEO coating on 7075 aluminum alloy. Electrochimica Acta, 411, 140056. doi:10.1016/j.electacta.2022.140056
  • Zhu, M., Song, Y., Liu, Z., Xu, D., Dong, K., & Han, E. H. (2022b). Optimization of thermal control and corrosion resistance of PEO coatings on 7075 aluminum alloy by frequency alteration. Surface and Coatings Technology, 446, 128797. doi:10.1016/j.surfcoat.2022.128797
  • Zhu, M., Song, Y., Xu, J., Dong, K., & Han, E. H. (2023). Effect of boron carbide reinforcments on the PEO process of B4C/Al matrix composite. Surface and Coatings Technology, 457, 129334. doi:10.1016/j.surfcoat.2023.129334
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Mühendislik ve Mimarlık / Engineering and Architecture
Yazarlar

Süleyman Şüküroğlu 0000-0003-4291-6378

Yayımlanma Tarihi 29 Aralık 2023
Gönderilme Tarihi 17 Nisan 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Şüküroğlu, S. (2023). Al 2024 Alaşımı Üzerine Mikro Ark Oksidasyon Yöntemiyle B4C İlaveli Kompozit Kaplamaların Büyütülmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(3), 1107-1117. https://doi.org/10.53433/yyufbed.1284780