Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Melatonin Applications on Quality Characteristics of Brussels Sprouts During Storage Period

Yıl 2025, Cilt: 30 Sayı: 1, 340 - 353, 29.04.2025
https://doi.org/10.53433/yyufbed.1624436

Öz

The edible portion of Brussels sprouts, their sprouts, is recognized for its high nutritional value. These sprouts are rich in glucosinolate compounds, which play a crucial role in enzyme regulation, DNA protection against degradation, and cancer prevention. However, the storage life of Brussels sprouts is relatively short. Thus, this study targeted to investigate the impacts of different melatonin concentrations (50 µM, 100 µM, and 150 µM) on the postharvest quality of Brussels sprouts. Brussels sprouts were immersed in melatonin solutions at concentrations of 50 µM, 100 µM, and 150 µM for 5 minutes, with pure water serving as the control. Following immersion, the sprouts were stored at 1 ± 0.5 °C and 90 ± 5% relative humidity (RH) for 28 days. Key quality criteria, including weight loss, titratable acidity, soluble solids content, vitamin C, chlorophyll, total phenolic content, and total antioxidant capacity, were analyzed at every seven days (on days 7, 14, 21, and 28). Melatonin treatments significantly influenced the postharvest quality of Brussels sprouts. The highest chlorophyll content was noted in the 50 µM melatonin treatment, whereas the maximum vitamin C levels were recorded in both the control and 50 µM melatonin applications. The greatest total antioxidant capacity was achieved with the 100 µM melatonin treatment. Conversely, weight loss and total phenolic content were not significantly affected by melatonin applications. In conclusion, the application of 50 µM melatonin was found to effectively preserve the quality of Brussels sprouts, allowing for commercial storage of up to 28 days.

Kaynakça

  • Aghdam, M. S., & Fard, J. R. (2017). Melatonin treatment attenuates postharvest decay and maintains nutritional quality of strawberry fruits (Fragaria× anannasa cv. Selva) by enhancing GABA shunt activity. Food Chemistry, 221, 1650-1657. https://doi.org/10.1016/j.foodchem.2016.10.123
  • Aglar, E., Ozturk, B., Guler, S. K., Karakaya, O., Uzun, S., & Saracoglu, O. (2017). Effect of modified atmosphere packaging and ‘Parka’treatments on fruit quality characteristics of sweet cherry fruits (Prunus avium L. ‘0900 Ziraat’) during cold storage and shelf life. Scientica Horticulturae, 222, 162-168. https://doi.org/10.1016/j.scienta.2017.05.024
  • Ahmad, S., Su, W., Kamran, M., Ahmad, I., Meng, X., Wu, X., Javed, T., & Han, Q. (2020). Foliar application of melatonin delay leaf senescence in maize by improving the antioxidant defense system and enhancing photosynthetic capacity under semi-arid regions. Protoplasma, 257, 1079-1092. https://doi.org/10.1007/s00709-020-01491-3
  • Ahmad, I., Zhu, G., Zhou, G., Liu, J., Younas, M. U., & Zhu, Y. (2023). Melatonin role in plant growth and physiology under abiotic stress. International Journal of Molecular Sciences, 24(10), 8759. https://doi.org/10.3390/ijms24108759
  • Arnao, M. B., & Hernández‐Ruiz, J. (2015). Functions of melatonin in plants: a review. Journal of Pineal Research, 59(2), 133-150. https://doi.org/10.1111/jpi.12253
  • Arnao, M. B., & Hernández-Ruiz, J. (2020). Melatonin in flowering, fruit set and fruit ripening. Plant Reproduction, 33, 77-87. https://doi.org/10.1007/s00497-020-00388-8
  • Bilgin, J., & Aslantaş, R. (2022). The effects of some post-harvest organic acid treatments on the storage quality of brussels sprouts. Selcuk Journal of Agriculture and Food Sciences, 36(3), 393-398. https://doi.org/10.15316/SJAFS.2022.051
  • Cai, S., Zhang, Z., Wang, J., Fu, Y., Zhang, Z., Khan, M. R., & Cong, X. (2024). Effect of exogenous melatonin on postharvest storage quality of passion fruit through antioxidant metabolism. LWT, 194, 115835. https://doi.org/10.1016/j.lwt.2024.115835
  • Cai, H., Li, J., Li, J., & Teng, H. (2025). Melatonin—Angel of plant growth regulation and protection. Advanced Agrochem. https://doi.org/10.1016/j.aac.2025.01.001
  • Cao, S., Song, C., Shao, J., Bian, K., Chen, W., & Yang, Z. (2016). Exogenous melatonin treatment increases chilling tolerance and induces defense response in harvested peach fruit during cold storage. Journal of Agricultural and Food Chemistry, 64(25), 5215-5222. https://doi.org/10.1021/acs.jafc.6b01118
  • Demirsoy, A. (2018). Biyolojik saat: Belleğin ve davranışların evrimi. Asi Kitap, Guru Yapım Prod. Ltd. Şti., İstanbul.
  • Demirsoy, A. (2021). Canlılığın oluşum öyküsünde renklerin dansı: Yerkürenin oluşum serüveni. Akılçelen Kitaplar, Ankara.
  • Fu, J., Wu, Y., Miao, Y., Xu, Y., Zhao, E., Wang, J., Sun, H., Liu, Q., Xue, Y., Xu, Y., & Hu, T. (2017). Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways. Scientific Reports, 7(1), 39865. https://doi.org/10.1038/srep39865
  • Gao, H., Lu, Z., Yang, Y., Wang, D., Yang, T., Cao, M., & Cao, W. (2018). Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism. Food Chemistry, 245, 659-666. https://doi.org/10.1016/j.foodchem.2017.10.008
  • Guvenc, İ. (2016). Sebzecilik: Temel bilgiler muhafaza ve yetiştiricilik. Nobel Akademik Yayıncılık, Yayın No:1701, İstanbul.
  • Hasperué, J. H., Rodoni, L. M., Guardianelli, L. M., Chaves, A. R., & Martínez, G. A. (2016). Use of LED light for Brussels sprouts postharvest conservation. Scientia Horticulturae, 213, 281-286. https://doi.org/10.1016/j.scienta.2016.11.004
  • Hu, H., Luo, S., An, R., & Li, P. (2022). Endogenous melatonin delays sepal senescence and extends the storage life of broccoli florets by decreasing ethylene biosynthesis. Postharvest Biology and Technology, 188, 111894. https://doi.org/10.1016/j.postharvbio.2022.111894
  • Karaçalı, İ. (2016). Bahçe ürünlerinin muhafaza ve pazarlanması. Ege Üniversitesi Basımevi.
  • Kasım, R., & Kasım, M. U. (2007). Inhibition of yellowing in Brussels sprouts (B. oleraceae var. gemmifera) and broccoli (B. oleraceae var. italica) using light during storage. Journal of Food Agriculture and Environment, 5(3/4), 126.
  • Kaya, C., Higgs, D., Ashraf, M., Alyemeni, M. N., & Ahmad, P. (2020). Integrative roles of nitric oxide and hydrogen sulfide in melatonin‐induced tolerance of pepper (Capsicum annuum L.) plants to iron deficiency and salt stress alone or in combination. Physiologia Plantarum, 168(2), 256-277. https://doi.org/10.1111/ppl.12976
  • Khan, M., Hussain, A., Yun, B. W., & Mun, B. G. (2024). Melatonin: The multifaceted molecule in plant growth and defense. International Journal of Molecular Sciences, 25(12), 6799. https://doi.org/10.3390/ijms25126799
  • Kowalczyk, D., Kordowska‐Wiater, M., Kałwa, K., Skrzypek, T., Sikora, M., & Łupina, K. (2019). Physiological, qualitative, and microbiological changes of minimally processed Brussels sprouts in response to coating with carboxymethyl cellulose/candelilla wax emulsion. Journal of Food Processing Preservation, 43(8), e14004. https://doi.org/10.1111/jfpp.14004
  • Kraśniewska, K., Gniewosz, M., Kosakowska, O., & Cis, A. (2016). Preservation of brussels sprouts by pullulan coating containing oregano essential oil. Journal of Food Protection, 79(3), 493-500. https://doi.org/10.4315/0362-028X.JFP-15-234
  • Kurtar, E. S. (2006). The effect of planting times on some vegetable characters and yield components in Brussels sprouts (Brassica oleracea var. gemmifera). Journal of Agronomy, 5(2), 186-190. http://dx.doi.org/10.3923/ja.2006.186.190
  • Lerner, A. B., Case, J. D., & Takahashi, Y. (1960). Isolation of melatonin and 5-methoxyindole-3-acetic acid from bovine pineal glands. Journal of Biological Chemistry, 235(7), 1992-1997. https://doi.org/10.1016/S0021-9258(18)69351-2
  • Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. https://doi.org/10.1042/bst0110591
  • Liu, C., Zheng, H., Sheng, K., Liu, W., & Zheng, L. (2018). Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biology and Technology, 139, 47-55. https://doi.org/10.1016/j.postharvbio.2018.01.016
  • Miao, H., Zeng, W., Zhao, M., Wang, J., & Wang, Q. (2020). Effect of melatonin treatment on visual quality and health-promoting properties of broccoli florets under room temperature. Food Chemistry, 319, 126498. https://doi.org/10.1016/j.foodchem.2020.126498
  • Onik, J. C., Wai, S. C., Li, A., Lin, Q., Sun, Q., Wang, Z., & Duan, Y. (2021). Melatonin treatment reduces ethylene production and maintains fruit quality in apple during postharvest storage. Food Chemistry, 337, 127753. https://doi.org/10.1016/j.foodchem.2020.127753
  • Ozgen, M., Reese, R. N., Tulio, A. Z., Scheerens, J. C., & Miller, A. R. (2006). Modified 2, 2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2, 2 ‘-diphenyl-1-picrylhydrazyl (DPPH) methods. Journal of Agricultural and Food Chemistry, 54(4), 1151-1157. https://doi.org/10.1021/jf051960d
  • Podsędek, A. (2007). Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. Lebensm Wiss Technol, 40(1), 1-11. https://doi.org/10.1016/j.lwt.2005.07.023
  • Saraç, H., Durukan, H., & Demirbaş, A. (2022). Sivas ve Tokat illerinden toplanan akasya bitkisi yapraklarının (Robinia pseudoacacia l.) bazı besin elementi konsantrasyonları ve antioksidan enzim aktivitelerinin belirlenmesi. Akademik Ziraat Dergisi, 11(2), 311-318. https://doi.org/10.29278/azd.1127747
  • Sarvan, I., Verkerk, R., van Boekel, M., & Dekker, M. (2014). Comparison of the degradation and leaching kinetics of glucosinolates during processing of four Brassicaceae (broccoli, red cabbage, white cabbage, Brussels sprouts). Innovative Food Science & Emerging Technologies, 25, 58-66. https://doi.org/10.1016/j.ifset.2014.01.007
  • Sharma, P., Thakur, N., Mann, N. A., & Umar, A. (2024). Melatonin as plant growth regulator in sustainable agriculture. Scientia Horticulturae, 323, 112421. https://doi.org/10.1016/j.scienta.2023.112421
  • Siddiqui, M. H., Alamri, S., Alsubaie, Q. D., & Ali, H. M. (2020). Melatonin and gibberellic acid promote growth and chlorophyll biosynthesis by regulating antioxidant and methylglyoxal detoxification system in tomato seedlings under salinity. Journal of Plant Growth Regulation, 39, 1488-1502. https://doi.org/10.1007/s00344-020-10122-3
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology Viticulture, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
  • Sun, Q., Zhang, N., Wang, J., Cao, Y., Li, X., Zhang, H., Zhang, L., Tan, D., & Guo, Y. (2016). A label‐free differential proteomics analysis reveals the effect of melatonin on promoting fruit ripening and anthocyanin accumulation upon postharvest in tomato. Journal of Pineal Research, 61(2), 138-153. https://doi.org/10.1111/jpi.12315
  • Tan, X. L., Fan, Z. Q., Kuang, J. F., Lu, W. J., Reiter, R. J., Lakshmanan, P., Su, X., Zhou, J., Chen, J., & Shan, W. (2019). Melatonin delays leaf senescence of Chinese flowering cabbage by suppressing ABFs‐mediated abscisic acid biosynthesis and chlorophyll degradation. Journal of Pineal Research, 67(1), e12570. https://doi.org/10.1111/jpi.12570
  • Turk, R., Erkan, M., Güneş, N. T., & Koyuncu, M. A. (2017). Bahçe ürünlerinin muhafazası ve pazara hazırlanması. Somtad Yayınları Ders Kitabı, (1), 542.
  • Verkerk, R., Schreiner, M., Krumbein, A., Ciska, E., Holst, B., Rowland, I., De Schrijver, R., Hansen, M., Gerhäuser, C., Mithen, R., & Dekker, M. (2009). Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Molecular Nutrition & Food Research, 53(S2), S219-S219. https://doi.org/10.1002/mnfr.200800065
  • Viña, S. Z., Mugridge, A., García, M. A., Ferreyra, R. M, Martino, M. N., Chaves, A. R., & Zaritzky, N. E. (2007). Effects of polyvinylchloride films and edible starch coatings on quality aspects of refrigerated Brussels sprouts. Food Chemistry, 103(3), 701-709. https://doi.org/10.1016/j.foodchem.2006.09.010
  • Wei, L., Liu, C., Wang, J., Younas, S., Zheng, H., & Zheng, L. (2020a). Melatonin immersion affects the quality of fresh‐cut broccoli (Brassica oleracea L.) during cold storage: Focus on the antioxidant system. Journal of Food Processsing and Preservation, 44(9), e14691. https://doi.org/10.1111/jfpp.14691
  • Wei, L., Liu, C., Zheng, H., & Zheng, L. (2020b). Melatonin treatment affects the glucoraphanin-sulforaphane system in postharvest fresh-cut broccoli (Brassica oleracea L.). Food Chemistry, 307, 125562. https://doi.org/10.1016/j.foodchem.2019.125562
  • Wu, C., Cao, S., Xie, K., Chi, Z., Wang, J., & Wang, H. (2021). Melatonin delays yellowing of broccoli during storage by regulating chlorophyll catabolism and maintaining chloroplast ultrastructure. Postharvest Biology and Technology, 172, 111378. https://doi.org/10.1016/j.postharvbio.2020.111378
  • Xin, D., Si, J., & Kou, L. (2017). Postharvest exogenous melatonin enhances quality and delays the senescence of cucumber. Acta Horticulturae Sinica, 44(5), 891-901. https://doi.org/10.16420/j.issn.0513-353x.2016-0888
  • Yılmaz, D., & Demirel, Z. B. (2012). Glukosinolatlar ve sağlık. Beslenme ve Diyet Dergisi, 40(2), 170-177.

Melatonin Uygulamalarının Depolama Süresince Brüksel Lahanalarının Kalite Özellikleri Üzerindeki Etkisi

Yıl 2025, Cilt: 30 Sayı: 1, 340 - 353, 29.04.2025
https://doi.org/10.53433/yyufbed.1624436

Öz

Brüksel lahanasının yenilebilir kısmı olan filizleri, yüksek besin değeriyle tanınır. Bu filizler, enzim düzenlenmesinde, DNA'nın bozulmaya karşı korunmasında ve kanser önlenmesinde önemli rol oynayan glukozinolat bileşikleri açısından zengindir. Ancak, Brüksel lahanasının depolama ömrü nispeten kısadır. Bu nedenle, bu çalışma farklı melatonin konsantrasyonlarının (50 µM, 100 µM ve 150 µM) Brüksel lahanasının hasat sonrası kalitesi üzerindeki etkilerini araştırmayı hedeflemiştir. Brüksel lahanaları, kontrol olarak saf su kullanılarak 50 µM, 100 µM ve 150 µM konsantrasyonlarındaki melatonin solüsyonlarına 5 dakika daldırıldı. Daldırmanın ardından filizler 1 ± 0,5 °C ve %90 ± 5 bağıl nemde (RH) 28 gün boyunca saklandı. Ağırlık kaybı, titre edilebilir asitlik, çözünür katı madde içeriği, C vitamini, klorofil, toplam fenolik içerik ve toplam antioksidan kapasitesi dahil olmak üzere temel kalite kriterleri her yedi günde bir (7., 14., 21. ve 28. günlerde) analiz edildi. Melatonin uygulamaları Brüksel lahanalarının hasat sonrası kalitesini önemli ölçüde etkiledi. En yüksek klorofil içeriği 50 µM melatonin uygulamasında kaydedildi, maksimum C vitamini seviyeleri ise hem kontrol hem de 50 µM melatonin uygulamalarında kaydedildi. En büyük toplam antioksidan kapasiteye 100 µM melatonin uygulamasıyla ulaşıldı. Öte yandan, ağırlık kaybı ve toplam fenolik içerik melatonin uygulamalarından önemli ölçüde etkilenmedi. Sonuç olarak, 50 µM melatonin uygulamasının Brüksel lahanalarının kalitesini etkili bir şekilde koruduğu ve 28 güne kadar ticari depolamaya olanak sağladığı bulundu.

Kaynakça

  • Aghdam, M. S., & Fard, J. R. (2017). Melatonin treatment attenuates postharvest decay and maintains nutritional quality of strawberry fruits (Fragaria× anannasa cv. Selva) by enhancing GABA shunt activity. Food Chemistry, 221, 1650-1657. https://doi.org/10.1016/j.foodchem.2016.10.123
  • Aglar, E., Ozturk, B., Guler, S. K., Karakaya, O., Uzun, S., & Saracoglu, O. (2017). Effect of modified atmosphere packaging and ‘Parka’treatments on fruit quality characteristics of sweet cherry fruits (Prunus avium L. ‘0900 Ziraat’) during cold storage and shelf life. Scientica Horticulturae, 222, 162-168. https://doi.org/10.1016/j.scienta.2017.05.024
  • Ahmad, S., Su, W., Kamran, M., Ahmad, I., Meng, X., Wu, X., Javed, T., & Han, Q. (2020). Foliar application of melatonin delay leaf senescence in maize by improving the antioxidant defense system and enhancing photosynthetic capacity under semi-arid regions. Protoplasma, 257, 1079-1092. https://doi.org/10.1007/s00709-020-01491-3
  • Ahmad, I., Zhu, G., Zhou, G., Liu, J., Younas, M. U., & Zhu, Y. (2023). Melatonin role in plant growth and physiology under abiotic stress. International Journal of Molecular Sciences, 24(10), 8759. https://doi.org/10.3390/ijms24108759
  • Arnao, M. B., & Hernández‐Ruiz, J. (2015). Functions of melatonin in plants: a review. Journal of Pineal Research, 59(2), 133-150. https://doi.org/10.1111/jpi.12253
  • Arnao, M. B., & Hernández-Ruiz, J. (2020). Melatonin in flowering, fruit set and fruit ripening. Plant Reproduction, 33, 77-87. https://doi.org/10.1007/s00497-020-00388-8
  • Bilgin, J., & Aslantaş, R. (2022). The effects of some post-harvest organic acid treatments on the storage quality of brussels sprouts. Selcuk Journal of Agriculture and Food Sciences, 36(3), 393-398. https://doi.org/10.15316/SJAFS.2022.051
  • Cai, S., Zhang, Z., Wang, J., Fu, Y., Zhang, Z., Khan, M. R., & Cong, X. (2024). Effect of exogenous melatonin on postharvest storage quality of passion fruit through antioxidant metabolism. LWT, 194, 115835. https://doi.org/10.1016/j.lwt.2024.115835
  • Cai, H., Li, J., Li, J., & Teng, H. (2025). Melatonin—Angel of plant growth regulation and protection. Advanced Agrochem. https://doi.org/10.1016/j.aac.2025.01.001
  • Cao, S., Song, C., Shao, J., Bian, K., Chen, W., & Yang, Z. (2016). Exogenous melatonin treatment increases chilling tolerance and induces defense response in harvested peach fruit during cold storage. Journal of Agricultural and Food Chemistry, 64(25), 5215-5222. https://doi.org/10.1021/acs.jafc.6b01118
  • Demirsoy, A. (2018). Biyolojik saat: Belleğin ve davranışların evrimi. Asi Kitap, Guru Yapım Prod. Ltd. Şti., İstanbul.
  • Demirsoy, A. (2021). Canlılığın oluşum öyküsünde renklerin dansı: Yerkürenin oluşum serüveni. Akılçelen Kitaplar, Ankara.
  • Fu, J., Wu, Y., Miao, Y., Xu, Y., Zhao, E., Wang, J., Sun, H., Liu, Q., Xue, Y., Xu, Y., & Hu, T. (2017). Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways. Scientific Reports, 7(1), 39865. https://doi.org/10.1038/srep39865
  • Gao, H., Lu, Z., Yang, Y., Wang, D., Yang, T., Cao, M., & Cao, W. (2018). Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism. Food Chemistry, 245, 659-666. https://doi.org/10.1016/j.foodchem.2017.10.008
  • Guvenc, İ. (2016). Sebzecilik: Temel bilgiler muhafaza ve yetiştiricilik. Nobel Akademik Yayıncılık, Yayın No:1701, İstanbul.
  • Hasperué, J. H., Rodoni, L. M., Guardianelli, L. M., Chaves, A. R., & Martínez, G. A. (2016). Use of LED light for Brussels sprouts postharvest conservation. Scientia Horticulturae, 213, 281-286. https://doi.org/10.1016/j.scienta.2016.11.004
  • Hu, H., Luo, S., An, R., & Li, P. (2022). Endogenous melatonin delays sepal senescence and extends the storage life of broccoli florets by decreasing ethylene biosynthesis. Postharvest Biology and Technology, 188, 111894. https://doi.org/10.1016/j.postharvbio.2022.111894
  • Karaçalı, İ. (2016). Bahçe ürünlerinin muhafaza ve pazarlanması. Ege Üniversitesi Basımevi.
  • Kasım, R., & Kasım, M. U. (2007). Inhibition of yellowing in Brussels sprouts (B. oleraceae var. gemmifera) and broccoli (B. oleraceae var. italica) using light during storage. Journal of Food Agriculture and Environment, 5(3/4), 126.
  • Kaya, C., Higgs, D., Ashraf, M., Alyemeni, M. N., & Ahmad, P. (2020). Integrative roles of nitric oxide and hydrogen sulfide in melatonin‐induced tolerance of pepper (Capsicum annuum L.) plants to iron deficiency and salt stress alone or in combination. Physiologia Plantarum, 168(2), 256-277. https://doi.org/10.1111/ppl.12976
  • Khan, M., Hussain, A., Yun, B. W., & Mun, B. G. (2024). Melatonin: The multifaceted molecule in plant growth and defense. International Journal of Molecular Sciences, 25(12), 6799. https://doi.org/10.3390/ijms25126799
  • Kowalczyk, D., Kordowska‐Wiater, M., Kałwa, K., Skrzypek, T., Sikora, M., & Łupina, K. (2019). Physiological, qualitative, and microbiological changes of minimally processed Brussels sprouts in response to coating with carboxymethyl cellulose/candelilla wax emulsion. Journal of Food Processing Preservation, 43(8), e14004. https://doi.org/10.1111/jfpp.14004
  • Kraśniewska, K., Gniewosz, M., Kosakowska, O., & Cis, A. (2016). Preservation of brussels sprouts by pullulan coating containing oregano essential oil. Journal of Food Protection, 79(3), 493-500. https://doi.org/10.4315/0362-028X.JFP-15-234
  • Kurtar, E. S. (2006). The effect of planting times on some vegetable characters and yield components in Brussels sprouts (Brassica oleracea var. gemmifera). Journal of Agronomy, 5(2), 186-190. http://dx.doi.org/10.3923/ja.2006.186.190
  • Lerner, A. B., Case, J. D., & Takahashi, Y. (1960). Isolation of melatonin and 5-methoxyindole-3-acetic acid from bovine pineal glands. Journal of Biological Chemistry, 235(7), 1992-1997. https://doi.org/10.1016/S0021-9258(18)69351-2
  • Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. https://doi.org/10.1042/bst0110591
  • Liu, C., Zheng, H., Sheng, K., Liu, W., & Zheng, L. (2018). Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biology and Technology, 139, 47-55. https://doi.org/10.1016/j.postharvbio.2018.01.016
  • Miao, H., Zeng, W., Zhao, M., Wang, J., & Wang, Q. (2020). Effect of melatonin treatment on visual quality and health-promoting properties of broccoli florets under room temperature. Food Chemistry, 319, 126498. https://doi.org/10.1016/j.foodchem.2020.126498
  • Onik, J. C., Wai, S. C., Li, A., Lin, Q., Sun, Q., Wang, Z., & Duan, Y. (2021). Melatonin treatment reduces ethylene production and maintains fruit quality in apple during postharvest storage. Food Chemistry, 337, 127753. https://doi.org/10.1016/j.foodchem.2020.127753
  • Ozgen, M., Reese, R. N., Tulio, A. Z., Scheerens, J. C., & Miller, A. R. (2006). Modified 2, 2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2, 2 ‘-diphenyl-1-picrylhydrazyl (DPPH) methods. Journal of Agricultural and Food Chemistry, 54(4), 1151-1157. https://doi.org/10.1021/jf051960d
  • Podsędek, A. (2007). Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. Lebensm Wiss Technol, 40(1), 1-11. https://doi.org/10.1016/j.lwt.2005.07.023
  • Saraç, H., Durukan, H., & Demirbaş, A. (2022). Sivas ve Tokat illerinden toplanan akasya bitkisi yapraklarının (Robinia pseudoacacia l.) bazı besin elementi konsantrasyonları ve antioksidan enzim aktivitelerinin belirlenmesi. Akademik Ziraat Dergisi, 11(2), 311-318. https://doi.org/10.29278/azd.1127747
  • Sarvan, I., Verkerk, R., van Boekel, M., & Dekker, M. (2014). Comparison of the degradation and leaching kinetics of glucosinolates during processing of four Brassicaceae (broccoli, red cabbage, white cabbage, Brussels sprouts). Innovative Food Science & Emerging Technologies, 25, 58-66. https://doi.org/10.1016/j.ifset.2014.01.007
  • Sharma, P., Thakur, N., Mann, N. A., & Umar, A. (2024). Melatonin as plant growth regulator in sustainable agriculture. Scientia Horticulturae, 323, 112421. https://doi.org/10.1016/j.scienta.2023.112421
  • Siddiqui, M. H., Alamri, S., Alsubaie, Q. D., & Ali, H. M. (2020). Melatonin and gibberellic acid promote growth and chlorophyll biosynthesis by regulating antioxidant and methylglyoxal detoxification system in tomato seedlings under salinity. Journal of Plant Growth Regulation, 39, 1488-1502. https://doi.org/10.1007/s00344-020-10122-3
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology Viticulture, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
  • Sun, Q., Zhang, N., Wang, J., Cao, Y., Li, X., Zhang, H., Zhang, L., Tan, D., & Guo, Y. (2016). A label‐free differential proteomics analysis reveals the effect of melatonin on promoting fruit ripening and anthocyanin accumulation upon postharvest in tomato. Journal of Pineal Research, 61(2), 138-153. https://doi.org/10.1111/jpi.12315
  • Tan, X. L., Fan, Z. Q., Kuang, J. F., Lu, W. J., Reiter, R. J., Lakshmanan, P., Su, X., Zhou, J., Chen, J., & Shan, W. (2019). Melatonin delays leaf senescence of Chinese flowering cabbage by suppressing ABFs‐mediated abscisic acid biosynthesis and chlorophyll degradation. Journal of Pineal Research, 67(1), e12570. https://doi.org/10.1111/jpi.12570
  • Turk, R., Erkan, M., Güneş, N. T., & Koyuncu, M. A. (2017). Bahçe ürünlerinin muhafazası ve pazara hazırlanması. Somtad Yayınları Ders Kitabı, (1), 542.
  • Verkerk, R., Schreiner, M., Krumbein, A., Ciska, E., Holst, B., Rowland, I., De Schrijver, R., Hansen, M., Gerhäuser, C., Mithen, R., & Dekker, M. (2009). Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Molecular Nutrition & Food Research, 53(S2), S219-S219. https://doi.org/10.1002/mnfr.200800065
  • Viña, S. Z., Mugridge, A., García, M. A., Ferreyra, R. M, Martino, M. N., Chaves, A. R., & Zaritzky, N. E. (2007). Effects of polyvinylchloride films and edible starch coatings on quality aspects of refrigerated Brussels sprouts. Food Chemistry, 103(3), 701-709. https://doi.org/10.1016/j.foodchem.2006.09.010
  • Wei, L., Liu, C., Wang, J., Younas, S., Zheng, H., & Zheng, L. (2020a). Melatonin immersion affects the quality of fresh‐cut broccoli (Brassica oleracea L.) during cold storage: Focus on the antioxidant system. Journal of Food Processsing and Preservation, 44(9), e14691. https://doi.org/10.1111/jfpp.14691
  • Wei, L., Liu, C., Zheng, H., & Zheng, L. (2020b). Melatonin treatment affects the glucoraphanin-sulforaphane system in postharvest fresh-cut broccoli (Brassica oleracea L.). Food Chemistry, 307, 125562. https://doi.org/10.1016/j.foodchem.2019.125562
  • Wu, C., Cao, S., Xie, K., Chi, Z., Wang, J., & Wang, H. (2021). Melatonin delays yellowing of broccoli during storage by regulating chlorophyll catabolism and maintaining chloroplast ultrastructure. Postharvest Biology and Technology, 172, 111378. https://doi.org/10.1016/j.postharvbio.2020.111378
  • Xin, D., Si, J., & Kou, L. (2017). Postharvest exogenous melatonin enhances quality and delays the senescence of cucumber. Acta Horticulturae Sinica, 44(5), 891-901. https://doi.org/10.16420/j.issn.0513-353x.2016-0888
  • Yılmaz, D., & Demirel, Z. B. (2012). Glukosinolatlar ve sağlık. Beslenme ve Diyet Dergisi, 40(2), 170-177.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sebze Yetiştirme ve Islahı
Bölüm Zirai Bilimler / Agriculture
Yazarlar

Emircan Dinçer 0000-0002-4793-4770

Necdettin Sağlam 0000-0002-1414-1141

Osman Nuri Öcalan 0000-0001-6242-4667

Onur Saraçoğlu 0000-0001-8434-1782

Ala Asi Mohammed Al-salıhı 0000-0002-6071-0085

Fatmanur Çezik 0000-0001-8588-6485

Yayımlanma Tarihi 29 Nisan 2025
Gönderilme Tarihi 21 Ocak 2025
Kabul Tarihi 5 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 30 Sayı: 1

Kaynak Göster

APA Dinçer, E., Sağlam, N., Öcalan, O. N., … Saraçoğlu, O. (2025). The Effect of Melatonin Applications on Quality Characteristics of Brussels Sprouts During Storage Period. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(1), 340-353. https://doi.org/10.53433/yyufbed.1624436