Kuluçka sırasında sıcağa alıştırma ve fotoperiyodik aydınlatmanın kuluçka performansı, kuluçka süresi, civciv kalitesi ve organ gelişimi üzerindeki etkisi
Amaç: Bu çalışmanın amacı, kuluçka sırasında sıcağa alıştırma ve fotoperiyodik aydınlatmanın kuluçka performansı, kuluçka süresi, civciv kalitesi ve organ büyümesi üzerindeki etkisini araştırmaktır.
Materyal ve Yöntem: Çalışma birbirini takip eden iki denemeden oluşmuştur. Birinci denemede, kuluçka optimal kabuk sıcaklığı (37.8ºC, Kontrol) veya kuluçkanın 11-16. günleri arasında günde 6 saat optimumdan 1ºC daha yüksek kabuğu sıcaklığı (38.8ºC) kullanılarak sıcağa alıştırma yapılmıştır. İkinci denemede, yumurtalara 16 saat aydınlık 8 saat karanlık (16A: 8K) aydınlatma altında optimum sıcaklık veya aydınlatma ile birlikte sıcağa alıştırma (38.8ºC) uygulanmıştır.
Araştırma Bulguları: Sıcağa alıştırma kuluçka perfromansını etkilememiş ancak kuluçkadan çıkışı hızlandırmış, civciv kalitesi, bursa ve tibia ağırlıklarını geriletirken kalp ve sternum ağırlıklarını artırmıştır. İkinci denemede sıcağa alıştırma ile birlikte 16A: 8K aydınlatma uygulanması civciv uzunluğu ve karaciğer ağırlığını artırmıştır.
Sonuç: Kuluçkanın 11-16. günleri arasında sıcağa alıştırma (38.8ºC) civciv kalitesini olumsuz etkilemiştir. Ancak, çıkışta artan civciv uzunluğu ve karaciğer oranı değerleri dikkate alındığında sıcağa alıştırma ile birlikte 16A: 8K aydınlatma civciv kalitesi ve kuluçka sonrası performansın iyileştirilmesinde olumlu bir yaklaşım olabilir.
Al-Rukibat, R. K., M. B. Al-Zghoul, W. M. Hananeh, M. Q. Al-Natour, & E. A. Abu-Basha, 2017. Thermal manipulation during late embryogenesis: Effect on body weight and temperature, thyroid hormones, and differential white blood cell counts in broiler chickens. Poult. Sci. 96: 234-240. https://doi.org/10.3382/ps/pew298
Al-Zghoul, M. B., & S. M. El-Bahr, 2019. Thermal manipulation of the broilers embryos: Expression of muscle markers genes and weights of body and internal organs during embryonic and post-hatch days. BMC Vet. Res. 15: 1-10. https://doi.org/10.1186/s12917-019-1917-6
Al-Zghoul, M. B., Z. B. Ismail, A. E. S. Dalab, A. Al-Ramadan, T. A. Althnaian, S. Y. Al-ramadan, A. M. Ali, I. F. Albokhadaim, K. A. Al Busadah, A. Eljarah, K. I. Jawasreh, & K. M. Hannon, 2015. Hsp90, Hsp60 and HSF-1 genes expression in muscle, heart and brain of thermally manipulated broiler chicken. Res. Vet. Sci. 99: 105-111. https://doi.org/10.1016/j.rvsc.2014.12.014
Aminoroaya, K., A. A. Sadeghi, Z. Ansari-pirsaraei, & N. Kashan, 2016. Effect of cyclical cold stress during embryonic development on aspects of physiological responses and HSP70 gene expression of chicks. J. Therm. Biol. 61: 50-54. https://doi.org/10.1016/j.jtherbio.2016.08.008
Amjadian, T., & M. H. Shahir, 2020. Effects of repeated thermal manipulation of broiler embryos on hatchability, chick quality, and post-hatch performance. Int. J. Biometeorol. 64: 2177-2183. https://doi.org/10.1007/s00484-020-02012-w
Archer, G., 2016. Spectrum of White Light During Incubation: Warm vs Cool White LED Lighting. Int. J. Poult. Sci. 15: 343-348. https://doi.org/10.3923/ijps.2016.343.348
Archer, G. S., 2017. Exposing broiler eggs to green, red and white light during incubation. Animal 11: 1203-1209. https://doi.org/10.1017/S1751731117000143
Archer, G. S., D. Jeffrey, & Z. Tucker, 2017. Effect of the combination of white and red LED lighting during incubation on layer, broiler, and Pekin duck hatchability. Poult. Sci. 96: 2670-2675. https://doi.org/10.3382/ps/pex040
Archer, G. S., & J. A. Mench, 2014. Natural incubation patterns and the effects of exposing eggs to light at various times during incubation on post-hatch fear and stress responses in broiler (meat) chickens. Appl. Anim. Behav. Sci. 152: 44-51. https://doi.org/10.1016/j.applanim.2013.12.010
Archer, G. S., & J. A. Mench, 2017. Exposing avian embryos to light affects post-hatch anti-predator fear responses. Appl. Anim. Behav. Sci. 186: 80-84. https://doi.org/10.1016/j.applanim.2016.10.014
Boleli, I., V. Morita, J. Matos Jr, M. Thimotheo, & V. Almeida, 2016. Poultry Egg Incubation: Integrating and Optimizing Production Efficiency. Rev. Bras. Ciência Avícola 18: 1-16. https://doi.org/10.1590/1806-9061-2016-0292
Careghi, C., K. Tona, O. Onagbesan, J. Buyse, E. Decuypere, & V. Bruggeman, 2005. The effects of the spread of hatch and interaction with delayed feed access after hatch on broiler performance until seven days of age. Poult. Sci. 84: 1314-1320. https://doi.org/10.1093/ps/84.8.1314
Chiandetti, C., J. Galliussi, R. J. Andrew, & G. Vallortigara, 2013. Early-light embryonic stimulation suggests a second route, via gene activation, to cerebral lateralization in vertebrates. Sci. Rep. 3: 17-19. https://doi.org/10.1038/srep02701
Christensen, V. L., W. E. Donaldson, & K. E. Nestor, 1999. Length of the plateau and pipping stages of incubation affects the physiology and survival of turkeys. Br. Poult. Sci. 40: 297-303. https://doi.org/10.1080/00071669987737
Collin, A., C. Berri, S. Tesseraud, F. E. Requena Rodón, S. Skiba-Cassy, S. Crochet, M. J. Duclos, N. Rideau, K. Tona, J. Buyse, V. Bruggeman, E. Decuypere, M. Picard, & S. Yahav, 2007. Effects of thermal manipulation during early and late embryogenesis on thermotolerance and breast muscle characteristics in broiler chickens. Poult. Sci. 86: 795-800. https://doi.org/10.1093/ps/86.5.795
Costa, B. T. A., T. S. B. Lopes, M. A. Mesquita, L. J. C. Lara, & I. C. S. Araújo, 2020. Thermal manipulations of birds during embryogenesis. Worlds. Poult. Sci. J. 76: 843-851. https://doi.org/10.1080/00439339.2020.1823302
Decuypere, E., & V. Bruggeman, 2007. The Endocrine Interface of Environmental and Egg Factors Affecting Chick Quality. Poult. Sci. 86: 1037-1042. https://doi.org/10.1093/ps/86.5.1037
Deeb, N., & A. Cahaner, 2001. Genotype-by-environment interaction with broiler genotypes differing in growth rate. 1. The effects of high ambient temperature and naked-neck genotype on lines differing in genetic background. Poult. Sci. 80: 695-702. https://doi.org/10.1093/ps/80.6.695
Deeb, N., & A. Cahaner, 2002. Genotype-by-environment interaction with broiler genotypes differing in growth rate. 3. Growth rate and water consumption of broiler progeny from weight-selected versus nonselected parents under normal and high ambient temperatures. Poult. Sci. 81: 293-301. https://doi.org/10.1093/ps/81.3.293
Flores, F., I. Nääs, R. Garcia, W. Quinteiro, & L. Souza, 2016. Effect of Embryo Thermal Stimulation on the Serum Levels of Immunoglobulins and Corticosterone, and Organ Histopathology of 1 day-old Broilers. Rev. Bras. Ciência Avícola 18: 71-78. https://doi.org/10.1590/1806-9061-2016-0254
French, N. A., 1994. Effect of incubation temperature on the gross pathology of turkey embryos. Br. Poult. Sci. 35: 363-371. https://doi.org/10.1080/00071669408417701
Gabriel, J. E., J. A. Ferro, R. M. P. Stefani, M. I. T. Ferro, S. L. Gomes, & M. Macari, 1996. Effect of acute heat stress on heat shock protein 70 messenger RNA and on heat shock protein expression in the liver of broilers. Br. Poult. Sci. 37: 443-449. https://doi.org/10.1080/00071669608417875
Gong, W. E. I., & X. ZHONG, 2009. The Influence of Dexamethasone on Main Immune Organs and Antibody Titers in ND Immune Chicken [J]. Livestock and Poultry Industry, 8.
Halevy, O., S. Yahav, & I. Rozenboim, 2006. Enhancement of meat production by environmental manipulations in embryo and young broilers. Worlds. Poult. Sci. J. 62: 485-497. https://doi.org/10.1017/s0043933906001103
Halle, I., & B. Tzschentke, 2011. Influence of temperature manipulation during the last 4 days of incubation on hatching results, post-hatching performance and adaptability to warm growing conditions in broiler chickens. J. Poult. Sci. 48: 97-105. https://doi.org/10.2141/jpsa.010056
Hamburger, V., & H. L. Hamilton, 1992. A series of normal stages in the development of the chick embryo. Dev. Dyn. 195: 231-272. https://doi.org/10.1002/aja.1001950404
Huth, J. C., & G. S. Archer, 2015. Effects of LED lighting during incubation on layer and broiler hatchability, chick quality, stress susceptibility and post-hatch growth. Poult. Sci. 94: 3052-3058. https://doi.org/10.3382/ps/pev298
Ipek, A., U. Sahan, & A. Sozcu, 2015. The effects of different eggshell temperatures between embryonic day 10 and 18 on broiler performance and susceptibility to ascites. Rev. Bras. Cienc. Avic. 17: 387-394. https://doi.org/10.1590/1516-635x1703387-394
Lara, L. J., & M. H. Rostagno, 2013. Impact of heat stress on poultry production. Animals 3: 356-369. https://doi.org/10.3390/ani3020356
Leksrisompong, N., H. Romero-Sanchez, P. W. Plumstead, K. E. Brannan, & J. Brake, 2007. Broiler Incubation. 1. Effect of Elevated Temperature During Late Incubation on Body Weight and Organs of Chicks. Poult. Sci. 86: 2685-2691. https://doi.org/10.3382/ps.2007-00170
Liu, J., X. Yan, Q. Li, G. Wang, H. Liu, J. Wang, L. Li, X. Du, C. Han, & H. He, 2013. Thermal manipulation during the middle incubation stage has a repressive effect on the immune organ development of Peking ducklings. J. Therm. Biol. 38: 520-523. https://doi.org/10.1016/j.jtherbio.2013.09.001
Lourens, A., H. Van Den Brand, R. Meijerhof, & B. Kemp, 2005. Effect of eggshell temperature during incubation on embryo development, hatchability, and posthatch development. Poult. Sci. 84: 914-920. https://doi.org/10.1093/ps/84.6.914
Loyau, T., A. Collin, Ç. Yenisey, S. Crochet, P. B. Siegel, M. Akşit, & S. Yalçin, 2014. Exposure of embryos to cyclically cold incubation temperatures durably affects energy metabolism and antioxidant pathways in broiler chickens. Poult. Sci. 93: 2078-2086. https://doi.org/10.3382/ps.2014-03881
Meijerhof, R., 2009. The influence of incubation on chick quality and broiler performance,9-11. In 20th Annual Australian Poultry Science Symposium, (9-11 February 2009, Australia), 203p. Researchgate.Net, (February)
Molenaar, R., R. Hulet, R. Meijerhof, C. M. Maatjens, B. Kemp, & H. Van den Brand, 2011. High eggshell temperatures during incubation decrease growth performance and increase the incidence of ascites in broiler chickens. Poult. Sci. 90: 624-632. https://doi.org/10.3382/ps.2010-00970
Molenaar, R., R. Meijerhof, I. van den Anker, M. J. W. Heetkamp, J. J. G. C. van den Borne, B. Kemp, & H. van den Brand, 2010. Effect of eggshell temperature and oxygen concentration on survival rate and nutrient utilization in chicken embryos. Poult. Sci. 89: 2010-2021. https://doi.org/10.3382/ps.2010-00787
Narinç, D., S. Erdoǧan, E. Tahtabiçen, & T. Aksoy, 2016. Effects of thermal manipulations during embryogenesis of broiler chickens on developmental stability, hatchability and chick quality. Animal 10: 1328-1335. https://doi.org/10.1017/S1751731116000276
Oviedo-Rondón, E. O., J. Small, M. J. Wineland, V. L. Christensen, P. S. Mozdziak, M. D. Koci, S. V. L. Funderburk, D. T. Ort, & K. M. Mann, 2008. Broiler embryo bone development is influenced by incubator temperature, oxygen concentration and eggshell conductance at the plateau stage in oxygen consumption. Br. Poult. Sci. 49: 666-676. https://doi.org/10.1007/s00590-011-0856-0
Oviedo-Rondón, E. O., M. J. Wineland, S. Funderburk, J. Small, H. Cutchin, & M. Mann, 2009. Incubation conditions affect leg health in large, high-yield broilers. J. Appl. Poult. Res. 18: 640-646. https://doi.org/10.3382/japr.2008-00127
Ozkan, S., S. Yalcin, E. Babacanoglu, H. Kozanoglu, F. Karadas, & S. Uysal, 2012. Photoperiodic lighting (16 hours of light: 8 hours of dark) programs during incubation: 1. Effects on growth and circadian physiological traits of embryos and early stress response of broiler chickens. Poult. Sci. 91: 2912-2921. https://doi.org/10.3382/ps.2012-02426
Oznurlu, Y., E. Sur, T. Ozaydin, I. Celik, & D. Uluisik, 2016. Histological and histochemical evaluations on the effects of high incubation temperature on the embryonic development of tibial growth plate in broiler chickens. Microsc. Res. Tech. 79: 106-110. https://doi.org/10.1002/jemt.22611
Piestun, Y., S. Druyan, J. Brake, & S. Yahav, 2013. Thermal manipulations during broiler incubation alter performance of broilers to 70 days of age. Poult. Sci. 92: 1155-1163. https://doi.org/10.3382/ps.2012-02609
Piestun, Y., O. Halevy, D. Shinder, M. Ruzal, S. Druyan, & S. Yahav, 2011. Thermal manipulations during broiler embryogenesis improves post-hatch performance under hot conditions. J. Therm. Biol. 36: 469-474. https://doi.org/10.1016/j.jtherbio.2011.08.003
Piestun, Y., O. Halevy, & S. Yahav, 2009. Thermal manipulations of broiler embryos-The effect on thermoregulation and development during embryogenesis. Poult. Sci. 88: 2677-2688. https://doi.org/10.3382/ps.2009-00231
Piestun, Y., D. Shinder, M. Ruzal, O. Halevy, J. Brake, & S. Yahav, 2008a. Thermal Manipulations During Broiler Embryogenesis: Effect on the Acquisition of Thermotolerance. Poult. Sci. 87: 1516-1525. https://doi.org/10.3382/ps.2008-00030
Piestun, Y., D. Shinder, M. Ruzal, O. Halevy, & S. Yahav, 2008b. The effect of thermal manipulations during the development of the thyroid and adrenal axes on in-hatch and post-hatch thermoregulation. J. Therm. Biol. 33: 413-418. https://doi.org/10.1016/j.jtherbio.2008.06.007
Renaudeau, D., A. Collin, S. Yahav, V. De Basilio, J. L. Gourdine, & R. J. Collier, 2012. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 6: 707-728. https://doi.org/10.1017/S1751731111002448
Saleh, K. M. M., A. H. Tarkhan, & M. B. Al-Zghoul, 2020. Embryonic Thermal Manipulation Affects the Antioxidant Response to Post-Hatch Thermal Exposure in Broiler Chickens. Animals 10: 126. https://doi.org/10.3390/ani10010126
Sgavioli, S., E. Santos, C. Domingues, T. Quadros, D. Castiblanco, G. Andrade-Garcia, L. Amoroso, I. Nääs, R. Garcia, & S. Baraldi-Artoni, 2016. Effect of High Incubation Temperature on the Blood Parameters of Layer Chicks. Rev. Bras. Ciência Avícola 18: 41-47. https://doi.org/10.1590/1806-9061-2015-0095
Sözcü, A., & A. İpek, 2013. Incubation conditions affect chick quality and broiler performance. J. Agric. Fac. Uludag Univ. 27: 139-146.
Tona, K., F. Bamelis, B. De Ketelaere, V. Bruggeman, V. M. B. Moraes, J. Buyse, O. Onagbesan, & E. Decuypere, 2003. Effects of egg storage time on spread of hatch, chick quality, and chick juvenile growth. Poult. Sci. 82: 736-741. https://doi.org/10.1093/ps/82.5.736
Tona, K., O. Onagbesan, B. De Ketelaere, V. Bruggeman, & E. Decuypere, 2005. Interrelationships between chick quality parameters and the effect of individual parameter on broiler relative growth to 7 days of age. Arch. fur Geflugelkd. 69: 67-72.
Tong, Q., I. M. McGonnell, T. G. M. Demmers, N. Roulston, H. Bergoug, C. E. Romanini, R. Verhelst, M. Guinebretière, N. Eterradossi, D. Berckmans, & V. Exadaktylos, 2018. Effect of a photoperiodic green light programme during incubation on embryo development and hatch process. animal 12: 765-773. https://doi.org/10.1017/S1751731117002117
Uni, Z., & S. Yahav, 2010. Managing prenatal development of broiler chickens to improve productivity and thermotolerance (Pages 71-90 in Managing the Prenatal Environment to Enhance Livestock Productivity). P. Greenwood, A. Bell, P. Vercoe, & G. Viljoen, ed. Springer Science+Business Media B.V., Dordrecht, the Netherlands, 300p. https://doi.org/10.1007/978-90-481-3135-8
Van Der Pol, C. W., I. A. M. Van Roovert-Reijrink, C. M. Maatjens, I. Van Den Anker, B. Kemp, & H. Van Den Brand, 2014. Effect of eggshell temperature throughout incubation on broiler hatchling leg bone development. Poult. Sci. 93: 2878-2883. https://doi.org/10.3382/ps.2014-04210
Van Der Pol, C. W., I. A. M. Van Roovert-Reijrink, C. M. Maatjens, S. W. S. Gussekloo, S. Kranenbarg, J. Wijnen, R. P. M. Pieters, H. Schipper, B. Kemp, & H. Van Den Brand, 2019. Light-dark rhythms during incubation of broiler chicken embryos and their effects on embryonic and post hatch leg bone development. PLoS One 14: 1-17. https://doi.org/10.1371/journal.pone.0210886
Vieira, S., J. Almeida, A. Lima, O. Conde, & A. Olmos, 2005. Hatching distribution of eggs varying in weight and breeder age. Rev. Bras. Ciência Avícola 7: 73-78. https://doi.org/10.1590/s1516-635x2005000200002
Vinoth, A., T. Thirunalasundari, J. A. Tharian, M. Shanmugam, & U. Rajkumar, 2015. Effect of thermal manipulation during embryogenesis on liver heat shock protein expression in chronic heat stressed colored broiler chickens. J. Therm. Biol. 53: 162-171. https://doi.org/10.1016/j.jtherbio.2015.10.010
Willemsen, H., Y. Li, E. Willems, L. Franssens, Y. Wang, E. Decuypere, & N. Everaert, 2011. Intermittent thermal manipulations of broiler embryos during late incubation and their immediate effect on the embryonic development and hatching process. Poult. Sci. 90: 1302-1312. https://doi.org/10.3382/ps.2011-01390
Yahav, S., 2009. Alleviating heat stress in domestic fowl: Different strategies. Worlds. Poult. Sci. J. 65: 719-732. https://doi.org/10.1017/S004393390900049X
Yahav, S., R. S. Rath, & D. Shinder, 2004. The effect of thermal manipulations during embryogenesis of broiler chicks (Gallus domesticus) on hatchability, body weight and thermoregulation after hatch. J. Therm. Biol. 29: 245-250. https://doi.org/10.1016/j.jtherbio.2004.03.002
Yalçin, S., M. Çabuk, V. Bruggeman, E. Babacanoğlu, J. Buyse, E. Decuypere, & P. B. Siegel, 2008. Acclimation to Heat During Incubation. 1. Embryonic Morphological Traits, Blood Biochemistry, and Hatching Performance. Poult. Sci. 87: 1219-1228. https://doi.org/10.3382/ps.2007-00435
Yalçin, S., H. B. Molayoǧlu, M. Baka, O. Genin, & M. Pines, 2007. Effect of temperature during the incubation period on tibial growth plate chondrocyte differentiation and the incidence of tibial dyschondroplasia. Poult. Sci. 86: 1772-1783. https://doi.org/10.1093/ps/86.8.1772
Yalcin, S., & P. Siegel, 2003. Exposure to cold or heat during incubation on developmental stability of broiler embryos. Poultry Science. 82: 1388-1392. https://doi.org/10.1093/ps/82.9.1388
Zaboli, G., S. Rahimi, F. Shariatmadari, M. A. K. Torshizi, A. Baghbanzadeh, & M. Mehri, 2017. Thermal manipulation during Pre and Post-Hatch on thermotolerance of male broiler chickens exposed to chronic heat stress. Poult. Sci. 96: 478-485. https://doi.org/10.3382/ps/pew344
Zeman, M., E. Gwinner, & E. Somogyiová, 1992. Development of melatonin rhythm in the pineal gland and eyes of chick embryo. Experientia 48: 765-768. https://doi.org/10.1007/BF02124299
Zhang, L., H. J. Zhang, J. Wang, S. G. Wu, X. Qiao, H. Y. Yue, J. H. Yao, & G. H. Qi, 2014. Stimulation with monochromatic green light during incubation alters satellite cell mitotic activity and gene expression in relation to embryonic and posthatch muscle growth of broiler chickens. Animal 8: 86-93. https://doi.org/10.1017/S1751731113001882
Effects of thermal manipulation and photoperiodic lighting during incubation on hatching performance, hatching time, chick quality and organ growth
Objective: The objective of this study was to investigate the effects of thermal manipulation (TM) and photoperiodic lighting during the incubation on hatching performance, hatching time, chick quality and organ growth.
Material and Methods: The study was composed of two consecutive experiments. The 1st experiment was application of TM, 1ºC higher eggshell temperature (EST, 38.8ºC ) for 6 h/day from 11 to 16 embryonic day, or optimal EST of 37.8ºC (Control) during the incubation. In second experiment, eggs were exposed to a photoperiodic lighting of 16h light and 8h darkness (16L: 8D) along with optimal EST (Light-Control) or TM (Light-Heated).
Results: Thermal manipulation accelerated hatching time, reduced chick quality score, decreased relative bursa and tibia weights while heart and sternum weights increased with no effect on hatching performance. However, 16L: 8D photoperiodic lighting schedule along with TM significantly improved chick length at hatch indicating improved chick quality while other traits were not affected except for higher relative liver weight.
Conclusion: It can be concluded that TM alone had negative effects on chick quality. However, photoperiodic lighting along with TM can be a positive approach towards better chick quality and post hatch performance as indicated by increased chick length and liver weight.
Al-Rukibat, R. K., M. B. Al-Zghoul, W. M. Hananeh, M. Q. Al-Natour, & E. A. Abu-Basha, 2017. Thermal manipulation during late embryogenesis: Effect on body weight and temperature, thyroid hormones, and differential white blood cell counts in broiler chickens. Poult. Sci. 96: 234-240. https://doi.org/10.3382/ps/pew298
Al-Zghoul, M. B., & S. M. El-Bahr, 2019. Thermal manipulation of the broilers embryos: Expression of muscle markers genes and weights of body and internal organs during embryonic and post-hatch days. BMC Vet. Res. 15: 1-10. https://doi.org/10.1186/s12917-019-1917-6
Al-Zghoul, M. B., Z. B. Ismail, A. E. S. Dalab, A. Al-Ramadan, T. A. Althnaian, S. Y. Al-ramadan, A. M. Ali, I. F. Albokhadaim, K. A. Al Busadah, A. Eljarah, K. I. Jawasreh, & K. M. Hannon, 2015. Hsp90, Hsp60 and HSF-1 genes expression in muscle, heart and brain of thermally manipulated broiler chicken. Res. Vet. Sci. 99: 105-111. https://doi.org/10.1016/j.rvsc.2014.12.014
Aminoroaya, K., A. A. Sadeghi, Z. Ansari-pirsaraei, & N. Kashan, 2016. Effect of cyclical cold stress during embryonic development on aspects of physiological responses and HSP70 gene expression of chicks. J. Therm. Biol. 61: 50-54. https://doi.org/10.1016/j.jtherbio.2016.08.008
Amjadian, T., & M. H. Shahir, 2020. Effects of repeated thermal manipulation of broiler embryos on hatchability, chick quality, and post-hatch performance. Int. J. Biometeorol. 64: 2177-2183. https://doi.org/10.1007/s00484-020-02012-w
Archer, G., 2016. Spectrum of White Light During Incubation: Warm vs Cool White LED Lighting. Int. J. Poult. Sci. 15: 343-348. https://doi.org/10.3923/ijps.2016.343.348
Archer, G. S., 2017. Exposing broiler eggs to green, red and white light during incubation. Animal 11: 1203-1209. https://doi.org/10.1017/S1751731117000143
Archer, G. S., D. Jeffrey, & Z. Tucker, 2017. Effect of the combination of white and red LED lighting during incubation on layer, broiler, and Pekin duck hatchability. Poult. Sci. 96: 2670-2675. https://doi.org/10.3382/ps/pex040
Archer, G. S., & J. A. Mench, 2014. Natural incubation patterns and the effects of exposing eggs to light at various times during incubation on post-hatch fear and stress responses in broiler (meat) chickens. Appl. Anim. Behav. Sci. 152: 44-51. https://doi.org/10.1016/j.applanim.2013.12.010
Archer, G. S., & J. A. Mench, 2017. Exposing avian embryos to light affects post-hatch anti-predator fear responses. Appl. Anim. Behav. Sci. 186: 80-84. https://doi.org/10.1016/j.applanim.2016.10.014
Boleli, I., V. Morita, J. Matos Jr, M. Thimotheo, & V. Almeida, 2016. Poultry Egg Incubation: Integrating and Optimizing Production Efficiency. Rev. Bras. Ciência Avícola 18: 1-16. https://doi.org/10.1590/1806-9061-2016-0292
Careghi, C., K. Tona, O. Onagbesan, J. Buyse, E. Decuypere, & V. Bruggeman, 2005. The effects of the spread of hatch and interaction with delayed feed access after hatch on broiler performance until seven days of age. Poult. Sci. 84: 1314-1320. https://doi.org/10.1093/ps/84.8.1314
Chiandetti, C., J. Galliussi, R. J. Andrew, & G. Vallortigara, 2013. Early-light embryonic stimulation suggests a second route, via gene activation, to cerebral lateralization in vertebrates. Sci. Rep. 3: 17-19. https://doi.org/10.1038/srep02701
Christensen, V. L., W. E. Donaldson, & K. E. Nestor, 1999. Length of the plateau and pipping stages of incubation affects the physiology and survival of turkeys. Br. Poult. Sci. 40: 297-303. https://doi.org/10.1080/00071669987737
Collin, A., C. Berri, S. Tesseraud, F. E. Requena Rodón, S. Skiba-Cassy, S. Crochet, M. J. Duclos, N. Rideau, K. Tona, J. Buyse, V. Bruggeman, E. Decuypere, M. Picard, & S. Yahav, 2007. Effects of thermal manipulation during early and late embryogenesis on thermotolerance and breast muscle characteristics in broiler chickens. Poult. Sci. 86: 795-800. https://doi.org/10.1093/ps/86.5.795
Costa, B. T. A., T. S. B. Lopes, M. A. Mesquita, L. J. C. Lara, & I. C. S. Araújo, 2020. Thermal manipulations of birds during embryogenesis. Worlds. Poult. Sci. J. 76: 843-851. https://doi.org/10.1080/00439339.2020.1823302
Decuypere, E., & V. Bruggeman, 2007. The Endocrine Interface of Environmental and Egg Factors Affecting Chick Quality. Poult. Sci. 86: 1037-1042. https://doi.org/10.1093/ps/86.5.1037
Deeb, N., & A. Cahaner, 2001. Genotype-by-environment interaction with broiler genotypes differing in growth rate. 1. The effects of high ambient temperature and naked-neck genotype on lines differing in genetic background. Poult. Sci. 80: 695-702. https://doi.org/10.1093/ps/80.6.695
Deeb, N., & A. Cahaner, 2002. Genotype-by-environment interaction with broiler genotypes differing in growth rate. 3. Growth rate and water consumption of broiler progeny from weight-selected versus nonselected parents under normal and high ambient temperatures. Poult. Sci. 81: 293-301. https://doi.org/10.1093/ps/81.3.293
Flores, F., I. Nääs, R. Garcia, W. Quinteiro, & L. Souza, 2016. Effect of Embryo Thermal Stimulation on the Serum Levels of Immunoglobulins and Corticosterone, and Organ Histopathology of 1 day-old Broilers. Rev. Bras. Ciência Avícola 18: 71-78. https://doi.org/10.1590/1806-9061-2016-0254
French, N. A., 1994. Effect of incubation temperature on the gross pathology of turkey embryos. Br. Poult. Sci. 35: 363-371. https://doi.org/10.1080/00071669408417701
Gabriel, J. E., J. A. Ferro, R. M. P. Stefani, M. I. T. Ferro, S. L. Gomes, & M. Macari, 1996. Effect of acute heat stress on heat shock protein 70 messenger RNA and on heat shock protein expression in the liver of broilers. Br. Poult. Sci. 37: 443-449. https://doi.org/10.1080/00071669608417875
Gong, W. E. I., & X. ZHONG, 2009. The Influence of Dexamethasone on Main Immune Organs and Antibody Titers in ND Immune Chicken [J]. Livestock and Poultry Industry, 8.
Halevy, O., S. Yahav, & I. Rozenboim, 2006. Enhancement of meat production by environmental manipulations in embryo and young broilers. Worlds. Poult. Sci. J. 62: 485-497. https://doi.org/10.1017/s0043933906001103
Halle, I., & B. Tzschentke, 2011. Influence of temperature manipulation during the last 4 days of incubation on hatching results, post-hatching performance and adaptability to warm growing conditions in broiler chickens. J. Poult. Sci. 48: 97-105. https://doi.org/10.2141/jpsa.010056
Hamburger, V., & H. L. Hamilton, 1992. A series of normal stages in the development of the chick embryo. Dev. Dyn. 195: 231-272. https://doi.org/10.1002/aja.1001950404
Huth, J. C., & G. S. Archer, 2015. Effects of LED lighting during incubation on layer and broiler hatchability, chick quality, stress susceptibility and post-hatch growth. Poult. Sci. 94: 3052-3058. https://doi.org/10.3382/ps/pev298
Ipek, A., U. Sahan, & A. Sozcu, 2015. The effects of different eggshell temperatures between embryonic day 10 and 18 on broiler performance and susceptibility to ascites. Rev. Bras. Cienc. Avic. 17: 387-394. https://doi.org/10.1590/1516-635x1703387-394
Lara, L. J., & M. H. Rostagno, 2013. Impact of heat stress on poultry production. Animals 3: 356-369. https://doi.org/10.3390/ani3020356
Leksrisompong, N., H. Romero-Sanchez, P. W. Plumstead, K. E. Brannan, & J. Brake, 2007. Broiler Incubation. 1. Effect of Elevated Temperature During Late Incubation on Body Weight and Organs of Chicks. Poult. Sci. 86: 2685-2691. https://doi.org/10.3382/ps.2007-00170
Liu, J., X. Yan, Q. Li, G. Wang, H. Liu, J. Wang, L. Li, X. Du, C. Han, & H. He, 2013. Thermal manipulation during the middle incubation stage has a repressive effect on the immune organ development of Peking ducklings. J. Therm. Biol. 38: 520-523. https://doi.org/10.1016/j.jtherbio.2013.09.001
Lourens, A., H. Van Den Brand, R. Meijerhof, & B. Kemp, 2005. Effect of eggshell temperature during incubation on embryo development, hatchability, and posthatch development. Poult. Sci. 84: 914-920. https://doi.org/10.1093/ps/84.6.914
Loyau, T., A. Collin, Ç. Yenisey, S. Crochet, P. B. Siegel, M. Akşit, & S. Yalçin, 2014. Exposure of embryos to cyclically cold incubation temperatures durably affects energy metabolism and antioxidant pathways in broiler chickens. Poult. Sci. 93: 2078-2086. https://doi.org/10.3382/ps.2014-03881
Meijerhof, R., 2009. The influence of incubation on chick quality and broiler performance,9-11. In 20th Annual Australian Poultry Science Symposium, (9-11 February 2009, Australia), 203p. Researchgate.Net, (February)
Molenaar, R., R. Hulet, R. Meijerhof, C. M. Maatjens, B. Kemp, & H. Van den Brand, 2011. High eggshell temperatures during incubation decrease growth performance and increase the incidence of ascites in broiler chickens. Poult. Sci. 90: 624-632. https://doi.org/10.3382/ps.2010-00970
Molenaar, R., R. Meijerhof, I. van den Anker, M. J. W. Heetkamp, J. J. G. C. van den Borne, B. Kemp, & H. van den Brand, 2010. Effect of eggshell temperature and oxygen concentration on survival rate and nutrient utilization in chicken embryos. Poult. Sci. 89: 2010-2021. https://doi.org/10.3382/ps.2010-00787
Narinç, D., S. Erdoǧan, E. Tahtabiçen, & T. Aksoy, 2016. Effects of thermal manipulations during embryogenesis of broiler chickens on developmental stability, hatchability and chick quality. Animal 10: 1328-1335. https://doi.org/10.1017/S1751731116000276
Oviedo-Rondón, E. O., J. Small, M. J. Wineland, V. L. Christensen, P. S. Mozdziak, M. D. Koci, S. V. L. Funderburk, D. T. Ort, & K. M. Mann, 2008. Broiler embryo bone development is influenced by incubator temperature, oxygen concentration and eggshell conductance at the plateau stage in oxygen consumption. Br. Poult. Sci. 49: 666-676. https://doi.org/10.1007/s00590-011-0856-0
Oviedo-Rondón, E. O., M. J. Wineland, S. Funderburk, J. Small, H. Cutchin, & M. Mann, 2009. Incubation conditions affect leg health in large, high-yield broilers. J. Appl. Poult. Res. 18: 640-646. https://doi.org/10.3382/japr.2008-00127
Ozkan, S., S. Yalcin, E. Babacanoglu, H. Kozanoglu, F. Karadas, & S. Uysal, 2012. Photoperiodic lighting (16 hours of light: 8 hours of dark) programs during incubation: 1. Effects on growth and circadian physiological traits of embryos and early stress response of broiler chickens. Poult. Sci. 91: 2912-2921. https://doi.org/10.3382/ps.2012-02426
Oznurlu, Y., E. Sur, T. Ozaydin, I. Celik, & D. Uluisik, 2016. Histological and histochemical evaluations on the effects of high incubation temperature on the embryonic development of tibial growth plate in broiler chickens. Microsc. Res. Tech. 79: 106-110. https://doi.org/10.1002/jemt.22611
Piestun, Y., S. Druyan, J. Brake, & S. Yahav, 2013. Thermal manipulations during broiler incubation alter performance of broilers to 70 days of age. Poult. Sci. 92: 1155-1163. https://doi.org/10.3382/ps.2012-02609
Piestun, Y., O. Halevy, D. Shinder, M. Ruzal, S. Druyan, & S. Yahav, 2011. Thermal manipulations during broiler embryogenesis improves post-hatch performance under hot conditions. J. Therm. Biol. 36: 469-474. https://doi.org/10.1016/j.jtherbio.2011.08.003
Piestun, Y., O. Halevy, & S. Yahav, 2009. Thermal manipulations of broiler embryos-The effect on thermoregulation and development during embryogenesis. Poult. Sci. 88: 2677-2688. https://doi.org/10.3382/ps.2009-00231
Piestun, Y., D. Shinder, M. Ruzal, O. Halevy, J. Brake, & S. Yahav, 2008a. Thermal Manipulations During Broiler Embryogenesis: Effect on the Acquisition of Thermotolerance. Poult. Sci. 87: 1516-1525. https://doi.org/10.3382/ps.2008-00030
Piestun, Y., D. Shinder, M. Ruzal, O. Halevy, & S. Yahav, 2008b. The effect of thermal manipulations during the development of the thyroid and adrenal axes on in-hatch and post-hatch thermoregulation. J. Therm. Biol. 33: 413-418. https://doi.org/10.1016/j.jtherbio.2008.06.007
Renaudeau, D., A. Collin, S. Yahav, V. De Basilio, J. L. Gourdine, & R. J. Collier, 2012. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 6: 707-728. https://doi.org/10.1017/S1751731111002448
Saleh, K. M. M., A. H. Tarkhan, & M. B. Al-Zghoul, 2020. Embryonic Thermal Manipulation Affects the Antioxidant Response to Post-Hatch Thermal Exposure in Broiler Chickens. Animals 10: 126. https://doi.org/10.3390/ani10010126
Sgavioli, S., E. Santos, C. Domingues, T. Quadros, D. Castiblanco, G. Andrade-Garcia, L. Amoroso, I. Nääs, R. Garcia, & S. Baraldi-Artoni, 2016. Effect of High Incubation Temperature on the Blood Parameters of Layer Chicks. Rev. Bras. Ciência Avícola 18: 41-47. https://doi.org/10.1590/1806-9061-2015-0095
Sözcü, A., & A. İpek, 2013. Incubation conditions affect chick quality and broiler performance. J. Agric. Fac. Uludag Univ. 27: 139-146.
Tona, K., F. Bamelis, B. De Ketelaere, V. Bruggeman, V. M. B. Moraes, J. Buyse, O. Onagbesan, & E. Decuypere, 2003. Effects of egg storage time on spread of hatch, chick quality, and chick juvenile growth. Poult. Sci. 82: 736-741. https://doi.org/10.1093/ps/82.5.736
Tona, K., O. Onagbesan, B. De Ketelaere, V. Bruggeman, & E. Decuypere, 2005. Interrelationships between chick quality parameters and the effect of individual parameter on broiler relative growth to 7 days of age. Arch. fur Geflugelkd. 69: 67-72.
Tong, Q., I. M. McGonnell, T. G. M. Demmers, N. Roulston, H. Bergoug, C. E. Romanini, R. Verhelst, M. Guinebretière, N. Eterradossi, D. Berckmans, & V. Exadaktylos, 2018. Effect of a photoperiodic green light programme during incubation on embryo development and hatch process. animal 12: 765-773. https://doi.org/10.1017/S1751731117002117
Uni, Z., & S. Yahav, 2010. Managing prenatal development of broiler chickens to improve productivity and thermotolerance (Pages 71-90 in Managing the Prenatal Environment to Enhance Livestock Productivity). P. Greenwood, A. Bell, P. Vercoe, & G. Viljoen, ed. Springer Science+Business Media B.V., Dordrecht, the Netherlands, 300p. https://doi.org/10.1007/978-90-481-3135-8
Van Der Pol, C. W., I. A. M. Van Roovert-Reijrink, C. M. Maatjens, I. Van Den Anker, B. Kemp, & H. Van Den Brand, 2014. Effect of eggshell temperature throughout incubation on broiler hatchling leg bone development. Poult. Sci. 93: 2878-2883. https://doi.org/10.3382/ps.2014-04210
Van Der Pol, C. W., I. A. M. Van Roovert-Reijrink, C. M. Maatjens, S. W. S. Gussekloo, S. Kranenbarg, J. Wijnen, R. P. M. Pieters, H. Schipper, B. Kemp, & H. Van Den Brand, 2019. Light-dark rhythms during incubation of broiler chicken embryos and their effects on embryonic and post hatch leg bone development. PLoS One 14: 1-17. https://doi.org/10.1371/journal.pone.0210886
Vieira, S., J. Almeida, A. Lima, O. Conde, & A. Olmos, 2005. Hatching distribution of eggs varying in weight and breeder age. Rev. Bras. Ciência Avícola 7: 73-78. https://doi.org/10.1590/s1516-635x2005000200002
Vinoth, A., T. Thirunalasundari, J. A. Tharian, M. Shanmugam, & U. Rajkumar, 2015. Effect of thermal manipulation during embryogenesis on liver heat shock protein expression in chronic heat stressed colored broiler chickens. J. Therm. Biol. 53: 162-171. https://doi.org/10.1016/j.jtherbio.2015.10.010
Willemsen, H., Y. Li, E. Willems, L. Franssens, Y. Wang, E. Decuypere, & N. Everaert, 2011. Intermittent thermal manipulations of broiler embryos during late incubation and their immediate effect on the embryonic development and hatching process. Poult. Sci. 90: 1302-1312. https://doi.org/10.3382/ps.2011-01390
Yahav, S., 2009. Alleviating heat stress in domestic fowl: Different strategies. Worlds. Poult. Sci. J. 65: 719-732. https://doi.org/10.1017/S004393390900049X
Yahav, S., R. S. Rath, & D. Shinder, 2004. The effect of thermal manipulations during embryogenesis of broiler chicks (Gallus domesticus) on hatchability, body weight and thermoregulation after hatch. J. Therm. Biol. 29: 245-250. https://doi.org/10.1016/j.jtherbio.2004.03.002
Yalçin, S., M. Çabuk, V. Bruggeman, E. Babacanoğlu, J. Buyse, E. Decuypere, & P. B. Siegel, 2008. Acclimation to Heat During Incubation. 1. Embryonic Morphological Traits, Blood Biochemistry, and Hatching Performance. Poult. Sci. 87: 1219-1228. https://doi.org/10.3382/ps.2007-00435
Yalçin, S., H. B. Molayoǧlu, M. Baka, O. Genin, & M. Pines, 2007. Effect of temperature during the incubation period on tibial growth plate chondrocyte differentiation and the incidence of tibial dyschondroplasia. Poult. Sci. 86: 1772-1783. https://doi.org/10.1093/ps/86.8.1772
Yalcin, S., & P. Siegel, 2003. Exposure to cold or heat during incubation on developmental stability of broiler embryos. Poultry Science. 82: 1388-1392. https://doi.org/10.1093/ps/82.9.1388
Zaboli, G., S. Rahimi, F. Shariatmadari, M. A. K. Torshizi, A. Baghbanzadeh, & M. Mehri, 2017. Thermal manipulation during Pre and Post-Hatch on thermotolerance of male broiler chickens exposed to chronic heat stress. Poult. Sci. 96: 478-485. https://doi.org/10.3382/ps/pew344
Zeman, M., E. Gwinner, & E. Somogyiová, 1992. Development of melatonin rhythm in the pineal gland and eyes of chick embryo. Experientia 48: 765-768. https://doi.org/10.1007/BF02124299
Zhang, L., H. J. Zhang, J. Wang, S. G. Wu, X. Qiao, H. Y. Yue, J. H. Yao, & G. H. Qi, 2014. Stimulation with monochromatic green light during incubation alters satellite cell mitotic activity and gene expression in relation to embryonic and posthatch muscle growth of broiler chickens. Animal 8: 86-93. https://doi.org/10.1017/S1751731113001882
Shah, T., & Özkan, S. (2022). Effects of thermal manipulation and photoperiodic lighting during incubation on hatching performance, hatching time, chick quality and organ growth. Journal of Agriculture Faculty of Ege University, 59(1), 17-31. https://doi.org/10.20289/zfdergi.938921