Research Article
BibTex RIS Cite

Bioutilization of Cheese Whey and Corn Steep Liqour by Heterotrophic Microalgae Crypthecodinium cohnii for Biomass and Lipid Production

Year 2017, , 233 - 241, 22.10.2017
https://doi.org/10.24323/akademik-gida.345256

Abstract

Many
different wastewater and by-products derived from industrial activities
potentially support microalgal growth by providing a cost-effective and
sustainable solutions. In this present study, it
was aimed to biologically utilize cheese whey (CW) and corn steep liquor (CLS)
for microalgal biomass and lipid production by using these wastes in culture
media for heterotrophic microalga Crypthecodinium
cohnii
 cultivation.
To determine n
utrient
requirements for C. cohnii growing in
a medium prepared with CSL and in CW, statistical screening tools were used.
CSL significantly enhanced microalgal growth
and it could be an alternative to yeast extract as the primary nutrient source.
As for CW, it served as a good culture medium for C. cohnii with the supplement of some of nutrients and eliminated the need for fresh water. Thus, a
new culture medium was developed by combining undiluted CW and CSL and optimized for the growth of
C. cohnii. Lastly, in a scale-up
attempt by using this new medium, microalgal production was performed in a 3 L
stirred tank bioreactor. C. cohnii
yielded relatively high biomass productivity (2.28 g/L.d) and lipid content
(28.7% dry weight) in the optimized medium. Althoug C. cohnii was known for its ability to accumulate high amounts of
docosahexaenoic acid (DHA), it transformed
its fatty acid composition to an increased
proportion of saturated and monounsaturated fatty acids (C16:0-C18:1) that comprise
~70% of total fatty acids (TFA) when it was
cultivated in CW mainly supplemented with CSL.
Thus, C. cohnii seemed to be
more feasible for biodiesel production than any other purposes when it was
cultivated in this new medium.

References

  • [1] De Swaaf, M.E., Sijtsma, L., Pronk, J.T., 2003. High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnology and Bioengineering 81: 666–672.
  • [2] Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A., 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering 101: 87-96.
  • [3] De Swaaf, M.E., Grobben, G.J., Eggink, G., De Rijk, T.C., Van der Meer, P., Sijtsma, L., 2001. Characterisation of extracellular polysaccharides produced by Crypthecodinium cohnii. Applied Microbiology and Biotechnology 57: 395-400.
  • [4] Morillo, J.A., Antizar-Ladislao, B., Monteoliva-Sanchez, M., Ramos Cormenzana, A., Russell, N.J., 2009. Bioremediation and biovalorisation of olive-mill wastes. Applied Microbiology and Biotechnology 82: 25–39.
  • [5] De Lima, C.J.B., Coelho, L.F., Blanco, K.C., Contiero, J., 2009. Response surface optimization of D (-)-lactic acid production by Lactobacillus SMI8 using corn steep liquor and yeast autolysate as an alternative nitrogen source. African Journal of Biotechnology 8: 5842-5846.
  • [6] Mendes, A., Guerra, P., Madeira, V., Ruano, F., da Silva, T.L., Reis, A., 2007. Study of docosahexaenoic acid production by the heterotrophic microalga Crypthecodinium cohnii CCMP316 using carob pulp as a promising carbon source. World Journal of Microbiology and Biotechnology 23: 1209–1215.
  • [7] Azbar, N., Dokgoz, F.T., Keskin, T., Eltem, R., Korkmaz, K.S., Gezgin, Y., Akbal, Z., Oncel S., Dalay, M.C., Gonen, C., Tutuk F., 2009. Comparative evaluation of bio-hydrogen production from cheese whey wastewater under thermophilic and mesophilic anaerobic conditions. International Journal of Green Energy 6: 192–200.
  • [8] Pesta, G., Meyer-Pittroff, R., Rus, W., 2007. Utilization of Whey. In Utilization of by-products and treatment of waste in the food industry, Edited by V. Oreopoulou and W. Russ, Springer Science Business Media, LLC, New York, USA, 193 p.
  • [9] Liggett, R.W., Koffler, H., 1948. Corn steep liqour in microbiology. Bacteriological Reviews 12: 297–311.
  • [10] Maddipati, P., Atiyeh, H.K., Bellmer, D.D., Huhnke, R.L., 2011. Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Bioresource Technology 102: 6494–6501.
  • [11] Mandenius, C.F., Brundin, A., 2008. Bioprocess optimization using design-of-experiments methodology. Biotechnology Progress 24: 1191-1203.
  • [12] Plackett, R.L., Burman, J.P., 1946. The design of optimum multifactorial experiments. Biometrika 33: 305-325.
  • [13] Antony, J., 2006. Taguchi or classical design of experiment: a perspective from a practitioner. Sensor Review 26: 227–230.
  • [14] Gao, H., Liu, M., Liu, J., Dai, H., Zhou, X., Liu, X., Zhuo, Y., Zhang, W., Zhang, L., 2009. Medium optimization for the production of avermectin B1a by Streptomyces avermitilis 14-12A using response surface methodology. Bioresource Technology 100: 4012-4016.
  • [15] Li, Z., Yuan, H., Yang, J., Li, B., 2011. Optimization of the biomass production of oil algae Chlorella minutissima UTEX2341. Bioresource Technology 102: 9128-9134.
  • [16] Isleten-Hosoglu, M., Gultepe, I., Elibol, M., 2012. Optimization of carbon and nitrogen sources for biomass and lipid production by Chlorella saccharophila under heterotrophic conditions and development of nile red fluorescence based method for quantification of its neutral lipid content. Biochemical Engineering Journal 61: 11–19.
  • [17] Chi, Z., Pyle, D., Wen, Z., Frear, C., Chen, S., 2007. A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochemistry 42: 1537–1545.
  • [18] Bligh, E.G., Dyer, W.J., 1959. A rapid method for total lipid extraction and purification. Canadian Journal of Biochemical Physiology 37: 911–917.
  • [19] Christie, W.W., 2003. Preparation of derivates of fatty acids. In Lipid Analysis: Isolation, Separation and Structural Analysis of Lipids, Edited by W.W. Christie, J. Barnes and Associates, Dundee, Scotland, 205 p.
  • [20] Liu, C., Liu, Y., Liao, W., Wen, Z., Chen, S., 2003. Application of statistically-based experimental designs for the optimization of nisin production from whey. Biotechnology Letters 25: 877–882.
  • [21] Tuttle, R.C., Loeblich, A.R., 1975. An optimal growth medium for the dinofilagellate Crypthecodinium cohnii. Phycology 14: 1-8.
  • [22] Jiang, Y., Chen, F., 1999. Effects of salinity on cell growth and docosahexaenoic acid content of the heterotrophic marine microalga Crypthecodinium cohnii. Journal of Industrial Microbiology and Biotechnology 23: 508–513.
  • [23] De Swaaf, M.E., de Rijk, T.C., Eggink, G., Sijtsma, L., 1999. Optimization of docosahexaenoic acid production in batch cultivations by Crypthecodinium cohnii. Journal of Biotechnolgy 70: 185–192.
  • [24] De Swaaf, M.E., de Rijk, T.C., de van der Meer, P., Eggink, G., Sijtsma, L., 2003. Analysis of docosahexaenoic acid biosynthesis in Crypthecodinium cohnii by 13C labelling and desaturase inhibitor experiments. Journal of Biotechnology 103: 21-29.
  • [25] Ratledge, C., Kanagachandran, K., Anderson, A.J., Grantham, D.J., Stephenson, J.C., 2001. Production of docosahexaenoic acid by Crypthecodinium cohnii grown in a pH-auxostat culture with acetic acid as principal carbon source. Lipids 36: 1241-1246.
  • [26] Jiang, Y., Chen, F., 2000. Effects of Temperature and Temperature Shift on Docosahexaenoic Acid Production by the Marine Microalga Crypthecodinium cohnii. The Journal of the American Oil Chemists' Society 77: 613-617.
  • [27] Chen, M., Tang, H., Ma, H., Holland, T.C., Simon-Ng, K.Y., Salley, S.O., 2011. Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource Technology 102: 1649–1655.
  • [28] Brennan, L., Owende, P., 2010. Biofuels from microalgae— A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable Sustainable Energy Revolution 14: 557–577.
  • [29] YouWen, Z., Chen, F., 2001. Optimization of nitrogen sources for heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis. Enzyme and Microbial Technology 29: 341–347.

Peyniraltı Suyu ve Mısır Islatma Şurubunun Heterotrofik Mikroalg Crypthecodinium cohnii ile Biyokütle ve Yağ Üretimi Amacıyla Biyolojik Olarak Değerlendirilmesi

Year 2017, , 233 - 241, 22.10.2017
https://doi.org/10.24323/akademik-gida.345256

Abstract

Endüstriyel faaliyetlerden elde edilen birçok
farklı atık
su ve yan
ürünler maliyet-etkin ve
sürdürülebilir
mikroalg kültüvasyonu için
potansiyel
kaynaklardır.
Mevcut çalışmada,
heterotrofik mikroalg Crypthecodinium cohnii kültüvasyonu için kültür besiyerinde peynir altı suyu
(CW) ve
mısır ıslatma şurubu
(CSL) kullanılarak, bu atıkların mikroalgal biyokütle ve yağ üretimi amacıyla biyolojik
olarak değerlendirilmesi hedeflenmiştir.
Organizmanın, her iki ortamdaki
(CW ve CSL) besin ihtiyaçlarını belirlemek amacıyla istatistiksel tarama
metodları kullanılmıştır. CSL’nin C.
cohnii
biyokütle gelişimini olumlu yönde desteklediği ve organizmanın
kültür ortamında kullanılan maya ekstraktının alternatifi olarak
kullanılabileceği belirlenmiştir. Peyniraltı suyunun ise, organizma için
gerekli mineraller açısından önemli bir kaynak olduğu ve CW’in doğrudan
kullanımıyla kültür ortamındaki su ihtiyacını karşılama avantajına sahip olduğu
sonucuna varılmıştır. Bu şekilde
C. cohnii
kültüvasyonunda kullanılacak yeni
kültür ortamı seyreltilmemiş CW ve
CSL’nin birlikte kullanımı ile
geliştirilmiştir ve
optimizasyonu
yapılmıştır.
Son olarak, yapılan ölçek
büyütme çalışmalarında
yeni kültür ortamı
kullanılarak
3 L’lik karı
ştırmalı tank biyoreaktörde üretimler gerçekleştirilmiştir.
Optimizasyonu yapılan kültür ortamında kısmen yüksek biyokütle verimliliği
(2.28 g/L.gün) ve yağ oranı (% 28.7 kuru ağırlık) sağlanmıştır.
C. cohnii biyokütlede son derece
yüksek oranlarda dokozahekzanoik asit (DHA) üreticisi bir tür olarak
bilinmesine rağmen, CSL ile
zenginle
ştirilmiş CW ortamında biyokütlesindeki
yağ asidi kompozisyonunu değiştirerek, daha çok tekli doymuş ve tekli doymamış
yağ asitlerincee (C16:0-C18:1) zengin bir yağ profiline (toplam yağ asidi
kompozisyonunun ~70%’i) sahip olduğu saptanmıştır.  Buna göre, endüstriyel atıkların
değerlendirildiği bu kültür ortamında yetiştirilen C. cohnii’nin biyodizel üretimi için uygun bir kaynak olabileceği
sonucuna varılmıştır.

References

  • [1] De Swaaf, M.E., Sijtsma, L., Pronk, J.T., 2003. High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnology and Bioengineering 81: 666–672.
  • [2] Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A., 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering 101: 87-96.
  • [3] De Swaaf, M.E., Grobben, G.J., Eggink, G., De Rijk, T.C., Van der Meer, P., Sijtsma, L., 2001. Characterisation of extracellular polysaccharides produced by Crypthecodinium cohnii. Applied Microbiology and Biotechnology 57: 395-400.
  • [4] Morillo, J.A., Antizar-Ladislao, B., Monteoliva-Sanchez, M., Ramos Cormenzana, A., Russell, N.J., 2009. Bioremediation and biovalorisation of olive-mill wastes. Applied Microbiology and Biotechnology 82: 25–39.
  • [5] De Lima, C.J.B., Coelho, L.F., Blanco, K.C., Contiero, J., 2009. Response surface optimization of D (-)-lactic acid production by Lactobacillus SMI8 using corn steep liquor and yeast autolysate as an alternative nitrogen source. African Journal of Biotechnology 8: 5842-5846.
  • [6] Mendes, A., Guerra, P., Madeira, V., Ruano, F., da Silva, T.L., Reis, A., 2007. Study of docosahexaenoic acid production by the heterotrophic microalga Crypthecodinium cohnii CCMP316 using carob pulp as a promising carbon source. World Journal of Microbiology and Biotechnology 23: 1209–1215.
  • [7] Azbar, N., Dokgoz, F.T., Keskin, T., Eltem, R., Korkmaz, K.S., Gezgin, Y., Akbal, Z., Oncel S., Dalay, M.C., Gonen, C., Tutuk F., 2009. Comparative evaluation of bio-hydrogen production from cheese whey wastewater under thermophilic and mesophilic anaerobic conditions. International Journal of Green Energy 6: 192–200.
  • [8] Pesta, G., Meyer-Pittroff, R., Rus, W., 2007. Utilization of Whey. In Utilization of by-products and treatment of waste in the food industry, Edited by V. Oreopoulou and W. Russ, Springer Science Business Media, LLC, New York, USA, 193 p.
  • [9] Liggett, R.W., Koffler, H., 1948. Corn steep liqour in microbiology. Bacteriological Reviews 12: 297–311.
  • [10] Maddipati, P., Atiyeh, H.K., Bellmer, D.D., Huhnke, R.L., 2011. Ethanol production from syngas by Clostridium strain P11 using corn steep liquor as a nutrient replacement to yeast extract. Bioresource Technology 102: 6494–6501.
  • [11] Mandenius, C.F., Brundin, A., 2008. Bioprocess optimization using design-of-experiments methodology. Biotechnology Progress 24: 1191-1203.
  • [12] Plackett, R.L., Burman, J.P., 1946. The design of optimum multifactorial experiments. Biometrika 33: 305-325.
  • [13] Antony, J., 2006. Taguchi or classical design of experiment: a perspective from a practitioner. Sensor Review 26: 227–230.
  • [14] Gao, H., Liu, M., Liu, J., Dai, H., Zhou, X., Liu, X., Zhuo, Y., Zhang, W., Zhang, L., 2009. Medium optimization for the production of avermectin B1a by Streptomyces avermitilis 14-12A using response surface methodology. Bioresource Technology 100: 4012-4016.
  • [15] Li, Z., Yuan, H., Yang, J., Li, B., 2011. Optimization of the biomass production of oil algae Chlorella minutissima UTEX2341. Bioresource Technology 102: 9128-9134.
  • [16] Isleten-Hosoglu, M., Gultepe, I., Elibol, M., 2012. Optimization of carbon and nitrogen sources for biomass and lipid production by Chlorella saccharophila under heterotrophic conditions and development of nile red fluorescence based method for quantification of its neutral lipid content. Biochemical Engineering Journal 61: 11–19.
  • [17] Chi, Z., Pyle, D., Wen, Z., Frear, C., Chen, S., 2007. A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochemistry 42: 1537–1545.
  • [18] Bligh, E.G., Dyer, W.J., 1959. A rapid method for total lipid extraction and purification. Canadian Journal of Biochemical Physiology 37: 911–917.
  • [19] Christie, W.W., 2003. Preparation of derivates of fatty acids. In Lipid Analysis: Isolation, Separation and Structural Analysis of Lipids, Edited by W.W. Christie, J. Barnes and Associates, Dundee, Scotland, 205 p.
  • [20] Liu, C., Liu, Y., Liao, W., Wen, Z., Chen, S., 2003. Application of statistically-based experimental designs for the optimization of nisin production from whey. Biotechnology Letters 25: 877–882.
  • [21] Tuttle, R.C., Loeblich, A.R., 1975. An optimal growth medium for the dinofilagellate Crypthecodinium cohnii. Phycology 14: 1-8.
  • [22] Jiang, Y., Chen, F., 1999. Effects of salinity on cell growth and docosahexaenoic acid content of the heterotrophic marine microalga Crypthecodinium cohnii. Journal of Industrial Microbiology and Biotechnology 23: 508–513.
  • [23] De Swaaf, M.E., de Rijk, T.C., Eggink, G., Sijtsma, L., 1999. Optimization of docosahexaenoic acid production in batch cultivations by Crypthecodinium cohnii. Journal of Biotechnolgy 70: 185–192.
  • [24] De Swaaf, M.E., de Rijk, T.C., de van der Meer, P., Eggink, G., Sijtsma, L., 2003. Analysis of docosahexaenoic acid biosynthesis in Crypthecodinium cohnii by 13C labelling and desaturase inhibitor experiments. Journal of Biotechnology 103: 21-29.
  • [25] Ratledge, C., Kanagachandran, K., Anderson, A.J., Grantham, D.J., Stephenson, J.C., 2001. Production of docosahexaenoic acid by Crypthecodinium cohnii grown in a pH-auxostat culture with acetic acid as principal carbon source. Lipids 36: 1241-1246.
  • [26] Jiang, Y., Chen, F., 2000. Effects of Temperature and Temperature Shift on Docosahexaenoic Acid Production by the Marine Microalga Crypthecodinium cohnii. The Journal of the American Oil Chemists' Society 77: 613-617.
  • [27] Chen, M., Tang, H., Ma, H., Holland, T.C., Simon-Ng, K.Y., Salley, S.O., 2011. Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource Technology 102: 1649–1655.
  • [28] Brennan, L., Owende, P., 2010. Biofuels from microalgae— A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable Sustainable Energy Revolution 14: 557–577.
  • [29] YouWen, Z., Chen, F., 2001. Optimization of nitrogen sources for heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis. Enzyme and Microbial Technology 29: 341–347.
There are 29 citations in total.

Details

Journal Section Research Papers
Authors

Müge Isleten-hosoglu

Murat Elibol

Publication Date October 22, 2017
Submission Date October 19, 2017
Published in Issue Year 2017

Cite

APA Isleten-hosoglu, M., & Elibol, M. (2017). Peyniraltı Suyu ve Mısır Islatma Şurubunun Heterotrofik Mikroalg Crypthecodinium cohnii ile Biyokütle ve Yağ Üretimi Amacıyla Biyolojik Olarak Değerlendirilmesi. Akademik Gıda, 15(3), 233-241. https://doi.org/10.24323/akademik-gida.345256
AMA Isleten-hosoglu M, Elibol M. Peyniraltı Suyu ve Mısır Islatma Şurubunun Heterotrofik Mikroalg Crypthecodinium cohnii ile Biyokütle ve Yağ Üretimi Amacıyla Biyolojik Olarak Değerlendirilmesi. Akademik Gıda. October 2017;15(3):233-241. doi:10.24323/akademik-gida.345256
Chicago Isleten-hosoglu, Müge, and Murat Elibol. “Peyniraltı Suyu Ve Mısır Islatma Şurubunun Heterotrofik Mikroalg Crypthecodinium Cohnii Ile Biyokütle Ve Yağ Üretimi Amacıyla Biyolojik Olarak Değerlendirilmesi”. Akademik Gıda 15, no. 3 (October 2017): 233-41. https://doi.org/10.24323/akademik-gida.345256.
EndNote Isleten-hosoglu M, Elibol M (October 1, 2017) Peyniraltı Suyu ve Mısır Islatma Şurubunun Heterotrofik Mikroalg Crypthecodinium cohnii ile Biyokütle ve Yağ Üretimi Amacıyla Biyolojik Olarak Değerlendirilmesi. Akademik Gıda 15 3 233–241.
IEEE M. Isleten-hosoglu and M. Elibol, “Peyniraltı Suyu ve Mısır Islatma Şurubunun Heterotrofik Mikroalg Crypthecodinium cohnii ile Biyokütle ve Yağ Üretimi Amacıyla Biyolojik Olarak Değerlendirilmesi”, Akademik Gıda, vol. 15, no. 3, pp. 233–241, 2017, doi: 10.24323/akademik-gida.345256.
ISNAD Isleten-hosoglu, Müge - Elibol, Murat. “Peyniraltı Suyu Ve Mısır Islatma Şurubunun Heterotrofik Mikroalg Crypthecodinium Cohnii Ile Biyokütle Ve Yağ Üretimi Amacıyla Biyolojik Olarak Değerlendirilmesi”. Akademik Gıda 15/3 (October 2017), 233-241. https://doi.org/10.24323/akademik-gida.345256.
JAMA Isleten-hosoglu M, Elibol M. Peyniraltı Suyu ve Mısır Islatma Şurubunun Heterotrofik Mikroalg Crypthecodinium cohnii ile Biyokütle ve Yağ Üretimi Amacıyla Biyolojik Olarak Değerlendirilmesi. Akademik Gıda. 2017;15:233–241.
MLA Isleten-hosoglu, Müge and Murat Elibol. “Peyniraltı Suyu Ve Mısır Islatma Şurubunun Heterotrofik Mikroalg Crypthecodinium Cohnii Ile Biyokütle Ve Yağ Üretimi Amacıyla Biyolojik Olarak Değerlendirilmesi”. Akademik Gıda, vol. 15, no. 3, 2017, pp. 233-41, doi:10.24323/akademik-gida.345256.
Vancouver Isleten-hosoglu M, Elibol M. Peyniraltı Suyu ve Mısır Islatma Şurubunun Heterotrofik Mikroalg Crypthecodinium cohnii ile Biyokütle ve Yağ Üretimi Amacıyla Biyolojik Olarak Değerlendirilmesi. Akademik Gıda. 2017;15(3):233-41.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).